®

= TECHNOSOTFT

User Manual

© Technosoft 2021

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely
upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for
any loss or damage caused by any error or omission in the work, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.

Allrights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means,
electrical or mechanical including photocopying, recording or by any information-retrieval system without permission
in writing from Technosoft S.A.

About This Manual

This book describes the motion library TML_LIB v2.0. The book is common for Microsoft Windows and Linux (x86,
x64 and ARM) versions of the library. The TML_LIB is a collection of functions, which can be integrated in a PC
application. For Microsoft Windows version of the TML_LIB you can write the application in C#, C/C++, Delphi
Pascal or Visual Basic. For Linux platforms the application for TML_LIB must be written in C/C++. With TML_LIB
motion library, you can quickly program the desired motion and control the Technosoft intelligent drives and motors
(with the drive integrated in the motor case) from a PC. The TML_LIB allows you to communicate with Technosoft
drive/motors via serial RS-232, CAN or Ethernet channels.

Scope of This manual

This manual applies to the following Technosoft intelligent drives and motors:
e iPOS family of drives (all firmware revisions)
e iGVD (all firmware revisions)
¢ (IMOTIONCUBE (all firmware revisions)
e iMOT family of intelligent motors (all firmware revisions)

e previous generation of Technosoft products

Notational Conventions

This document uses the following conventions:

Drive/motor — an intelligent drive or an intelligent motor having the drive part integrated in the motor case
TML — Technosoft Motion Language

IU — drive/motor internal units

ACR.5 - bit 5 of ACR data

000D

© Technosoft 2021 1 TML_Lib — User Manual

Related Documentation

EasyMotion Studio Quick Setup manual - summarizes the steps required to configure the drive and motor setup,
using the EasyMotion Studio (ESM) software. It is also describing the drive programming with ESM and the testing
and debugging tools included in the software (control panels, Logger and scope).

TML list parameters and description - describes in detail the TML variables, parameters and registers.

Help of the EasyMotion Studio software platform — describes how to use the EasyMotion Studio software. It
includes: motion system setup & tuning wizard, motion sequence programming wizard, testing and debugging tools
like: data logging, watch, control panels, on-line viewers of TML registers, parameters and variables, etc.

Contact information

Visit Technosoft website www.technosoftmotion.com

Receive general information or assistance

support@technosoftmotion.com

Report issues or make suggestions

© Technosoft 2021 2 TML_Lib — User Manual

http://www.technosoftmotion.com/

Table of contents

(T T= o B I o TS 1 S S PP 1
ADOUL TRIS MANUAL.......coiiiiiiiii e 1
Scope Of TRIS MANUAL.......coo e e e e e e e e e s 1
N\ [o] £= 14 [oT g =L @0] 0 NVZ=T o1 o] o 1< TP 1
Related DOCUMENTATIONiiiiiiiiiiiiiiiiiiii ittt ettt ettt et e e et e e et e e e eeeeeeeeeeeeeeeees 2
(7o T a1 =Tod AT o} {01 ¢ o= 11 o o 1R 2
Table Of CONTENTS .o 3
O 1] 4 o Yo 1V [o3 1 T ¥ o IO 8
2. GEIING STAMEA ..o 10
2.1. Hardware iNSTAIIAtiONoiii i e e e e s s e e e e e s s e b aaeeeeeeseennnereeeeeeens 10
2.2. Software installation on Microsoft Windows platformsccccoiiiiiiiii e 10
2.2.1. INStalliNg EASYSEIUD .cciiieieieceeeee e 10
2.2.2. Installing TML_Lib HDFarycooovvviieee e 10

2.3. Software installation on LinUX PIAtfOrMS ... 10
2.3.1. Installing MicroSoft WiNAOWS €MUIALOTcoouuiiiiiiiiiie ittt 10
2.3.2. INStalliNG EASYSEIUD .ccoiiieiiieeeeeeee e 11
2.3.3. Installing TML_LIbD lIDFAryoooovoiiieeeece e 11

2.4. Build the host application With TML_LibD.....cocuiiiiiii e 11
2.4.1. (D) gAY LTl aTe) (o] g =] AU o O PP T PP TP PPPTPPR 11
2.4.2. Build you application With TML_Libuuiiiiiiiiiiiiieiiiiiieieeieie e eieeeeeseeeneeenenenenenrnennnrnne 15

G T 1Y/ o =2 o T o) o o OSSPSR 16
3.1 7= E] [l oo s [o1 = o A OO PTPRP 16
3.2. Internal units and scaling faCtorS ... 16
3.3, AXIS THENTITICALION ...ttt st e e e e s et e e e b e e s e s e e e e e e e 17
3.4. Multithread and multiprocess applications with TML_Libcoooiiiiii e 18
3.5. DeSCription Of FUNCLIONS ...eiiiiiiiii ettt e b e e et e e e e e 19
3.5.1. L0701 a1 ¢ [UT g T o= a0 == (U1 e 20
3.5.1. 1. TS OPENCRANNEL ... ———————— 20
3.5.1.2. TS _SEIECICRANNEI ...ciiiiiiie ettt e e e e abe e e neee 23
3.5.1.3. TS ClOSECRANNEL ... 24

3.5.2. (B gAY I T = (] o PP PRRPTT 25
200 R I S T I T To 1T =1 AU o RPN 25
T BT S = U] o) q = RPN 26

3. 5.2.3. TS SIUP GIOUP it 27
T T ST U T o] =Y o T= o (o T TP RUPR P 28
3.5.2.5. TS _DriVeINtIAlISALIONeeiiiiiiiiiiiiiiie ettt e s et e s sttt e e e et e e e e nbae e e e eneee 29

© Technosoft 2021 3 TML_Lib — User Manual

.5.2.8. TS SV ettt e e a e 30

3.5.2.7. TS _GetMotorPositionSCaliNGFACIONuiiiiiiii e e e 31
3.5.2.8. TS _GetLoadPositionSCaliNgFACOrcciiiiiiiiiiiiiiice e e e e 32
3.5.2.9. TS_GetCurrentSCaliNGFACTONuuiiiiiiiiie ittt e e 33
3.5.2.10. TS _GetTimMeSCAlINGFACTON . coiiiiiiie it 34
3.5.3. Drive admMiNiSTIAtION ...ociiiii ittt 35
ST T I I S 1T 1= o N PR 35
ST T IS S U= [Tt (€] {0 U] o O PO PPPPPRPON 36
TS B T I T S 1= (=Tt =T o =T [o= 1S PR 37
3.5.4. (D g AVA=Y e Lo} (o] gl 0 1o a1 o o o Vo PSRRI 38
S O R I == o 1] - {1 PR 38
3.5.4.2. TS _GEtFIrMWAEArEVEISION ..oiiiiiiiiiitite ettt ettt et e e ettt e e anb e e e anbne e e e nneee 39
3.5.4.3. TS_GetApPPlICAtIONINTO ...eiiiiiiiiieii e 40
3.5.4.4. TS GetLibraryVerSiON i ———————— 41
3.5.4.5. TS SendDataTOHOST .. .o ——————————— 42
3.5.4.6. TS_CheckForUnrequestedDriVEMESSAGEScoocuuiieiiiiiie ittt e 43
3.5.4.7. TS_RegisterHandlerForUnrequestedDriVEMESSAgESccuueieiiiiiieiiiiie et 44
3.5.4.8. TS ONINECRECKSUIM ... 45
3.5.5. L o T =T o 1 T o P 46
3551, TS _RESEIFAUIL ...ttt ettt e et e e 46
3 5. 5.2, TS RES L. .ttt e et e e e e e e 47
o T T ST € 1= = Lo =t o] gl =g S PP PTPPT 48
3.5.6. Y Lo qTo a oY go e =T anT 4411 0T S 49
3.5.6. 1. TS _MOVEADSOIULE ..ciiiieiii ettt sttt e ettt e e et e e e e e abe e e e e neee 49
3.5.6.2. TS _MOVEREIALIVEoiiiiiiiiieiee ettt ettt e e eab bt e e et e e e e nbee e e e neee 51
3.5.6.3. TS MOVESCUIVEADSOIULE ..o 53
3.5.6.4. TS MOVESCUIVEREIALIVE ..o i 54
3.5.6.5. TS _MOVEVEIOCITY ..eeeiiiiiiiiieiiie ettt ettt e et e ekt e e et e e e e abn e e e e neee 55
3.5.6.6. TS_SetAnalogUeMOVEEXTEINAL........coiiiiiiiiii e 56
3.5.6.7. TS _SetDigitalMOVEEXIEINAlccccc i 57
3.5.6.8. TS _SetOnliNeMOVEEXLEINALccccoie i 58
3.5.6.9. TS _VOAgETESIMOUEoiiiiiiiiieiee et sttt e a b e e e e e e neee 59
3.5.6.10. TS_TOrQUETESIMOUE ..ottt et e e et e e e et e e e e nbee e e e aneee 60
3.5.6.11. LRSI SV ST 1V o R OO OP PP UUPRRUPROPIN 61
3.5.6.12. TS _SeNdPVTFIrStPOINt ..o, 63
3.5.6.13. TS_SENUAPVTPOINT ettt et e s et e e s e bt e e e ssbe e e e s nbeeeeenneee 64
3.5.6.14. LRSIl ST (UL o PP PO PP PP PP PPTPPPR 65
3.5.6.15. TS _SeNAPTFIFSIPOINT ..o, 67
3.5.6.16. TS _SENAPTPOINT ..ottt ettt sttt et et e sabe e e ke e e sbb e e e abaeesnbeeeneeen 68

