Your
Next

Intelligent
Move

TECHNOSOTFT
MOTION TECHNOLOGY

®

TECHNOSOTFT
MOTION TECHNOLOGY

Drive special inputs
Enable

Application Note

APPLICATION NOTE Drive special inputs - Enable

Table of content

I [o) A o Yo ¥ o3 (o] o JPUS USROS 3
2. APPLICAtioON TIOW CRAIT ..ottt 3
3. EasyMotion Studio I implementation ... 4

3.1 Main MOLION PrOGIAIM c..oocciiecieeieecee ettt e et teesae st esrresatessteesbeenseeteesteessassasesnsesnsennees 4

3.2 Customized interrupt service routine the “int0 — Enable input has changed” TML
LN =] VT o) PR 7

©Technosoft 2025 2 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable
1

1. Introduction

The Enable input allows connecting an emergency signal that can come from the master or simply from
an emergency button.

When the Enable input becomes “inactive”, the drive performs the following actions:

- deactivates the PWM outputs
- sets the bit 15 (“Enable is inactive”) in the MER (Motion Error Register) error register
- generates the “int0 — Enable input has changed” TML interrupt

Remark: With the PWM outputs being deactivated, the motor will not be energized anymore, so it will
stop freely, becoming fully dependent on the load inertia and system friction.

When the Enable input changes back to “active”, the MER.15 bit is reset but the PWM outputs remain
deactivated, with one exception: when the drive was executing an electronic gearing profile.

The “int0 — Enable input has changed” interrupt is triggered when the Enable input becomes active.

This application note presents an example on how to restore a predefined motion cycle (stored at the
drive level), when the Enable input is reactivated.

2. Application flow chart

START int0 — STO/Enable input has changed

|mmmmm e e e e e m e mm e mmmmmm——m——
l 16 Read the MER register value

Activate the Enable interrupt l
yes no
— is MER=07?

Move 5 rot., using
absolute trapezoidal
position profile

l 16 SetASR.3to1
Fay Relative positioning to hold

the current motor

'

o Activate the control loops
and PWM outputs (AXISON)

'

lcw Wait for motion complete

l

Move -5 rot., using
/. absolute trapezoidal
position profile

l

[}
1
1
1
1
1
[}
1
1
1
1
1
[}
1
1
1
1
1
[}
1
1
Ics Wait 0.7 s '
1
[}
1
1
1
1
1
[}
1
1
1
1
1
[}
1
1
1
1
1
[}
1
1

Ics Wait 0.7 s
| ' v
£ Reactivate the “int0” interrupt —— T'J Return from interrupt
The main TML code, found in The TML code in the ISR of
the “Motion” section “int0”

Figure 1 - Application flow chart

©Technosoft 2025 3 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable

3. EasyMotion Studio Il implementation

The application implementation will follow the application flow chart from section 2 and has two parts:

1) The main TML program, in the “Motion” branch, that will include the predefined motion cycle.
2) The customized ISR for “int0 — Enable input has changed”.

3.1 Main motion program

The main program contains an infinite loop with two absolute motion profiles. The first profile will move
the load to 5 rotations, while the second one will move it back to the start position. Between the motion
profiles, a 0.7 s waiting time will be introduced.

Remark: The TML user variables must be defined at the beginning of the “Motion” section including the
ones used in custom ISR or TML functions.

The code sequence inside the “Motion” section was generated using the buttons marked with 1 to 8 in
Figure 9. Clicking on those buttons the following programming dialogs will open:

a) The user variables can be declared with the “Miscellaneous” dialogue (Figure 9 — step 1). Here, it
was used to declare the “Mer_copy” variable required in the “int0 — Enable input has changed”
interrupt service routine. Mer_copy will hold the value of MER register, integer 16-bit, therefore it
will be defined as integer too.