© Technosoft 2021 4 TML_Lib — User Manual

3.5.6.17. TS SELGEANNGMASTEN ..eteiiiiie ittt e e e e et e e e e e e e e st bbe e e e e e e s e annbbeaeaaaens 69

3.5.6.18. RS IS L (T Ta T g Lo 1] = A S 70
3.5.6.19. ST (oX 4 ToY g B TUT o T=T o oo 111 Lo 1 o S 72
3.5.6.20. TS _SetCamMINGMASTEIoiiiiiiiiie ittt e e e b e e anbe e e e e e 73
3.5.6.21. TS_SetCammingSIaVEREIATIVEcc..uiiiiiieiic e 74
3.5.6.22. TS _SetCammingSIaVeADSOIULEciiii i 76
3.5.6.23. ST 2= 11 41T 111V o] o = Uo 1SR 78
3.5.6.24. TS CamINitialiZAIONveeiiiii et e e e e e et e e e e e e e e aeaaaens 79
3.5.6.25. TS _SetMaStErRESOIULION .oiiiiiiiiieie et e e e s enbaeeeeeeeas 80
3.5.6.26. RIS T=T g Yo 1S3 Y a e a1 oY a1 2= 1o 1 o S 81
3.5.7. [V To)do] gt oo 4 o100 F=Ta Yo £ PSPPSR 82
G A T I 01T T PP PO P PP PPRPRPRPPO 82
3.5.7.2. TS _UPAatelMmMEdIAteooiiiiiiieiiiiii ettt et s e e e e neee 83
3.5.7.3. TS UPAatEONEVENT ... ———— 84
T S T (o o PR STPRR 85
3575, TS _SEEPOSITION ettt ettt et a bt e e bt e e et e e e e e e e 86
3.5.7.6. TS_SetTargetPOSitiONTOACIUAccoiiiiiiiiiii e 87
TR T A S I ST 1= O U] g =T o | S PP PSPPI 88
3.5.7.8. TS _QuickStopDecelerationNRate........ccccoeiiii i 89
3.5.8. Y] 01 £ PSP UUPPPPTPTT 90
3.5.8. 1. TS _CRECKEVENTeeiiiiieiii ettt s et e e ettt e e et e e e e nbne e e e aneee 90
3.5.8.2. TS _SetEventOnNMOtIONCOMPIELE ...cccoeii i 91
3.5.8.3. TS _SetEventONMOtOrPOSITION.....cccoii i 92
3.5.8.4. TS_SetEventONLOAdPOSITION . .co.uuiiiiiiiiie ittt 93
3.5.85. TS_SetEVENtONMOLOIrSPEEMcciuiiiiieiiiiii ettt ebe e e 94
3.5.8.6. TS _SetEventONnLoadSPeEdccccoiiiiiiii i 95
3.5.8.7. TS SEIEVENTONTIME oo 96
3.5.8.8. TS_SetEventONPOSItIONRET ...t 97
3.5.8.9. TS _SetEVeNtONSPEEUREToiiiiiiii e 98
3.5.8.10. TS _SetEventONTOrQUEREToco i 99
3.5.8.11. TS_SetEventONENCOAEITNUEX c.cccviiiiiieiiiieeeeeee e 100
3.5.8.12. TS_SetEventONnLIMItSWItCNoiiiiii e 101
3.5.8.13. TS_SetEventOnDigitallNDULcooiiiiiie e 102
3.5.8.14. TS_SetEventONHOMEINPULoooiiiiiiiii e 103
3.5.9. TML jumps and fUNCHION CAIISooiiiii e 104
185 TE 0 e 1 T €10 ST URRST 104
SN B S T €10 @ - o = SRRSO 105
G TE TR T S T O 2 I PSP 106
3.5.9.4, TS _CALL_LADEI ..ttt et rae e e nees 107

© Technosoft 2021 5 TML_Lib — User Manual

3.5.9.5. TS CanCelablECALL ... ————————— 108

3.5.9.6. TS _CancelableCALL _Label ...t e e e e r e e e e e nnaeees 109
TS R S s T = o 1211 o P SSER 110
SN R T B ST A = 0 = i LSRR OURPURROPI 111
3.5.9.9. TS _DOWNIOAAPTOGIAIM ...eiiiiiiiiiiiiiiie ettt ettt e et e e e st e e e st e e e anbr e e e s snbneeeeaneee 112
3.5.9.10. TS_DOWNIOAASWHRIIE ... 113
78 0 (@ 2 o - Vo o | 11 q o SRR 114
3.5.10.1. TS SEUUPINPUL. .t e e e et e e s e s e e e e e e s 114
3.5.10.2. ST 1= 4 o] o 10 | SO PU PP UU PP 115
3.5.10.3. TS SEIUPOULPUL. ettt s e sn e e e e n e e e re e e nnneesnneas 116
3.5.10.4. TS _SEEOULPUL ..ttt ettt e et e s e e se e e e e e sn e e s ne e e nnneennneas 117
3.5.10.5. TS _GetHOMEINPUL e e e e e e e e 118
3.5.10.6. TS _GetMUIIPIEINPULS .o e 119
3.5.10.7. TS_SetMUILIPIEOULPULSZ ...ttt snne e 120

O T0 B B D - L= I = 0 E] =T S TP O POT SRR 121
3.5.11.1. TS_SetINtVariable ..o 121
3.5.11.2. TS _GetINtVAriabIe ... e 122
3.5.11.3. TS _SetLongVariable ..o 123
3.5.11.4. TS _GetLongVariable ... 124
3.5.11.5. TS_SetFIXedVariableoeeiiie e 125
3.5.11.6. TS _GetFiXeAVariable 126
3.5.11.7. TS _GetVariable AddresS 127
3.5.11.8. TS SOEBUTTEI Lttt b et nn e anreas 128
3.5.11.9. TS GOEBUTTEI .ttt et e e 129

IR I |V oY o =1 | = T =Y o U PSSR 130
3.5.12.1. LRSI = CCTo] U1 = T O P PO P PP PP PUPRRPPPP 130
3.5.12.2. TS EXECULESCIIPT cooieiiiiiiiie et 131
3.5.12.3. TS _GetOULPULOTEXECULEcoiiiiiie ettt 132
TN T B - 1 - N Lo 1o o = S PSPPSR PPTI 133
3.5.13.1. ISR ST AU o1 I Yo To = o PSPPSR 133
3.5.13.2. SIS €= L4 I o T o 1= PSPPSR 134
3.5.13.3. TS _CheCKLOGOEISTALUS .. .eeiiiiiiiee ittt ettt e e e 135
3.5.13.4. BRI o1 o= To o To Fo =T g = =TT U | | SR 136

N b €= T 110 1= P 138
4.1. 1z 1 O o OO PP PP TO PP PRPPPR PP 138
4.2. (B YIS - LU L= T PURTPTTPO 139
4.3. (=T oY g aF=Ta Yo |11 o Yo [H TP URTRTPP 139
4.4. 2= TS Lo 0. o 1 S 139
4.5. [(0T 1 411 g Vo TP TPRP 140

© Technosoft 2021 6 TML_Lib — User Manual

4.6. A= A= U =]] (=] A LT =T 141

I I 101§ = = PP PP ST PURR PRSPPI 142
4.8. L I o N0 == o [o ST 142
4.9. (oo Lo =] PP TP P PP 142
410, EVENT NANAIING ceteieeie ettt e e bt e e st et e e st b e e e e sabb e e e e anbb e e e e anbbe e e e abneeeean 142
s I R 1@ T o = 12 T 11 o SRR 143
4,12, DiSTIDULEA TASKS .. .eiiiiiieiiiee ittt e st e s s e s n et e sa e e e ne e e nnn e e sre e e nnreenne e 143
APPENdiX A — CAM FIlES TOIMALeeiiiiiiiiee ettt et e e et e e e sbb e e e e abneeeeans 144
Appendix B — Package contents of TML_LIB for MicroSoft WindOWS..........ccooiiiiiiiiiei i 145
Appendix C — Package contents of TML_LIB fOr LINUXccccuviiiieieiiiiiiiee et e et e e e e 147
F Y oY o L=TaTo LD I 1Y, | I T o T o N SRR 148

© Technosoft 2021 7 TML_Lib — User Manual

1. Introduction

The programming of Technosoft intelligent drives/motors involves 2 steps:

1) Drive/motor setup
2) Motion programming

For Step 1 — drive/motor setup, Technosoft provides EasySetUp. EasySetUp is an integrated development
environment for the setup of Technosoft drives/motors. The output of EasySetUp is a collection of setup data, which
can be downloaded to the drive/motor non-volatile memory (EEPROM) or saved on the PC for later use. The
drive/motor copies the setup data from the EEPROM into the RAM memory at power-on and use it during runtime.
The reciprocal is also possible i.e. to retrieve the complete setup data from a drive/motor non-volatile memory
previously programmed. EasySetUp can be downloaded free of charge from Technosoft web page. It is also
provided on the TML_LIB installation media.

For Step 2 — motion programming, Technosoft offers multiple options, like:

A. Use the motion controller embedded on the drives/motors and build the motion programming in Technosoft
Motion Language (TML). For this operation Technosoft provides EasyMotion Studio, an IDE for both
drives setup and motion programming. The output of EasyMotion Studio is a collection of setup data and a
TML program to download and execute on the drive/motor.

B. Use a .DLL with high-level motion functions which can be integrated in a host application written in C#,
C/C++, Delphi Pascal, Visual Basic or LabVIEW

C. Use aPLCopen compatible library with motion function blocks which can be integrated in a PLC application
based on one of the IEC 61136 standard languages

D. Combine option A. with options B. or C. to really distribute the intelligence between the master/host and the
drives/motors in complex multi-axis applications. Thus, instead of trying to command each step of an axis
movement, you can program the drives/motors using TML to execute complex tasks and inform the master
when these are done.

The TML_Lib motion library is part of option B. — a collection of functions allowing you to implement motion control
applications on a PC computer. The link between the Technosoft drives/motors and the PC can be done via serial
link, via CAN-bus using a PC to CAN interface or via Ethernet using an adapter/bridge between Ethernet and RS-
232/CAN. Realized as a collection of high-level functions, the library allows you to focus on the main aspects related
to your application specific implementation, and to simply use the drive and execute motion commands by calling
appropriate functions from the library.

This manual presents how to install and use the components of the TML_Lib motion library.

Remarks:

e Option D. requires using EasyMotion Studio instead of EasySetUp. With EasyMotion Studio you can create
high-level motion functions in TML, to be called from the master/host software.

e EasyMotion Studio is also recommended for applications that require homing as it comes with 32 predefined
homing procedures to select from, with the possibility to adapt them.