Application tree > I
4 | Untitled project {7\ Trapezoidal Profiles Euerrich
B Bz 2B M0 Miscellaneous |:i
S Setup PAPT " int Mer_copy; // Define integer variable Mer_copy]
1. I M Motion I M pvr S
| Homings 0~ External .
IF! Functions 93 Electronic Gearing () Define variahlel ok '" Mer.copy I 3
Lif] Interrupts [\ Electronic Camming) Reset FAULT status
i£| CAM Tables © Moter Commands () Insert END instruction
Memory settings ?" Position Triggers O Insert NOP instruction
@ Homing) Serial communication - Set baudrate
‘M Contourtg () CAN communication - Set baudrate
Tr Test
16 Events) Insert EMDINIT instruction

P'd Jumps and Function Calls

= Inputs / outputs
18 16-bit Integer

32 32-bit Long or Fixed

< Arithmetic

) Save actual setup data in EEPROM

4 Cancel Help

?é] Data Transfer Between Axes

Ex] Send Data To Host

I MISC Miscellaneous

| 2

% Interrupt Settings
tet Free Text

Figure 2 - How to define a user variable, step by step. (Figure 9 — step 1)

b) The “Interrupt Settings” dialog (Figure 9 — step 2) allows to enable, disable and clear previous
requests of the TML interrupts. In this case it was used to activate the “Int0 — Enable input has
changed” interrupt routine, that was used to implement the functionality described in the first

section.

©Technosoft 2025

4 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable

M\ Trapezoidal Profiles Search

TML Interrupt

SRBICR, CxBFFF, 0x0007; //Set/Reset Bits of Interrupt
Controd Register

2% Electronic Gearing

o 2 Interrupt Setting
A\ S Curve ”
15 Miscellaneous. & TML st
M pT _int Mer_copy: // Define integer varisble Mee_copy) [Ensbie globat
EUL ¢ Immp{Saﬂmgs 1
O External SR ISR, OXEFFE, 0; //Reset Bits of Intemupt Statis Register 1
x

Int0 - STO/Enable ins

L2 Electeonic Camming
1 Motor Commands

THL Interrupts

' Position Triggers [] Enabie globally ["] Disable globaly
Q Homing
eset TML
W, Corntouring TML Interrupt Enable| Disable| st Pravious
interrupt requests
7 Test Int0 - STO/Enable input has changed 2 I I
10 Events Int1 - Skiort-circuit | _J
P Jurmps and Function Calls Int2 - Software protections -:] | G
=3 Inputs / cutputs Int3 - Contral arror W Ll Cl
1§ 16-bit Integer Intd - Communication e O O O
g 32-bit Long or Fixed Int5 - Position wraparound O B |
4 Arithmetic Int6 - L5P programmed transition detected () Ll [}
Int? - gramim it tect O O 2
3 Data Transfer Batween Axes it/ A5B pregrimad ansition cetexied = = 2
Int8 - Capture input transition detected [| |] *
B cond Deta To Host :
Int@ - Maltian is completed / in velocity L L] 1
ML Miscellanecus O]
o ey o o o
1 £ Interrupt Settings Inti1 - Event set has occurred O C B

Bt Fres Ted Int12 - Position trigger 1.4 change detected

Ooon
O

Int13 - Digital Input X programmed transition [

3 Cancel Help

Figure 3 - How to activate the enable input interrupt (int0). (Figure 9 — step 2)

c) The “Jumps and Function Calls” dialogue (Figure 9 — step 3 and step 8) allows controlling the TML

program flow through unconditional or conditional jumps and unconditional, conditional or
cancelable calls of TML functions.
In this case, the dialog was used to create an infinite loop where the motor executes 5 rotations in
the positive direction and returns to the start position. Therefore, the remaining lines of code will be
placed between the codes illustrated in Figure 4 and Figure 5. In other words, we will start with
“Loop_01", write the remaining lines of code, and end with “GOTO Loop_01".