© Technosoft 2021 8 TML_Lib — User Manual

MyCode.C

TS_SelectAxis(5);

TS_MoveVelocity(12.5,0,MOVE_IMMEDIATE, FROM_REFERENCE);
TS_SetEventOnTime(200, WAIT_EVENT, NO_STOP);

int InValue = 0;

while (InValue == 0) TS_GetInput (INPUT5, &InValue);

TS_Stop();

TML_LIB

TS_MoveVelocity (...)

Communication
CSPD=12.5; € channel
MODE SP;
UPD:

Figure 1 - Using TML_LIB to control a Technosoft intelligent drive from the PC computer

© Technosoft 2021 9 TML_Lib — User Manual

2. Getting started

2.1. Hardware installation

For the hardware installation of the Technosoft drives/motors see their user manual.

For drives/motors setup, you can connect your PC to any drive/motor using an RS232 serial link. Through the serial
link you can access all the drives/motors from the CAN network. Alternately, the PC can be directly connected to
the CAN bus network if it is equipped with one of the CAN interfaces supported by EasySetUp.

2.2. Software installation on Microsoft Windows platforms

In order to perform successfully the following software installations, make sure that you have the “Administrator”
rights.

2.2.1. Installing EasySetUp

On the TML_LIB installation CD you'’ll find the setup for EasyMotion Studio Demo version. This application includes
a fully functional version of EasySetUp and a demo version of EasyMotion Studio. Start the setup and follow the
installation instructions.

2.2.2. Installing TML_Lib library

Start the TML_LIB setup and follow the installation instructions. The package contents of the TML_LIB for Microsoft
Windows is described in Appendix A.

Remark: The Delphi application and the TML_lib.dll file must be in the same directory at run time. Hence, you have
to copy the TML_lib.dll file in the Delphi project’s folder (by default examples/DELPHIDemo) before running the
application.

28, Software installation on Linux platforms

In order to perform successfully the following software installations, make sure that you have the “root” rights and
the following programs installed: tar, gzip and sed. Also, the TML_LIB library requires the GNU C library version 2
(gcclib-2.*) and GNU Compiler Collection release 3 (gcc-3.%).

2.3.1. Installing Microsoft Windows emulator

EasyMotion Studio and EasySetUp are applications built for Microsoft Windows operating systems. Hence to use
the applications from Linux environment an emulator for Microsoft Windows must be installed, for example Wine.

© Technosoft 2021 10 TML_Lib — User Manual

2.3.2. Installing EasySetUp

On the TML_LIB installation CD you'll find the setup for EasyMotion Studio Demo version. This application includes
a fully functional version of EasySetUp and a demo version of EasyMotion Studio. Start the setup using the Microsoft
Windows emulator and follow the installation instructions.

2.3.3. Installing TML_Lib library

From the TML_LIB installation CD copy the file TML_lib_linux_x86.run. Change the file’s access permissions with
the command chmod ugo +x TML_lib_linux_x86.run and launch it. After you fill the registration information the
library files will be automatically saved in the appropriate directories.

2.4. Build the host application with TML_Lib

2.4.1. Drive/motor setup

Before starting to send motion commands from the PC, the drive/motor must be configured according with the
application requirements. For this operation you have to use EasySetUp, the integrated environment for the
configuration of the Technosoft drives and motors.

The output of EasySetUp is the setup table with all the information needed to configure and parameterize a
Technosoft drive/motor. It must be downloaded to the drive/motor non-volatile memory. The setup table is copied
automatically by the drive at power-on into the RAM memory of the drive/motor and is used during runtime.

Steps for commissioning a Technosoft drive/motor

Step 1. Start EasySetUp

For Microsoft Windows platforms execute: “Start | Programs | EasySetUp | EasySetUp” or “Start | Programs |
EasyMotion Studio | EasySetUp” depending on which installation package you have used. On Linux platforms use
the Microsoft Windows emulator to start EasySetUp.

Step 2. Establish communication

Use the Communication | Setup command to check/change your PC communication settings. In the
Communication Setup dialog select and configure the communication channel between the PC and the drive/motor.
Press the Help button to find detailed information on how to setup the communication channels supported. Power
on the drive/motor and then press the OK button to close the Communication | Setup dialog.

Remarks:

1. When first time started, EasySetUp tries to communicate with the drive/motor via RS-232 and COM1
(default communication settings). If the drive/motor is powered and connected to the PC port COM1 via an
RS-232 cable, the communication can be automatically established.

2. The Port list for RS232 communication is populated automatically by EasySetUp with the COM ports
available on the PC

© Technosoft 2021 11 TML_Lib — User Manual

@ casysetlp — [m] X
Setup Communication View Help

DNEwEH S cee DN X | THLL8 NI SN2

Cemmunication Setup

Charnel Type: [R5232

CaM Protocal: ITMLEAN [CAN 2.0, 29-bit identifiers]
Fort. |COMS

Baud Rate: 115200 =
Ais 1D of drive/motor connected to PC is: Iautudelecled =

Communicate with drive/mator Icunnecled o PC ;I

Advanced... |

(n]:4 | Cancel | Help |

Ldledled

| Offline | |

Figure 2 — Communication Setup dialogue from EasySetUp

If the communication is established, then EasySetUp will display in the status bar (the bottom line) the text “Online”
plus the axis ID of your drive/motor, the serial number and its firmware version.

|Online |AxisiD2 | IS/NJST305 |Firmware F514) | Y

Figure 3 — Status bar of EasySetUp when communication is established

Otherwise the text displayed is “Offline” and a communication error message informs you the error type. In this
case, return to the Communication | Setup dialog, press the Help button and check troubleshoots.

© Technosoft 2021 12 TML_Lib — User Manual

Step 3. Setup drive/motor

Press the New button and select your drive/motor type. Depending on the product chosen, the selection may
continue with the motor technology (for example: brushless motor, brushed motor) or the control mode (for example
stepper — open-loop or stepper — closed-loop) and type of feedback device (for example: incremental encoder, SSI

encoder).

This opens 2 setup dialogues: for Motor Setup and for Drive setup through which you can configure and
parameterize a Technosoft drive/motor, plus several predefined control panels customized for the product selected.

In the Motor setup dialogue you can introduce the data of your motor and the associated sensors. Data introduction
is accompanied by a series of tests having as goal to check the connections to the drive and/or to determine or

validate a part of the motor and sensors parameters.

Brushless Motor Setup

Guideling assistant

Step 1. Select your motor fram a database. I your mot

or does not exist in any database. proceed through

all the next steps in order to define your motor and sensars data. In either case, use the tests fram the next

Mext
Matar data
Mominal current |3.52 |A j
Peak current |‘|[|_5 |A j
Pole pairs |4
Torque constant |D_D355 |Nm.-’A j
‘j Line to ine resistance |D.832T35 |Dhms j
‘j Lire to ling inductance |'|.E|5|55? |mH j
48 [kom™2E7 ~|
Matar sensors
Type |Incremental Encoder j Connector
No. of linesfrew [B00 |Iines j
W Digital Halls Hall configuration | -
I Filter encoder
™ Temperature v -

steps to veiify/detect the motor and sensors parameters and operation,

Test Phase Connections

Detect Mumber of Pole Pairs

|dentify Resistance and Inductance

¥ tdotor inertia is unknawn

| Feedback 1 ~|

Test Connections Detect Number of Lines

Test Connections Detect Hall Configuration

inputs to 143

¥ Reverse encoder counting

Load sensors
Type |Mone j

In the Drive setup dialogue you can configure and parameterize the drive for your application. Each configuration
dialogue includes a Guideline Assistant, which will guide you through the whole process of introducing and/or
checking your data. Close the Drive setup dialogue with OK to keep all the changes regarding the motor and the

drive setup.

© Technosoft 2021

Figure 4 — Motor Setup dialogue

13

X
Database =
Siemens Dl‘lve
Iotar
| || |Setup
Save to UserDatahase| Delete | Help | Cancel |
haotar brake

™ Motor brake on output line :

ouTo
Drive notactive [Crive active |
Brake applied | Eiake released T
s e

R T P ns =

Movement dirsction

I” Reverse movement direction

Tranzmission to load

Tranzmission type: ©* Rotary to rotary
" Rotary to linear
" Linear to rotary

" Linear to linear

Mator displacement of |1 |rot j
corezponds on load to |1 |rot j

TML_Lib — User Manual

Drive Setup *
Guideling assistant Control mode Exrternal reference -
oK
Mext | * Position " Mo * Yes Setup -
Step 1. Inthe <<Control mode>> group box, select whatda a " Speed %" Analogue € Incremental m
pou want ko control: pasition, speed or torque. Inthe T [~ Automatically activated after Power On Help
<<Commutation method:» group box, chooze sinusoidal or orque C = o
trapezoidal mode. The trapezoidal mode is pozsible only if your QIMLLETEn Mt
M Advanced " Trapezoidal * Sinusoidal MOtor
CANBus Az 1D selection _
¥ Baudrate Fiwf default CaMopen settings... | Drive Info | [Set/ change axiz 1D How - setup
Current contraller Dirive operation parameters
Kp |4.0573 Power supply |23.8185 W - Detect
ki |0.E2832 et T Current limit | 7.06 A A
une & Test

Load speed limit |603.186 rad/s
Speed contraller

Kp [216.05 Integral limit [40 o - F"pﬂteuchﬂns t
Wel curren|
ki |7.445 Motor current > |8.472 A v | for morethan’wm

I¥ Cantral emar

Tune & Test Position emor > |06 Tat | far mare than |3 N -

B
Position controller ,BUUi m ,37 m

kp |0.23242 Integral limit |40 4 - r

| Bozilianer) 758.87 [aceeleation] [12t over curent |7.7EE A 15 3

kd |0 0 [3peed]

. - External chopping resistor
Kd fiter |0 todify

Q ™ Connected 43.933 v

Gain
- Tune & Test
sched, | OFF ne s 1EY Inputs polarity

Mation complete settings Enable Limit switch+ Limit switch- | Twpe

i i i i i f* 5j
Band |D.5 |r0t j Time |D.DD1 |s j Active high [Connected to +¥log) Sirk [PNF)
Active low [Jpen/Mo connection] (¥ . . " SourcelNPN)
W 1 SPDLPZ 400Hz Q=0.707 [Fiter & [~ Software limits - restrict movement I~ Pasition range limits
[Fiter 2 [Filter 7 10737418 [rat i rot
[~ Filker 3 [Filter 5
™ Fiter 4 ™ Fiter 9 1073741.82 | rat 0.00 rat
[Filter 5 [~ Filter 10 Start mode

[~ Curment contraller filter Setup Filters |M0\re till aligned with phaze & ﬂ Settings

Figure 5 — Drive Setup dialogue

Step 4. Download setup table to drive/motor

Use Setup | Download Setup to Drive/Motor menu command to download your setup data in the drive/motor non-
volatile memory in the setup table. From now on, at each power-on, the setup data is copied into the drive/motor
RAM memory that is used during runtime.

Step 5. Reset the drive/motor to activate the drive setup data
In order to activate the drive setup data, use the Setup | Reset Active Drive/Motor menu command.

Step 6. Create the setup data for TML_LIB

The TML_LIB requires the description of the drive/motor setup for the proper execution of the application. The setup
description is generated with the Setup | Export to TML_LIB... command if you are using EasySetUp, or the
Application | Export to TML_LIB... command if EasyMotion Studio is used. The information is generated in the
form of an archive file with the .t.zip extension and is saved in the Archives folder from EasySetUp/EasyMotion
Studio installation folder (by default C:\Program Files\Technosoft\ESM\).

© Technosoft 2021 14 TML_Lib — User Manual

2.4.2. Build you application with TML_Lib

TML_Lib is a collection of high level functions, grouped in several categories and provided as a dynamically loadable
file (TML_LIB.dII for Windows version respectively libTML _lib.so for Linux version).

Most of the functions from TML_lib library is of Boolean type, and return a ‘True’ value if the execution of the function
completed without any error (at the host level). If the function returns a ‘False’ value then the error description can
be retrieved with the TS_GetLastErrorText function.

Steps to build the host application with TML_Lib

Step 1. Create the project for the host application.

Launch your development environment and create a new project. For details how to build the project read the
development environment documentation.

Remark: For Borland C++ projects the user must define a WINDOWS or WIN32 symbol in order to compile the
C/C++ application.

Step 2. Setup the communication.

The host application is based on the communication between PC and Technosoft drives/motors thus it should begin
with the communication channel setup. The communication channel is opened with the TS _OpenChannel function.
When the host application is terminated the communication channel should be closed with the TS_CloseChannel
function.

Step 3. Load setup configurations.

The setup description is required by the library functions in order to check the compatibility between the drive and
the operation to be executed (as an example, avoiding issuing an “Output port” command to a port which is an input
port on that drive).

The setup description is generated by EasySetUp/EasyMotion Studio based on the actual drive/motor configuration.
The setup information is in the form of an archive file with the t.zip extension. The t.zip files are saved by default in
the Archives folder from EasyMotion Studio/EasySetUp installation folder.

The setup data of the drive/motor are declared in the TML_lib application with the TS_LoadSetup function. The
TS_LoadSetup requires as argument the *.t.zip file. The TS_LoadSetup function must be called for each axis
controlled through TML_Lib library.

Step 4. Link setup description with the address of the drive/motor.

The setup descriptions loaded in the previous step must be linked to the drives/motors, identified by their address
(axis ID). The setup description is associated to an axis with the TS_SetupAxis function.

Step 5. Select the active axis/group.

The messages sent from the PC address to one axis. Use function TS_SelectAxis to choose the destination of the
messages. All further function calls, which send TML messages on the communication channel, will address the
messages to this active axis.

Step 6. Program the motion for current axis.

Use the TML_Lib motion functions to implement the motion sequences required by the application.

© Technosoft 2021 15 TML_Lib — User Manual

& TML description

3.1. Basic concept

The Technosoft intelligent drives are programmable using the Technosoft Motion Language (TML). TML consists
of a high-level set of codes allowing the user to parameterize and execute specific motion operations.

TML allows to:

e Configure the motion mode (profiles, contouring, gearing in multiple axes structures, etc.)
e Detect/ specifically treat external signals as limit switches, captures

e Execute homing sequences

e Setup / start specific action on pre-defined motion events

e Synchronize multiple axes structures, by sending group commands

o eftc.

The TML_Lib library is the tool that helps you to handle the process of motion control application implementation
on a PC computer, at a high level, without the need to write / compile TML code.

A central element of the library is the communication kernel, which is responsible of correct opening of the
communication channel (serial RS-232, CAN-bus or Ethernet), as well as of TML messages handling. This includes
handling of the specific communication protocol, for each of these channels.

Consequently, each application you’ll develop starts with the opening of the communication channel, i.e. calling the
TS_OpenChannel function. The application must end with the TS_CloseChannel function call.

You'll be able to handle multiple-axis applications from the PC. Besides the drive/motor setup with EasySetUp or
EasyMotion Studio, you’ll also need to indicate some basic drive information for correct usage of the library
functions. Thus, for each drive that is installed in the system, you’ll need to execute the TS_SetupAxis function,
indicating the axis ID and configuration setup. Such information will be used for some functions of the library, in
order to check if there are incompatibilities between the drive and the operation to be executed (as an example,
avoiding issuing an “Output port” command to a port which is an input port on that drive).

Note that besides setting-up individual axes, it is also possible to setup groups of axes (with the TS_SetupGroup
function). This allows you to issue commands which will be received and executed simultaneously on all the axes
initialized as belonging to that group.

Once all the axes are defined, the library allows you to select the active axis or group, using the TS_SelectAxis, or
TS_SelectGroup function respectively. Consequently, all future commands that you’ll execute after the selection
of one axis or group will be addressed to that axis or group. You can change at any time in your program the active
axis/group. Also, a command can be sent to all the axes from the network, by selecting the destination with the
TS_SelectBroadcast function.

3.2. Internal units and scaling factors

Technosoft drives/motors operate with parameters and variables represented in drive internal units (IU). The
parameters and variables represent various signals: position, speed, current, voltage, etc. Each type of signal has
its own internal representation in U and a specific scaling factor. The scaling factor of each internal unit shows the
correspondence with the international standard units (Sl). The scaling factors are dependent on the product, motor
and sensor type. Put in other words, the scaling factors depend on the drive/motor setup configuration.
To determine the internal units and the scaling factors for a specific configuration, use:

e Help | Help Topics | Setup Data Management | Internal Units and Scaling Factors menu command in

EasySetUp

© Technosoft 2021 16 TML_Lib — User Manual

e Help | Help Topics | Application Programming | Internal Units and Scaling Factors menu command
in EasyMotion Studio

Important: The Internal Units and Scaling Factors topic provides customized information, function of the
application setup. If the drive, the motor technology or the feedback device is changed, the scaling factors should
be checked again. It may show other relations!

3.3. AXis ldentification

The data exchanged on the communication channel is done using messages. Each message contains one TML
instruction to be executed by the receiver of the message. Apart from the binary code of the TML instruction
attached, any message includes information about its destination: an axis (drive/motor) or a group of axes. Each
drive/motor has its own 8-bit Axis ID and Group ID. This information is stored in TML variable AAR.

Remarks:

3. The Axis ID of a drive/motor must be unique and it is set during the drive/motor setup phase with
EasySetUp/EasyMotion Studio. The possible values for Axis ID are between 1 and 255.

4. The Axis ID range for TechnoCAN communication protocol is between 1 and 31. Higher values for the Axis
ID, set with EasySetUp/EasyMotion Studio, with are interpreted as modulo 32.

5. Use TS_GetIntVariable to read the value of the Axis ID and Group ID from the AAR (uint@0x030C) TML
variable.

The Group ID represents a way to access a group of axes, for a multicast transmission. This feature allows sending
a command simultaneously to several axes, for example to start or stop the axes motion in the same time. When a
function block sends a command to a group, all the axes members of this group will receive the command. For
example, if the axis is member of group 1 and group 3, it will receive all the messages that in the group ID include
group 1 and group 3.

Each axis can be programmed to be member of one or several of the 8 possible groups.
Table 1. Definition of the groups

Group No. | Group ID value

1 (0000 0001b)

2 (0000 0010b)

4 (0000 0100b)

8 (0000 1000b)

16 (0001 0000b)
32 (0010 0000b)
64 (0100 0000b)
128 (1000 0000b)

O |I N[O~ W |IN|F

Remarks:

1. A drive/motor belongs, by default, to the group 1 (group ID = 1).
2. The TechnoCAN protocol supports up to 5 groups, possible Group ID values: 1 to 5

© Technosoft 2021 17 TML_Lib — User Manual

3.4. Multithread and multiprocess applications with TML_Lib

The TML_LIB library supports multithread applications developed under C/C++ and Delphi. Each thread created in
your application has to setup the communication, the axes and program the motion commands. For details about
threads see the documentation of your programming language.

Remarks:

1. For multithread applications created for Microsoft Windows, under Visual C++, the communication module
of TML_LIB library, the tmlcomm.dll, must be dynamically linked at load-time.

2. The examples included in the package use the single thread variant of the library with the exception of
Ex08_PVT. The example Ex08_PVT is available only for C/C++ and Delphi.

3. Applications developed under Visual Basic must use the single thread variant of the TML_lib.

The following example presents the basic steps for creating a multithread application using C run-time library and
the Win32 API:

1. Include the header <windows.h> for all the Win32 specific thread information

2. Define an array of handles and an array of thread id’s.

3. Declare structures for passing to the controlling functions of each thread (define here the parameters you

might be interested on).

Define global pointers to the structures required.

Declare the control functions for each thread. In Win32, thread functions MUST be declared like this:

DWORD WINAPI <name>(LPVOID)

6. In the main body of your application call the function to create and start thread (in our example
CreateThread function that actually creates and begins the execution of the thread). See the
documentation of your development environment for more details.

7. Wait until all threads are done. Use WaitForMultipleObjects function. Read the help associated to the
API call "WaitForMultipleObjects".

8. Close the handles of the threads with the function: CloseHandle.

o s

These steps where followed to create Ex08_PVT example. The example commands two Technosoft drives/motors
to execute a 2-D motion profile described by a sequence of linear and circular segments. The application uses
separated threads for each axis, in which computes the necessary commands for the associated drive. The
application requires the multithread variant of the TML_lib, installed by default in the “C:\Program
Files\Technosoft\TML_LIB\lib-multithread” folder.