7\ Trapezoidal Profiles Search 0/0 £ Jumps and Function C /\ Trapezoidal Profiles Search /0 | P Jumps and Function €
S Curve %3 S\ S Curve : S —
| MSC Miscellaneous B |0 HSC Miscellaneous B ®cow
MpT int Mer _copy: // Define integer variable Mer_copy 1 O call M et int Mer_copy; // Define integer variable Mer_copy 2] O cal
L :

W vt ¢ Interrupt Settings 1 | O Cancelable call Wy pvT Interrupt Settings T O Cancelable call

(- External | | SRB ISR, OxBFFE, 0; //Reset Bits of Interrupt Status Register 1 [+ External SRB ISR, OxBFFE, 0; //Reset Bits of Interrupt Status Register 1
250 ic Geari SRB ICR, 0xBFFF, 0x0001; //Set/Reset Bits of Interrupt 9§ Electronic Gearin SRB ICR, CxBFFF, 0x0001; //Set/Reset Bits of Interrupt

& Electronic Gearing Control Register b% Lia 9 Cantrol Register x

[Electronic Camming) Return from function L7 Electronic Camming 14 Jumps and Function Calls © Return from function

D Motor Commands | Loup DT I/Dev’me \abel Loop D'\ O Return from interrupt B Motor Commands Luop 01: //Define label Loop_ 01) Return from interrupt
F Position Triggers Jumps and Function Calls F Position Triggers I Jumps and Function Calls | © Abort cancelable call
o g = — pE— €3 Horing A GOTO Loop_01; //Branch to Loop_01 © Insert labal

T Contouring O cal - T, Contouring Jumps and Function Calls

T Test O Cancelable call ! Tr Test Address / Label |Loop_01

1ex Events 1o Events O call s

O Cancelable call
1) Jumps and Function Calls 1 FJ Jumps and Function Calls

=] Inputs / outputs © Betumyforr fnctien =1 Inputs / outputs

O Return from interrupt 15
18 16-bit Integer 18 16-bit Integer
= 2 () Abort cancelable call = O Return from function
22 32-bit Long or Fixed T iR 32bit lob or Fixed O Return from interrupt
= 2 I@ Insert label |Loop_01 I = - C
. Arithmetic ¥ Arithmetic O Abort cancelable call

£ oo Tas B) 3 Concel | Help Data Tiansfr Between Axes O nsert bl
B Send Data To Host By sond i T ot 4 Cancel || Help

MISC Miscellaneous
MISC Miscellaneous

£ Interrupt Settings £ Interrupt Settings

bt Free Text &t Free Text

Figure 4 - Inserting the label for a TML loop. (Figure 9 — step 3) Figure 5 -Inserting the command to go back to the label in a TML loop.
(Figure 9 — step 8)

Remark: For visual esthetics and easiness of read reasons, all figures from this point on will not
showcase anymore the previously generated lines of code, as they will be grouped (displayed with the
blue “Untitled” text). To make sure the instructions have been placed in the right order, see Figure 9.

©Technosoft 2025 5 APN4.2-0724

APPLICATION NOTE

Drive special inputs - Enable

d) The “Motion — Trapezoidal Profiles” dialogue (Figure 9 — step 4 and step 6) allows to program a
position or speed profile with a trapezoidal shape of the speed, due to a limited acceleration.
In this case it was used to move the motor for 5 rotations and then to return to 0.

/\ Trapezoidal Profiles Search 00\ Profile I ™\ Trapezoidal Profiles I Search 0/0 | ™\ Trapezoidal Profil¢
A\ S Curve i A\ S Curve o)
o ¥ {} Untitled B @ postion ® oot ¥~ {} Untitled =l @ Position O]
T /\ Trapezoidal Profiles ® o Speed O /7\ Trapezoidal Profiles | ® o Speed (@]
JyPosition profile 1 M vt \//Position profile 1
¥ External CACC = 0.31831; //acceleration rate = 1000.01[rad/s*2] 1 {0~ External CPOS = 0L; //position command = 0[rot]
8 Electronic Gearin CSPD = 3.33333; //slew speed = 100[rpm] = = | ‘ CPA; // position command is absolute 1
" 9 CPOS = 10000L; //position command = 5[rat] x & Electronic Gearing MODE PP: *
15 Electronic Camming CPA; // position command is absolute B et Cammes TUM; //set Target Update Mode 1 ik
MODE PP; — A i
® Motor Commands Z . UPD; // execute immediate
TUMY; //set Target Update Mode 1 2 ® Generate new traje ® Motor Commands IMC; WAITS; // wait for completion (®) Generate new traj
position Taggers UPD; // execute immediate