Depending on the communication channel used, the TML_LIB can share the communication resources enabling
you to build multiprocess application. The communication devices suited for multiprocess applications are the
RS232 and the CAN interfaces:

¢ from the Electronic System Design (ESD) — under Linux and Microsoft Windows

¢ from Peak System — under Linux

© Technosoft 2021 18 TML_Lib — User Manual

Shis:

Description of functions

The section presents the functions implemented in the TML_LIB library. The functions are classified as follows:

Communication setup — functions that manage the PC communication channel

Drive setup — functions for axis setup in the PC application

Drive administration — functions that control the destination axis of the messages sent from the host
Drive/motor monitoring — functions for monitoring the drive/motor status

Error handling — functions for FAULT state reset and drive reset

Motion programming — functions for motion programming on the selected axis.

Motor commands — functions to enable/disable the motor power stage, start/stop the motion, change the
value of the motor position and current

Events — functions for events programming and test

TML jumps and function calls — functions which allows you to execute code downloaded in the
drive/motor memory

I/0O handling — functions for read/write operations with drive/motor 1/O ports

Data transfer — functions for read/write operations from/to the drive/motor memory

Miscellaneous — functions to send individual TML commands and to view the binary code of a TML
command

Data logger — functions for logger setup and data upload

For each function you will find the following information:

The C prototype

Description of the arguments

A functional description

Name of related functions

Examples references. The examples are listed in chapter 4.

© Technosoft 2021 19 TML_Lib — User Manual

3.5.1. Communication setup
3.5.1.1. TS_OpenChannel
Prototype:

INT TML_EXPORT TS_OpenChannel(LPCSTR pszDevName, BYTE btType, BYTE nHostID, DWORD

baudrate);
Arguments:
Name 1/0 Description
pszDevName The communication channel to be opened
btType The type of the communication channel and the CAN-bus communication protocol
Input
nHostID Axis ID for the PC
baudrate Communication baud rate
Return Output | The file descriptor of the or -1 if error

Description: The function opens the communication channel specified with parameter pszDevName.

The btType parameter specifies the communication channel type and the CAN-bus communication protocol used
by the application. btType = ChannelType | ProtocolType.

The TML_LIB supports the following types of communication channels:

serial RS-232
o ChannelType = CHANNEL_RS232 for PC serial port
o ChannelType = CHANNEL_VIRTUAL_SERIAL for communication through a user implemented
serial driver. To properly interface the serial driver with the tmlcomm.dll, the user must follow the
next steps:

a. initialize the communication channel with the serial settings implemented on the
Technosoft drives/motors: 8 data bits, 2 stop bits, no parity, no flow control and one of the
following baud rates: 9600 (default after reset), 19200, 38400, 56600 and 115200.

b. Implement the functions for interfacing the custom communication driver with the

tmlcomm.dll. See the virtRS232.cpp file from the VCvirtRS232 example project.

c. Export the functions from the communication driver using a module-definition (.DEF) file.
See the virtRS232.def file from the VCvirtRS232 example project.

CAN-bus devices supported by TML_LIB for Microsoft Windows
o ChannelType = CHANNEL_IXXAT_CAN for IXXAT PC to CAN interface

ChannelType = CHANNEL_SYS_TEC_USBCAN for Sys Tec USB to CAN interface

ChannelType = CHANNEL_ESD_CAN for ESD CAN interfaces

ChannelType = CHANNEL_LAWICEL_USBCAN for Lawicel CAN interface

ChannelType = CHANNEL_PEAK_SYS_PCAN_PCI for PEAK System PC-PCI to CAN interface
ChannelType = CHANNEL_PEAK_SYS_PCAN_ISA for PEAK System PCAN-ISA
ChannelType = CHANNEL_PEAK_SYS_PCAN_PC104 for PEAK System PC/104

O o0 o0 O O O

© Technosoft 2021 20 TML_Lib — User Manual

o ChannelType = CHANNEL_PEAK_SYS PCAN_USB for PEAK System USB to CAN interface
o ChannelType = CHANNEL_PEAK_SYS_PCAN_DONGLE for PEAK System Dongle interfaces
o ChannelType = CHANNEL_ KVASER_USBCAN for KVASER USB to CAN interface

e CAN-bus devices supported by TML_LIB for Linux

o ChannelType = CHANNEL__IXXAT _CAN for IXXAT CAN interfaces supported by the Basic CAN
interface from IXXAT
ChannelType = CHANNEL_ESD_CAN for ESD CAN interfaces
ChannelType = CHANNEL_PEAK_SYS_PCAN_ISA for PEAK System PCAN-ISA
ChannelType = CHANNEL_PEAK_SYS_PCAN_PC104 for PEAK System PC/104
ChannelType = CHANNEL_PEAK_SYS_USB for PEAK System USB interface
ChannelType = CHANNEL_PEAK_SYS_PCI for PEAK System PCI interface
ChannelType = CHANNEL_SOCKET_CAN for SocketCAN compatible interfaces

O O O O O O

Remarks:

1. The drivers for Peak System interface must be installed with NO_NDEV_SUPPORT option. The cat
/proc/pcan command can be used to check if the NDEV support is disabled.

root@dg-blujdea-Ubuntu: # cat /proc/pcan

e PEAK-System CAN interfaces (www.peak-system.com) -------------
e Release 20156729 n (7.15.2) Oct 31 2016 13:35:34 --------------

EE L [mod] [isa] [pci] [pec] [dng] [par] [usb] [pcc] --------------

L LT 1 interfaces @ major 245 found -----------------------
*n -type- -ndev- --base-- irq --btr- --read-- --write- --irqgs-- -errors- status
5] pci -NA- fdcfef00 020 0x0014 00POOOO7 OOOOAOOT7 0DAOOO33 0OOOPOOT7 OXO000

o Ethernet!
o ChannelType = CHANNEL_XPORT_IP for Technosoft Ethernet to RS232 adapter
o ChannelType = CHANNEL_ETHERNET_CAN for Technosoft Ethernet to CAN adapter

The CAN-bus communication protocols supported by the TML_LIB are:

e ProtocolType = PROTOCOL_TMLCAN — 29-bit CAN identifier
e ProtocolType = PROTOCOL_TECHNOCAN — 11-bit CAN identifier

Remarks:

1. By default, the TML_LIB uses the TMLCAN communication protocol, thus if the drive/ motor supports only
TMLCAN protocol then the btType = ChannelType.

2. The specification of CAN-bus protocol is required when the PC is connected directly to the CAN-bus through
a PC to CAN interface or in the cases when the drive/motor connected to the PC via RS232/Ethernet acts
as a retransmission relay between the PC and the CAN-bus network. More details about the retransmission
relay concept can be found in EasyMotion Studio on line help.

Depending on the communication channel type, the parameter pszDevName can be:

e For serial communication:
o ‘COM1?’,‘COMZ’, ‘COM3'.... for Microsoft Windows version
o ‘Idev/ttySQ’, ‘/dev/ttyS1’, ‘/dev/ttyUSBO’ for Linux version
e For virtual serial interface is the name of the dll file that implements the serial interface
e For CAN-bus communication:
o 1,2, 3... for Microsoft Windows version
o ‘/dev/pcan(’, ‘/dev/pcan8’ for Linux version
e For Ethernet communication is the IP address of the Ethernet to RS232/CAN bridge: ‘192.168.19.52’, ...

The nHostID parameter represents the Axis ID of the PC in the system. The value of nHostld is set as follows:

1 Supported only in the TML_LIB for Microsoft Windows

© Technosoft 2021 21 TML_Lib — User Manual

e For serial RS-232 the nHostID is equal with the axis ID of the drive connected to the PC serial port
e For Ethernet to RS232 adapter the nHostID is equal with the axis ID of the drive connected to the serial
port of the Ethernet adapter.

e For Ethernet to CAN adapter the nHostID is equal with the axis ID assigned to the Ethernet to CAN adapter
via the Ethernet-CAN Adapter Configurator tool included in EasyMotion Studio package.

The communication speed is set with the BaudRate parameter. The accepted values are:

e For serial communication and Ethernet to RS232: 9600, 19200, 38400, 56000 or 115200 bps.
e For CAN-bus and Ethernet to CAN: 125000, 250000, 500000, 1000000 bps

Remark: You can open several communication channels but only one can be active in an application at one
moment. You can switch between the communication channels with function TS_SelectChannel.

Related functions: TS_CloseChannel, TS_SelectChannel
Associated examples: all

© Technosoft 2021 22 TML_Lib — User Manual

3.5.1.2. TS_SelectChannel

Prototype:

BOOL TML_EXPORT TS_SelectChannel(INT fd);

Arguments:
Name I/O | Description
fd Input The communication channel file descriptor

Return | Output | TRUE if no error, FALSE if error

Description: The function selects as active the communication channel described by parameter fd. All commands
send towards the drives/motors will use the selected communication channel.

Remarks:

1. Use function TS_OpenChannel to open the communication channels
2. The function TS_SelectChannel is not required in applications with only one communication channel

Related functions: TS_OpenChannel, TS_CloseChannel
Associated examples: —

© Technosoft 2021 23 TML_Lib — User Manual

3.5.1.3. TS_CloseChannel

Prototype:

void TML_EXPORT TS_CloseChannel(INT fd);

Arguments:
Name I/O | Description
fd Input The communication channel file descriptor
- Output | -

Description: The function closes the communication channel described by parameter fd. With fd = -1 the function
closes the channel previously selected with function TS_SelectChannel. This function must be called at the end of
the application. It will release the communication channel resources, as it was allocated to the program when the
TS_OpenChannel function was called.

Related functions: TS_OpenChannel, TS_SelectChannel

Associated examples: all

© Technosoft 2021 24 TML_Lib — User Manual

3.5.2. Drive setup

3.5.2.1. TS_LoadSetup

Prototype:
INT TML_EXPORT TS_LoadSetup(LPCSTR setupDirectory);

Arguments:

Name I/O Description

setupDirectory | Input The setup description file (t.zip) to be loaded in the TML_lib application

Return Output | The index associated to the setup

Description: The function loads the description of the drive/motor that will be controlled from the PC application.
The description of the drive/motor configuration is generated from EasyMotion Studio (Application | Export to
TML_lib...) or EasySetUp (Setup | Export to TML_lib...) and stored in a zip file with t.zip extension.