IMC; WAITS; // wait for completion
ﬁ Homing

i i
A Corrounng Trapezoidal Profiles
T Test 2 I@ Position @® Absolute I

O i Additive

Yo». Evants O Speed O Relative d
Pd Jumps and Function Calls Acceleration rate 1000.01 rad/sA2 -
=1 Inputs / outputs Slew speed | 100 | pm v
1€ 16-bit Integer Pasition to reach | 5 | rat >

32 32-bit Long or Fixed
Y2 Arithmetic

3 [Generate new trajectory starting from actual values of position and speed reference |

(O Generate new trajectory starting from actual values of load/motor position and speed

(0 Generate new traje

% Data Transfer Between

5
Y [® update immediately 7] Watt antl motion s completed |
iv] Send Data To Host

O Update on event

MISC Miscellaneous

2 nter pt Setting s © Setup motion data, but don't start execution
bt Free Text

5 EEE

Figure 6 - Configuration for 5 absolute positive rotations of the rotor.
(Figure 9 —step 4)

?’ Position Triggers

Q Homing

Trapezoidal Profiles

2 I@ Position (® Absolute I
T contouring O Speed O Relative [_| Additive
T7 Test
Iex Events Acceleration rate M|
Slew speed
P Jumps and Function Calls P O
Position to reach [} rot -

=] Inputs / outputs

18 16-bit Integer

3

I (®) Generate new trajectory starting from actual values of position and speed reference I

32 32-bit Long or Fixed (O Generate new trajectory starting from actual values of load/motor position and speed

—
¥~ Arithmetic 4 I@ Update immediately Wait until motion is ccmpleledl

%) Data Transfer Between Axes () Update on event
B} Send Data To Host

Mt Miscellaneous (O Setup motion data, but don't start execution

& Interrupt Settings

5

bt Free Text

Figure 7 - Configuration for returning to the initial absolute position.

(Figure 9 — step 6)

e) The “Events” dialogue (Figure 9 — step 5 and step 7) allows defining events. An event is a
programmable condition, which once set, is monitored for occurrence.

The following actions can be executed automatically when an event is detected:

- stop the motion when the event occurs.
- wait for the programmed event to occur.

In this case, the “Events” dialog was used to insert a 0.7 s delay between the two movements.

/\ Trapezoidal Profiles Search

#\ Trapezoidal Profiles

0/0 lew Event Search 0/0
A\ S Curve g AN S Curve 44
> {} Untitled 2 ¥ {} Untitled a
MPT P Afterav | pA pr
1o Events & LI“ Events =3
ﬁm PVT _| //Define event: After a wait time equal with value 700 ms 1‘ D Stopt ﬂm PVT /Define event: After a wait time equal with value 700 ms ‘t
0 External IRT 700L; 1 Wait L [External IRT 700L; 1
s z WAITE // Wait until the event occurs T s WAIT!; // Wait until the event occurs
93 Electronic Gearing 93 Electronic Gearing
[\ Electronic Camming b x [\ Electronic Camming
Motor Commands I After a wait time v I. © Motor Commands After a wait time v W

#" Position Triggers

Value 700 ms

i After a wait time equal witt
@ Heming 9 (O Variable
1}'\ Contouring
Help | gip
T Test —
1 [te= Events | 2
P Jumps and Function Calls &

?é’ Bosttion Triggets ["] Stop the motion when the event accurs

‘G} Homing 5 I Wait until the event occurs I
=1 }4\ Contouring -
6 OK Cancel
Tr Test
fex Events L 2
P Jumps and Function Calls D

Figure 8 — How to insert a delay in TML program. (Figure 9— step 5 and step 7)

©Technosoft 2025

APN4.2-0724

Iew Event

Afterav

[] stop
Wait 1

Help

APPLICATION NOTE Drive special inputs - Enable

4,6 I /7\ Trapezoidal Profiles I Search
A\ S Curve - - —
¥ ‘ {} Main code in order and with indexes
P Pt
Mist Miscellaneous
I?[lﬂ PVT 1 int Mer c . i i
J or_copy; // Define integer variable Mer_copy
l}- External

¥ Interrupt Settings

8§ Electronic Gearing 2 SRB ISR, OxBFFE, 0; //Reset Bits of Interrupt Status Register
; | Rei

]ﬂ Electronic Camming SREB ICR, OxBFFF, 0x0001; //Set/Reset Bits of Interrupt Control Register

T Mtor Commane 3 F'd Jumps and Function Calls

Loop_01: //Define label Loop_01
F Position Triggers
f = 32 /™\ Trapezoidal Profiles

ﬁ Homing //Position profile
1;,[\ Contouring CACC = 0.31831; //acceleration rate = 1000.01[rad/s"2]
CSPD = 3.33333; //slew speed = 100[rpm]
T Test 4 CPOS = 10000L; //position command = 5[rot]
5’7 Icw Events CPA; // position command is absolute
MODE PP;
3,8 i Jumps and Function Calls TUMT1; //set Target Update Mode 1
=] Inputs / outputs UPD; // execute immediate

IMC; WAIT!: // wait for completion
16 16-bit Integer '
It» Events
3 <
£ 32-bit 2R BEEH 5 //Define event: After a wait time equal with value 700 ms
¥ Arithmetic IRT 700L;

WAITL; /f Wait until the event occurs
9@ Data Transfer Between Axes

/\ Trapezoidal Profiles

E—J Send Data To Host fPosition profile

1 | S0 Miscellaneous I CPOS = 0L; //position command = O[rot]
” CPA; // position command is absolute
2 I £ Interrupt Settings I 6 MODE PP:

&t Free Text TUMT; //set Target Update Mode 1
UPD; // execute immediate
IMC; WAITY; // wait for completion

lex Events

7 //Define event: After a wait time equal with value 700 ms
IRT 700L;
WAITY; // Wait until the event occurs

8 Fd Jumps and Function Calls
GQTO Loop_01; //Branch to Loop_01

Figure 9 — Complete TML code with indexes.

3.2 Customized interrupt service routine the “int0 — Enable input has changed” TML interrupt

The TML interrupts are special functions executed automatically when certain conditions are detected
by the drive. When a TML interrupt occurs, the main TML program execution is suspended and the TML
code associated with the interrupt, called Interrupt Service Routine (in short ISR), is executed.

Remark: During the execution of an ISR, the other interrupts are deactivated. Hence, it is recommended
to keep the ISR as short as possible. If is not possible, then the other interrupts should be re-enabled
using the “Interrupts Settings” dialogue.

This application was implemented using the “Int0 — Enable input has changed” interrupt.

The TML code from the “Int0 — Enable input has changed” ISR was generated using the buttons marked
with 1 to 6 in Figure 3. Clicking on those buttons the following programming dialogs will open.

a) The “Assignment and Data Transfer — 16-bit Integer Data” dialogue (Figure 20 — step 1 and
step 2) allows various manipulations of 16-bit integer variable/parameter/register.

Here, the “Assignment and Data Transfer — 16-bit Integer Data” dialogue was used to copy the

value of the MER error register in “Mer_copy” isolate bit 15 (“Enable is inactive”) with “AND”
and “OR” masks.