The setupDirectory string specifies the absolute or relative path of the t.zip file. The function returns an index
associated to the configuration setup. The value returned by TS LoadSetup must be used to associate the
configuration setup with the corresponding axis.

Remark: The function must be called for each drive/motor only once in your program, in the initialization part.

Related functions: TS_SetupAxis, TS_SetupGroup, TS_SetupBroadcast
Associated examples: all

© Technosoft 2021 25 TML_Lib — User Manual

3.5.2.2. TS_SetupAxis

Prototype:

BOOL TML_EXPORT TS_SetupAxis(BYTE axisID, INT idxSetup);

Arguments:
Name 1/0 Description
axisID AxisID of the drive/motor
Input
idxSetup Configuration description index generated by TS_LoadSetup
Return Output | TRUE if no error, FALSE if error

Description: The function links a configuration description (t.zip file) to an axisID address. The configuration
description is identified through idxSetup.

The function must be called for each axis of the motion system, only once in your program, in the initialization part,
before any attempt to send messages to that axis.
Remarks:
1. The axisID address must be identical with the value set for the drive/motor in Drive Setup dialog from
EasySetUp or EasyMotion Studio.

2. Use function TS_LoadSetup to load the configuration description files (t.zip) for each axis and generate the
index.

Related functions: TS _LoadSetup, TS_SetupGroup, TS_SetupBroadcast
Associated examples: all

© Technosoft 2021 26 TML_Lib — User Manual

3.5.23. TS_SetupGroup

Prototype:

BOOL TML_EXPORT TS_SetupGroup(BYTE groupID, INT idxSetup);

Arguments:
Name I/0 Description
grouplD Group ID number. It must be a value between 1 and 8
Input
idxSetup Name of the data file storing the setup axis information
Return Output | TRUE if no error, FALSE if error

Description: The function links a configuration description (t.zip file) to an axisID address. The configuration
description is identified through idxSetup.

The function must be called for each axis of the motion system, only once in your program, in the initialization part,
before any attempt to send messages to that axis.
Remarks:
1. The axisID address must be identical with the value set for the drive/motor in Drive Setup dialog from
EasySetUp or EasyMotion Studio.

2. Use function TS_LoadSetup to load the configuration description files (t.zip) for each axis and generate the
index.

Related functions: TS _LoadSetup, TS_SetupGroup, TS_SetupBroadcast
Associated examples: all

© Technosoft 2021 27 TML_Lib — User Manual

3.5.2.4, TS_SetupBroadcast

Prototype:

BOOL TML_EXPORT TS_SetupBroadcast(INT idxSetup);

Arguments:

Name I/O | Description

idxSetup | Input Name of the data file storing the setup axis information

Return Output | TRUE if no error, FALSE if error

Description: The function sets the configuration description file to be used by TML_LIB when it sends broadcast
commands. The configuration setup is identified through idxSetup.

Remarks: Use function TS_LoadSetup to generate the identifier of the configuration description file.

Related functions: TS_LoadSetup, TS_SetupAxis, TS_SetupGroup
Associated examples: Ex07_MultiAxes

© Technosoft 2021 28 TML_Lib — User Manual

3.5.2.5. TS_Drivelnitialisation

Prototype:
BOOL TML_EXPORT TS_Drivelnitialisation(void);

Arguments:

Name I/O | Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function initializes the active axis. It must be executed when the drive/motor is powered or after
a reset with function TS_Reset. The function call should be placed after the functions TS_SetupAxis and
TS_SelectAxis and before any functions that send messages to the axis.

If the setup table from the active axis is invalid the function will fail and a valid setup table must be downloaded from
EasySetUp or EasyMotion Studio. The new setup table becomes active once the drive is reset or power cycled.

Related functions: TS _LoadSetup, TS_SetupAxis, TS_SelectAxis
Associated examples: all

© Technosoft 2021 29 TML_Lib — User Manual

3.5.2.6. TS_Save

Prototype:

BOOL TML_EXPORT TS_Save(void);

Arguments:

Name I/O | Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function saves the actual values of all the TML parameters with setup data from the active data
RAM memory into the non-volatile memory, in the setup table. Through this command, you can save the parameters
modifications done after the power on initialization.

Related functions: TS_Reset, TS_Save

Associated examples: —

© Technosoft 2021 30 TML_Lib — User Manual

3.5.2.7. TS_GetMotorPositionScalingFactor

Prototype:

BOOL TML_EXPORT TS_ GetMotorPositionScalingFactor (double& scalingFactor);

Arguments:
Name I/O Description
scalingFactor Pointer to the parameter where the scaling factor will be stored
Return Output | TRUE if no error, FALSE if error

Description: The function returns the load position scaling factor from motor position internal units to rotations,
respectively mm in case of linear motors, for the active axis. The scaling factor is stored in the t.zip file generated
by EasyMotion Studio.

Related functions:

Associated examples: —

© Technosoft 2021 31 TML_Lib — User Manual

3.5.2.8. TS_GetLoadPositionScalingFactor

Prototype:

BOOL TML_EXPORT TS_ GetLoadPositionScalingFactor (double& scalingFactor);

Arguments:
Name I/O Description
scalingFactor Pointer to the parameter where the scaling factor will be stored
Return Output | TRUE if no error, FALSE if error

Description: The function returns the load position scaling factor from load position internal units to rotations,
respectively mm in case of linear loads, for the active axis. The scaling factor is stored in the t.zip file generated by
EasyMotion Studio.

Related functions:

Associated examples: —

© Technosoft 2021 32 TML_Lib — User Manual

3.5.2.9. TS_GetCurrentScalingFactor

Prototype:

BOOL TML_EXPORT TS_ GetCurrentScalingFactor (double& scalingFactor);

Arguments:
Name I/O Description
scalingFactor Pointer to the parameter where the scaling factor will be stored
Return Output | TRUE if no error, FALSE if error

Description: The function returns the current scaling factor from drive current internal units to A for the active
axis. The scaling factor is stored in the t.zip file generated by EasyMotion Studio.

Related functions:

Associated examples: —

© Technosoft 2021 33 TML_Lib — User Manual

3.5.2.10. TS_GetTimeScalingFactor

Prototype:

BOOL TML_EXPORT TS_ GetTimeScalingFactor (double& scalingFactor);

Arguments:
Name I/O Description
scalingFactor Pointer to the parameter where the scaling factor will be stored
Return Output | TRUE if no error, FALSE if error

Description: The function returns the current scaling factor from drive time internal units to ms for the active axis.
The scaling factor is stored in the t.zip file generated by EasyMotion Studio.

Related functions:

Associated examples: —

© Technosoft 2021 34 TML_Lib — User Manual

3.5.3. Drive administration

3.5.3.1. TS SelectAxis

Prototype:
BOOL TML_EXPORT TS_SelectAxis(BYTE axisID);

Arguments:

Name I/O | Description

axisIiD | Input The axis ID where the commands are sent

Return | Output | TRUE if no error, FALSE if error

Description: The function selects the currently active axis. All further function calls, which send TML messages
over the communication channel, will address the messages to the active axis.

The function can be called once the configuration of the axis is completed (after calling the TS_SetupAxis function
to link a configuration description file with the axisID).

For single axis motion system, the function must be called only once. In case of a multiple axis application, the
TS_SelectAxis must be called each time you want to redirect the communication to another axis of the system.

Related functions: TS_SelectGroup, TS_SelectBroadcast
Associated examples: all

© Technosoft 2021 35 TML_Lib — User Manual

3.5.3.2. TS_SelectGroup

Prototype:

BOOL TML_EXPORT TS_SelectGroup(BYTE grouplID);

Arguments:

Name I/O | Description

groupID | Input The group ID where the commands are sent

Return Output | TRUE if no error, FALSE if error

Description: The function selects the currently active group. All further function calls, which send TML messages
over the communication channel, will address these messages to this active group. The active group is set with
parameter grouplD. It must be a value between 1 and 8.

Remark: The function must be called after the group setup i.e. after calling the TS_SetupGroup function.

Related functions: TS_SelectAxis, TS_SelectBroadcast
Associated examples: Ex08_PVT

© Technosoft 2021 36 TML_Lib — User Manual

3.5.3.3. TS_SelectBroadcast

Prototype:

BOOL TML_EXPORT TS_SelectBroadcast(void);

Arguments:

Name I/O | Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function enables TML_LIB to issue the broadcast messages, i.e. all further function calls, which
send TML messages on the communication channel, will address these messages to all the axes.

Remark: The function must be called after the broadcast setup i.e. after calling the TS_SetupBroadcast function.

Related functions: TS_SelectAxis, TS_SelectGroup

Associated examples: Ex07_MultiAxes

© Technosoft 2021 37 TML_Lib — User Manual

3.5.4. Drive/motor monitoring

3.5.4.1. TS ReadStatus

Prototype:

BOOL TML_EXPORT TS_ReadStatus(SHORT Sellndex, WORD& Status);

Arguments:
Name I/O | Description
Sellndex Registers selection index
Input
Status Pointer of the variable where the status is saved
Return Output | TRUE if no error, FALSE if error

Description: The function returns drive/motor status information. Depending on the value of Sellndex parameter,
you can examine the contents of the Motion Control Register (Sellndex = REG_MCR), Motion Status Register
(Sellndex = REG_MSR), Interrupt Status Register (Sellndex = REG_ISR), Status Register Low (Sellndex =
REG_SRL), Status Register High (Selindex = REG_SRH) or Motion Error Register (Sellndex = REG_MER) of the
drive/motor.

Related functions: —
Associated examples: Ex02_DriveStatus, Ex03_ErrorHandling, Ex05_Homing

© Technosoft 2021 38 TML_Lib — User Manual

3.5.4.2. TS_GetFirmwareVersion

Prototype:

BOOL TML_EXPORT TS_GetFirmwareVersion (LPSTR szFWVersion);

Arguments:

Name 1/0 Description

szFWVersion | Input Specifies the char array where the firmware version will be stored

Return Output | TRUE if no error, FALSE if error

Description: The function requests the firmware version from the active axis. The firmware version is codified with
5 characters. The ASCII code of the characters will be stored in the szFWVersion array.