©Technosoft 2025 7 APN4.2-0724

Application tree i
4 [Untitled project
4] Eaz-p
S Setup
4 M Motion
1) Homings
] Functions

1 +[Erers]

2 [it - sto/Enable ing

) CAM Tables

Memory settings

APPLICATION NOTE

/7 Trepazaidal Profiles
A5 Cuve

Mo

A pur

{ External

8 Electronic Gearing
L& Electronic Camming
© Motor Commands
F Position Triggers
o} Homing

T, contouring

Tr Test

fev Events

Pd Jumps and Functicn Calls

=] Inputs / outputs

Seorch o/

|2 ®
oo

18 16-bit Integer &

* 15 16-hit Integer
Mer copy = MER:

® Set 16-bit variable Mer copy

16-bit Integer

@ Set 16-bit variable | Mer_capy

5 [® with value / 16-bit wariable / label MER -1

O with

Increment the pointer variable

O with

High

O With inverse (-) of variable

O Using masks

3 =

22 32-bitLong of Fixed
Y Arithmetic

9% Data Transter Between Axes

| Send Data To Host
MSC Miscellaneous
 Interrupt Settings

bt Frea Toxt

() With checksum of data located in . Frog

E2ROM

increment the painter variable

6 Caneal Help

Figure 10 - Creating the copy of the internal "MER" variable with the user defined variable
"Mer_copy" — (Figure 20 — step 1)

1 I 18 16-bit Integer I

Drive special inputs - Enable

7\ Trapezoidal Profles e U0 15 16-bit integer @
A5 Curve . o [—
18 16-bit Integer B @ sett6-bitvarisble VAR,
PAPT Mer_capy = MER; @ e e =
i pvT L 15 16 bitinteger N O Wik vlue / 16-bi e
D— Exterral SRB VAR |1, 0xBOOD, 0x0000; //Set WAR 11 using AND Data
mask 0xB000 and OR mask 0x0000 l

@4§ Electronic Gearing ~ -

I, Electranic Camming
B Motor Commands
F Position Triggers

(@ Set 16-hit variable VAR I -

O With value / 15-hit variable / label

2 Homing
B et O With () program
T Test esnom’ Elincrement the ponter varisble
1ew Events o
O With

P4 Jumps and Function Calls ligh

B TS) With inverse (- of variable

22 32-bit Long or Fixed 3 | using masks AND mask 8000 h OR mask 0000 |

% Arithmetic
%% Data Transfer Between Axes O With checksum of data located in

B send Data To Hast

1L Miscellaneous
& Internupt Settings
O-set 01 Program
o Free Text =
s nerement the pointer variable

3

Figure 11 - Adding a mask to the assigned value for
variable "Mer_copy" so that we only save the value of
bit 15. (Figure 20 — step 2)

The description of MER can be found with “Help | Help Topics | Application Programming | Technosoft
Motion Language | Basic Concepts” as shown in Figure 11 and then select TML Registers under TML
Data in help tree.

Options

= NS

About EasyMotion Studio Il
Export diagnostic data

Registration Info

Getting started

Overview ’

Project manangement »
| Applieton froganmng

Evaluation Tools

Communication »

Technical Support via Internet »

How To L

EEPROM programmer

Motion Programming with built-in Motion Controller

Cvervi

Internal Units and Scaling Factors

Instructions

Figure 12 - Accessing the EasyMotion Studio Il Help.

|E§5) EasyMotion Studio Help

H e o 6 5

Hide Back Forward Home Print

Options

Cortents | Index I Search I

Overview
@ Project Management
= m Application Programming
@ Motion Programming with built-in Motion Controller
= m Technosoft Mation Language
2 ([} TML Basic Concept
[7] TML Basic Concept
[7] TML Environment
@ Program Execution
[7] TML Program Structure
[7] TML Instruction Coding
2) TML Data
(2] O

E MC Parameters
[7] TML Variables
[7] TML User Variables
@ Memory Map
[7] AUTORUN Mode
@ TML Description
@ TML Instruction set

AAR - Axis Address Register. Contains the Axis
CBR - CAN Baud rate Register. Contains the cu
CER - Communication Error Register. Contains
CSR - Communication Status Register. Contain
DER - Detailed Error Register. Contains detaile
DER2 - Detailed Error Register 2. Detailed BiSS
ISR - Interrupt Status Register. Contains inter
otiorl Error Register. Groups all the ern
MSR - Motion Status Register. Gives indication