Related functions: —
Associated examples: Ex02_DriveStatus

© Technosoft 2021 39 TML_Lib — User Manual

3.5.4.3. TS_GetApplicationinfo

Prototype:
BOOL TML_EXPORT TS_GetApplicationInfo(LPSTR pszOutput);

Arguments:

Name le] Description

pszOutput | Input Pointer to a string where Application ID will be saved

Return Output | TRUE if no error, FALSE if error

Description: The function returns the Application ID string from the configuration description file (*.t.zip) generated
with EasyMotion Studio/EasySetUp.

The Application ID string can be set via the Drive Info dialog from Drive Setup. The Application ID string can have
up to 30 characters and it can be used to identify the setup/application stored in the non-volatile memory of the
drive.

Drive info X
Intelligent drive name Product ID E2R0OM size Firmware |D
[iPOS4808 MY-CAN [Po27.414E101 | |[16 Kwords | | [F514]
Cancel
Drive data Protections

Power supply (motor] min. value 'H— v v
max. value |52 Trigger if power supply > {53 i -

Logic supply min. value l Vv

<| <1<

max. value {40 Y v Trigger if power supply < |5 9957
Nominal current
Peak curent 20 Support over current |10 A -
Maximum measurable current A for |15 s v

Mazimum measurable DC voltage |102.3 o i 2
Analogue inputs range]V Triggerif T > T2max (105002 |'°C «

- Sensor gain |0.01 VT » Application 1D
Output at 0°C 0.5 Y v |A01|

<

Remark:
The Application ID stored in the non-volatile memory of the drive can be retrieved with the TS_GetBuffer function

The "Application ID" is saved in the non-volatile memory of the drive starting with the addresse Ox7FCF until the
address 7FDDh. The address range is automatically adjusted by the firmware if the non-volatile memory is smaller,
i.e. the non-volatile memory of the iPOS360x starts at 0x4000 up to Ox4FFF.

Related functions: —
Associated examples: Ex02_DriveStatus

© Technosoft 2021 40 TML_Lib — User Manual

3.5.4.4. TS_GetLibraryVersion

Prototype:
BOOL TML_EXPORT TS_GetLibraryVersion(LPSTR szLibVersion);

Arguments:

Name I/O Description

szLibVersion | Input Specifies the char array where the library version will be stored

Return Output | TRUE if no error, FALSE if error

Description: The function returns the version number of the TML_lib library. The ASCII codes of the version will
be stored in the szLibVersion array.

Related functions: —
Associated examples: —

© Technosoft 2021 41 TML_Lib — User Manual

3.5.4.5. TS_SendDataToHost

Prototype:

BOOL TML_EXPORT TS SendDataToHost(BYTE HostAddress, DWORD StatusRegMask WORD
ErrorRegMask);

Arguments:
Name I/0 Description
HostAddress The Axis ID of the host where the messages are sent

StatusRegMask | Input Specifies the bits from status register that trigger the message

ErrorRegMask Specifies the bits from error register that trigger the message

Return Output | TRUE if no error, FALSE if error

Description: The function enables the active axis to send messages automatically to the host. The messages are
triggered by the conditions that change the status registers of the drive/motor. The conditions are set through
StatusRegMask and ErrorRegMask arguments. The host Axis ID is set with parameter HostAddress.

Table 1 — Description of StatusRegMask Table 2 — Description of ErrorRegMask
Bit 7 Homing/CALLS warning Bit 0 CANbus error
Bit 8 Homing/CALLS active Bit 1 Short-circuit
Status Register Low Bit 10 | Motion is completed Bit 2 Invalid setup data
Bit 14 | Event set has occurred Bit 3 Control error
Bit 15 | Axisis ON Bit 4 Serial comm. Error
Bit 16 | ENDINIT executed Bit 5 Position wraparound
Bit 17 | Over position trigger 1 Bit 6 LSP (limit +) active
Bit 18 | Over position trigger 2)) Bit 7 LSN (limit -) active
Motion Error Register
Bit 19 | Over position trigger 3 Bit 8 Over current
Bit 20 | Over position trigger 4 Bit 9 12t
Bit 22 | LSP event/interrupt Bit 10 | Over temperature - Motor
Status Register High Bit 23 | LSN event/interrupt Bit 11 | Over temperature - Drive
Bit 24 | Capture event/interrupt Bit 12 | Over voltage
Bit 26 | 12t warning - Motor Bit 13 | Under voltage
Bit 27 | 12t warning - Drive Bit 14 | Command error
Bit 28 | In Gear Bit 15 | Enable input is valid
Bit30 | InCam
Bit31 | Fault

Related functions: TS _RegisterHandlerForUnrequestedDriveMessages, TS_CheckForUnrequestedDriveMessages
Associated examples: Ex02_DriveStatus

© Technosoft 2021 42 TML_Lib — User Manual

3.5.4.6.

TS_CheckForUnrequestedDriveMessages

Prototype:

BOOL TML_EXPORT TS_CheckForUnrequestedDriveMessages(void);

Arguments:
Name le] Description
- Input -
Return | Output | TRUE if no error, FALSE if error

Description: The function checks if there are new unrequested messages received from the drive/motor. If the
communication buffer contains an unrequested message, then it calls the user callback function that handles this
type of messages. The TS_CheckForUnrequestedDriveMessages function should be called periodically to ensure

that the latest information is used in the application.

Related functions: TS_RegisterHandlerForUnrequestedDriveMessages, TS_SendDataToHost

Associated examples: Ex02_DriveStatus

© Technosoft 2021 43

TML_Lib — User Manual

3.5.4.7. TS_RegisterHandlerForUnrequestedDriveMessages

Prototype:
void TML_EXPORT TS_RegisterHandlerForUnrequestedDriveMessages(pfnCallbackRecvDriveMsg handler);

Arguments:

Name I/0 Description

pfnCallbackRecvDriveMsg | Input Pointer to the user callback function

Return Output | TRUE if no error, FALSE if error

Description: The function registers the callback function defined by the user which will handle the unrequested
messages sent by the drive/motor to the host.

Related functions: TS_CheckForUnrequestedDriveMessages, TS_SendDataToHost

Associated examples: Ex02_DriveStatus

© Technosoft 2021 44 TML_Lib — User Manual

3.5.4.8. TS_OnlineChecksum

Prototype:

BOOL TML_EXPORT TS_OnlineChecksum(WORD startAddress, WORD endAddress WORD &checksum);

Arguments:
Name 1/0 Description
startAddress The memory range start address

endAddress | Input The memory range end address

checksum Pointer to the variable where the checksum is stored

Return Output | TRUE if no error, FALSE if error

Description: The function requests from the active axis the checksum of a memory range. The memory range is
defined with parameters startAddress and end Address. The function stores the checksum received from the drive
in the checksum variable.

The TS_OnlineChecksum function can be used to check the integrity of the data saved in the non-volatile or RAM
memory of a drive/motor. The memory type is selected automatically function of the startAddress and the
endAddress.

Related functions: TS_SetBuffer
Associated examples: —

© Technosoft 2021 45 TML_Lib — User Manual

3.5.5. Error handling

3.5.5.1. TS ResetFault

Prototype:
BOOL TML_EXPORT TS_ResetFault(void);

Arguments:

Name 1/0 Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function resets the FAULT state on the active axis. A drive/motor enters in fault state when detects
an error. Following the TS_ResetFault execution, most of the errors bits from Motion Error Register are cleared (set
to 0), the Ready output (if present) is set to the ready level, the Error output (if present) is set to the no error level
and the drive/motor is ready to return to normal operation. The power stage of the drive/motor must be re-enabled
with the TS_Power function.

Remarks:
e The TS_ResetFault execution does not change the status of:
o MER.15 (enable input on disabled level),
o MER.7 (negative limit switch input active),
o MER.6 (positive limit switch input active) and

o MER.2 (invalid setup table)
e The drive/motor will return to FAULT status if there are errors when the function is executed

Related functions: TS _Power, TS_ReadStatus

Associated examples: Ex03_ErrorHandling

© Technosoft 2021 46 TML_Lib — User Manual

3.5.5.2.

TS_Reset

Prototype:

BOOL TML_EXPORT TS_Reset(void);

Arguments:
Name le] Description
- Input -
Return | Output | TRUE if no error, FALSE if error

Description: The function resets the active axis. After reset the drive/motor will load the values of the TML
parameters stored in the non-volatile memory downloaded during setup phase. If the AUTORUN mode is enabled
on the drive/motor then, after the reset, the TML program stored in the non-volatile memory will be automatically
executed (if there is such a program).

Remark: If during drive/motor operation you have changed the setup parameters and want to use them after the
reset, call function TS Save prior to TS_Reset. The function TS _Save stores the actual values of all TML
parameters in the drive’s/motor’s non-volatile memory.

Related functions: TS_Drivelnitialization, TS_Power, TS_DownloadProgram, TS_GOTO, TS_Save

Associated examples: Ex03_ErrorHandling.

© Technosoft 2021 a7 TML_Lib — User Manual

3.5.5.3. TS_GetLastErrorText

Prototype:

LPCSTR TML_EXPORT TS_GetLastErrorText(void);

Arguments:

Name le] Description

- Input -

Return | Output | A text related to the last occurred error

Description: The function returns the description of the last error occurred during the execution of a TML_LIB
function.

Related functions: —
Associated examples: all

© Technosoft 2021 48 TML_Lib — User Manual

3.5.6. Motion programming

3.5.6.1. TS MoveAbsolute

Prototype:

BOOL TML_EXPORT TS_MoveAbsolute(LONG AbsPosition, DOUBLE Speed, double Acceleration, SHORT
MoveMoment, SHORT ReferenceBase);

Arguments:

Name I/0 Description

AbsPosition Position to reached expressed in TML position units

Speed Slew speed expressed in TML speed units. If the value is zero the drive/motor will use the

P previously value set for speed

Acceleration Input cheleratlon/c;leceleratlon rate expressed in TML accelergtlon units. If its value is zero the
drive/motor will use the previously value set for acceleration

MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of position and speed

ReferenceBase i
reference or from actual values of load/motor position and speed

Return Output | TRUE if no error, FALSE if error

Description: The function programs an absolute positioning with trapezoidal speed profile. The motion is described
through AbsPosition parameter for position to reach, Speed for slew speed and Acceleration for
acceleration/deceleration rate. The position to reach can be positive or negative. The Speed and Acceleration can
be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values previously defined
for the acceleration rate and/or the velocity you don’t need to send their values again in the following trapezoidal
profiles. Set to zero the value of speed and/or acceleration and the drive/motor will use the values previously defined
(this option reduces the TML code generated by this function).