PCR.14-8 - Protections Control Register. Cont

Figure 13 - TML registers topic inside built-in help

©Technosoft 2025 8

APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable

Contents: MER information is structured as follows:

15 14 13 12 11 8
[ENSTICMDERUVER|OVER/OTERD/OTERMI2TER|OCER]
0 0 0 0 0 0 0 0

[LSNST|LSPSTFDBKER/SCIER/CTRER/STPTBLISCERICANBER|
0 0 0 0 0 0 0 0

Bit 15 ENST. Enable status of drive/motor

0 =Enabled
1 =Disabled

From this point on we will present only the blocks used for each line of code, in the right order. To check
again if you placed them correctly, check Figure.

b) The “Jumps and Function Calls” dialogue (Figure 20 — step 3 and step 4) was used to generate
the “GOTO AXSIENABLE;” and “RETI;” instructions that makes the program to jump to the
“AXISENABLE;” label, if MER.15 is 1 or to return from the interrupt (“RETI;") if MER.15 is 0.

T -

® Goto AXISENABLE) Goto
Call) Call
1 varIM v =0 o If
) Cancelable call — = m (- Cancelable call -
<0 <=
>0 >=0
' Return from function) Return from function
J Return from interrupt ® Return from interrupt
() Abort cancelable call (" Abort cancelable call
() Insert label [Insert label
OK Cancel Help oK Cancel Help

Figure 14 - Insert a"GOTO" (Figure 20 — step 3) and "RETI" (Figure 20 — step 4) TML instruction.

The “AXISENABLE" label was also created using the “Jumps and Function Calls” dialogue (Figure 20
— step 5).

Jumps and Function Calls
) Goto
I Call

o
| Cancelable call -

| Return from function
3 Return from intermipt
Abort cancelable call

® Insert label AXISENABLE

oK Cancel Help

Figure 15 - How to create a label. (Figure 20 — step 5)

c) The “Assignment and Data Transfer — 16-bit Integer Data” dialogue (Figure 20 — step 6) was
used again, to set the bit 3 from the ASR register with “AND” and “OR” mask. This will make
the target speed 0, when the next position profile (with TUMO - the reference is generated
starting from the actual value of load/motor position and speed) is executed. The purpose of
this instruction is to prevent the motor from moving to the last imposed position, when the drive
power stage is reactivated.

©Technosoft 2025 9 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable

16-bit Integer X

(® Set 16-bit variable ASR L

) With value / 16-bit variable / label

* Data
i) With Progran

() With inverse {-] of variable

(® Using masks AND mask | FFFF h OR mask [0008 'h
* Data]

() With checksum of data located in Prograr

E2ROM

& Data
) Set P
incremeant the p e riabl
oK Cancel Help

Figure 16 - Set the bit 3 in the ASR register to 1. (Figure 20 — step 6)

d) The “Motion — Trapezoidal Profiles” dialog (Figure 20 — step 7) was used to insert a relative
position profile, with “TUMO” and a position increment of O rot. This way the motor will hold the
current position once the axis is re-enabled.

® Position () Absolute
Speed (@ Relative || Additive

Acceleration rate | 1499994 rad/s"2 * [V
Slew speed 2000 mpm '

<

<

Position increment 0 ot byt

(® Generate new trajectory starting from actual values of position and speed reference
() Generate new trajectory starting from actual values of load/motor position and speed

® Update immediately F_ Wait until motion is completed
] Update on event

() Setup motion data, but don't start execution

OK Cancel Help

Figure 17 - How to configure and start motion using a position profile using TUMO.

e) The “Motion - Motor Commands” dialogue (Figure 20 — step 8) is used to reactivate the drive
PWM outputs and allow the position profile above to start being executed.

©Technosoft 2025 10 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable

® Activate the control loops and PWM outputs (AXISON)
_I Deactivate the control loops and PWM outputs (AXISOFF)
)" Stop motion with acceleration / deceleration set

{J Update immediately
Update on event

® Value
) Set actual position to .

® Value
! Set quick stop deceleration rate T s 101

oK Cancel Help

Figure 18 - How to configure and start motion using a position profile using TUMO. (Figure 20 — step 8)

f) The “Events” dialogue (3) was used here to hold the program execution until the previous
motion profile (with CPOS = 0 rpm) is executed and the Motion Complete bit is set to 1.

x e x]

‘Wien actual manon Is completed -

Events

l Nane .

= In position contral when the actusl position remairs inside a settle band

[1 Stop the mation when the event accurs Set mation complets paramesrs

[«] Wait until the event occurs
[] Exit from the wait loop after a time equal with

i pusition contiol when the positian reference anives at the position to
1each Of i speed CONMrod when both speed command #nd reference are
0

oK Cancel Help ox

Help

Figure 19 - Set an event on Motion Complete. (Figure 20 - step 9)

/™\ Trapezoidal Profiles

Search
NS Curve
1- 18 16-hit Integer
M T | Mer_copy = MER;
% I lﬁ 16-bit Integer
(-~ External 21— SRB VAR_I1, 0x8000, 0x0000; //Set VAR_I1 using AND mask 0x8000 and OR mask
: : 0x0000
93 Electronic Gearing
9% Electronic Cammi 3 | M4 Jumps and Function Calls
s Y | | GOTO AXISENABLE, VAR _I1, EQ; //Branch to AXISENABLE if VAR |1 ==
£ Motee o 4| T Jumps and Function Calls
??-' Position Triggers | RETE //Return from interrupt
z} Homing 5| M Jumps and Function Calls
TA Contouring | | AXISENABLE: //Define label AXISENABLE
T Test Gl L8 16-bit Integer
K Evant | SRB ASR, OxFFFF, 0x0008; //Set ASR using AND mask OxFFFF and OR mask 0x0008
vents
= /\ Trapezoidal Profiles
fd Jumps and Function Calls T/Position profile
=] Inputs / outputs CACC = 0.47746; //acceleration rate = 1499.99[rad/s" 2]
| .
e 7 CSPD = 66.66667; //slew speed = 2000[rpm]
18 16-bit OLEger | CPOS = OL; //position command = O[rot]
32 32-bit Long or Fixed CPR; //position command is relative
T : MODE PP;
“ Anthmetic UPD; // execute immediate
7% Data Transfer Between Axes
r Commands
!d Send Data To Host ; // Activate the control loops and PWM outputs
MISC Miscellaneous e« pvepts -
& Interrupt Settings //Define event: When the position reference arrives at the position to reach
SRB UPGRADE, OxF7FF, Ox0;
bt Free Text 9} posokLM = ou;
TONPOSOK = 65535U;
IMC;
WAITY; // Wait until the event occurs
10| & Interrupt Settings

SRB ISR, OxBFFE, 0; //Reset Bits of Interrupt Status Register
SRE ICR, OxBFFF, 0x00071; //Set/Reset Bits of Interrupt Control Register

Figure 20 - Entire code for the custom "int0".

Once the code under the “AXISENABLE" label is executed, the drive power stage (the PWM outputs)
will be reactivated, and the motor will hold the current position.
©Technosoft 2025

11 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable

The program will return from the “Int0 — Enable input has changed” interrupt routine, to the last executed
instruction in the main TML program. As most probably this instruction is one of the two trapezoidal

position profiles in the “Loop_01" loop, the motor will start to spin again, performing the back and forward
motion inside the loop.

Remark: In case the ENABLE input needs to be used as a general-purpose input, its default behavior,
can be disabled by setting the “ENABLEOFF” parameter to 1.

©Technosoft 2025 12 APN4.2-0724

APPLICATION NOTE Drive special inputs - Enable
1

®

TECHNOSOFT
MOTION TECHNOLOGY

©Technosoft 2025 13 APN4.2-0724

	Drive special inputs
	Enable
	Application Note
	2. Application flow chart
	3. EasyMotion Studio II implementation
	3.1 Main motion program
	3.2 Customized interrupt service routine the “int0 – Enable input has changed” TML interrupt