The motion is executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

¢ When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e |If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS Updatelmmediate or the TS _UpdateOnEvent functions in order to activate the movement.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the motion profile
starting from the actual values of the position and speed reference. Set ReferenceBase = FROM_MEASURE if
you want the reference generator to compute the motion profile starting from the actual values of the load/motor
position and speed. When this option is used, at the beginning of each new motion profile, the position and speed
reference are updated with the actual values of the load/motor position and speed.

© Technosoft 2021 49 TML_Lib — User Manual

Remark: For stepper open loop configurations the ReferenceBase option is ignored because there is no position
feedback.

Related functions: TS _MoveRelative, TS _MoveSCurveAbsolute, TS MoveSCurveRelative, TS_MoveVelocity.
Associated examples: Ex05 Homing, Ex07_MultiAxes, Ex11 IOHandling

© Technosoft 2021 50 TML_Lib — User Manual

3.5.6.2. TS_MoveRelative

Prototype:

BOOL TML_EXPORT TS_MoveRelative(LONG RelPosition, DOUBLE Speed, DOUBLE Acceleration, BOOL
IsAdditive, SHORT MoveMoment, SHORT ReferenceBase);

Arguments:
Name I/0 Description
RelPosition Position increment expressed in TML position units
Speed Slew speed expressed in TML speed units. If the value is zero the drive/motor will use the

previously value set for speed

Acceleration/deceleration rate expressed in the TML acceleration units. If its value is zero the

Acceleration : ; : :
drive/motor will use the previously value set for acceleration

Input
IsAdditive Specifies how is computed the position to reach
MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of position and speed
ReferenceBase o
reference or from actual values of load/motor position and speed
Return Output | TRUE if no error, FALSE if error

Description: The function programs a relative positioning with trapezoidal speed profile. The motion is described
through RelPosition for position increment, Acceleration for acceleration/deceleration rate and Speed for slew
speed. The position increment can be positive or negative; the sign gives the motion direction. The speed and
acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values previously defined
for the acceleration rate and/or the velocity you don’t need to send their values again in the following trapezoidal
profiles. Set to zero the value of speed and/or acceleration if you want the drive/motor to use the values previously
defined with other commands (this option reduces the TML code generated by this function).

The position to reach can be computed in 2 ways: standard (default) or additive. In standard mode, the position to
reach is computed by adding the position increment to the instantaneous position in the moment when the command
is executed. In the additive mode, the position to reach is computed by adding the position increment to the previous
position to reach, independently of the moment when the command was issued. The additive mode is activated
with IsAdditive = TRUE.

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

¢ When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the motion profile
starting from the actual values of the position and speed reference. Use this option for example if successive

© Technosoft 2021 51 TML_Lib — User Manual

standard relative moves must be executed and the final target position should represent exactly the sum of the
individual commands. Set ReferenceBase = FROM_MEASURE if you want the reference generator to compute
the motion profile starting from the actual values of the load/motor position and speed. When this option is used, at

the beginning of each new motion profile, the position and speed reference are updated with the actual values of
the load/motor position and speed.

Remark: For stepper open loop configurations the ReferenceBase option is ignored because there is no position
feedback.

Related functions: TS _MoveAbsolute, TS _MoveSCurveAbsolute, TS MoveSCurveRelative, TS _MoveVelocity
Associated examples: Ex02_DriveStatus, Ex04_BasicMove, Ex05_Homing, Ex09_Logger,
Ex10_EventHandling, Ex11_IOHandling

© Technosoft 2021 52 TML_Lib — User Manual

3.5.6.3. TS_MoveSCurveAbsolute

Prototype:

BOOL TML_EXPORT TS _MoveSCurveAbsolute(LONG AbsPosition, DOUBLE Speed, DOUBLE
Acceleration, LONG JerkTime, SHORT MoveMoment, SHORT DecelerationType);

Arguments:
Name I/0 Description
AbsPosition Position to reach expressed in TML position units
Speed The slew speed expressed in TML speed units.
Acceleration Acceleration/deceleration rate expressed in TML acceleration units.
JerkTime Input Represents thg time interval for acceleration to reach the programmed value. It is expressed
in TML time units.
MoveMoment Defines the moment when the motion is started
DecelerationType Specifies the speed profile used when the motion is stopped with TS_Stop
Return Output | TRUE if no error, FALSE if error

Description: The function block programs an absolute positioning with an S-curve shape of the speed. This shape
is due to the jerk limitation, leading to a trapezoidal or triangular profile for the acceleration and an S-curve profile
for the speed. The motion is described through AbsPosition parameter for position to reach, Speed for slew speed,
Acceleration for acceleration/deceleration rate and JerkTime. The position to reach can be positive or negative.
The Speed, Acceleration and JerkTime can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters should not be changed.
Therefore, when executing successive S-curve commands, you should wait for the previous motion to end before
setting the new motion parameters and starting next motion.

When the motion is stopped with function TS _Stop, the deceleration phase can be done in 2 ways:

¢ Smooth, using an S-curve speed profile, when DecelerationType = S_CURVE_SPEED_PROFILE
e Fast, using a trapezoidal speed profile, when DecelerationType = TRAPEZOIDAL_SPEED_PROFILE
The motion can be executed:
Immediately when MoveMoment = UPDATE_IMMEDIATE
When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT
e |If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.

You'll need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Related functions: TS MoveAbsolute, TS MoveRelative, TS_MoveSCurveRelative TS _MoveVelocity,
TS_QuickStopDecelerationRate

Associated examples: Ex04_BasicMove

© Technosoft 2021 53 TML_Lib — User Manual

3.5.6.4. TS _MoveSCurveRelative

Prototype:

BOOL TML_EXPORT TS_MoveSCurveRelative (LONG AbsPosition, DOUBLE Speed, DOUBLE Acceleration,
LONG JerkTime, SHORT MoveMoment, SHORT DecelerationType);

Arguments:
Name I/O Description
RelPosition Position increment expressed in TML position units
Speed The slew speed expressed in TML speed units.
Acceleration Acceleration/deceleration rate expressed in TML acceleration units.
Input
) P Represents the time interval for acceleration to reach the programmed value. It is expressed
JerkTime X . .
in TML time units.
MoveMoment Defines the moment when the motion is started
DecelerationType Specifies the speed profile used when the motion is stopped with TS_Stop
Return Output | TRUE if no error, FALSE if error

Description: The function block programs a relative positioning with an S-curve shape of the speed. This shape is
due to the jerk limitation, leading to a trapezoidal or triangular profile for the acceleration and an S-curve profile for
the speed. The motion is described through RelPosition parameter for position increment, Speed for slew speed,
Acceleration for acceleration/deceleration rate and JerkTime. The position to reach can be positive or negative.
The Speed, Acceleration and JerkTime can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters should not be changed.
Therefore, when executing successive S-curve commands, you should wait for the previous motion to end before
setting the new motion parameters and starting next motion.

When the motion is stopped with function TS_Stop, the deceleration phase can be done in 2 ways:

e Smooth, using an S-curve speed profile, when DecelerationType =S _CURVE_SPEED_ PROFILE
e Fast, using a trapezoidal speed profile, when DecelerationType = TRAPEZOIDAL_SPEED_PROFILE

The motion can be executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS Updatelmmediate or the TS _UpdateOnEvent functions in order to activate the movement.

Related functions: TS _MoveAbsolute, TS MoveRelative, TS _MoveSCurveAbsolute TS _MoveVelocity
Associated examples: Ex04_BasicMove

© Technosoft 2021 54 TML_Lib — User Manual

3.5.6.5. TS_MoveVelocity

Prototype:

BOOL TML_EXPORT TS _MoveVelocity(DOUBLE Speed, DOUBLE Acceleration, SHORT MoveMoment,
SHORT ReferenceBase);

Arguments:
Name I/0 Description
Speed Jog speed expressed in TML speed units

Acceleration rate expressed in TML acceleration units. If the value is zero the drive/motor will

Acceleration . .
use the previously value set for acceleration.

Input
MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of position and speed
ReferenceBase o
reference or from actual values of load/motor position and speed
Return Output | TRUE if no error, FALSE if error

Description: The function programs a trapezoidal speed profile. You specify the jog Speed. The load/motor
accelerates until the jog speed is reached. The jog speed can be positive or negative; the sign gives the direction.
The Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values previously defined
for the acceleration rate you don’t need to send its value again in the following speed profiles. Set to zero the value
of acceleration if you want the drive/motor to use the value previously defined with other commands (this option
reduces the TML code generated by this function).

The motion is executed:

Immediately when MoveMoment = UPDATE_IMMEDIATE
When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS _Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the motion profile
starting from the actual values of the position and speed reference. Use this option for example if successive
standard relative moves must be executed and the final target position should represent exactly the sum of the
individual commands. Set ReferenceBase = FROM_MEASURE if you want the reference generator to compute
the motion profile starting from the actual values of the load/motor position and speed. When this option is used, at
the beginning of each new motion profile, the position and speed reference are updated with the actual values of
the load/motor position and speed.

Related functions: TS_MoveRelative, TS_MoveAbsolute, TS_MoveSCurveAbsolute, TS_MoveSCurveRelative

Associated examples: Ex04_BasicMove, Ex06_ExternalReference, Ex07_MultiAxes, Ex10_EventHandling,
Ex11_IOHandling

© Technosoft 2021 55 TML_Lib — User Manual

3.5.6.6. TS_SetAnalogueMoveExternal

Prototype:

BOOL TML_EXPORT TS_SetAnalogueMoveExternal(SHORT ReferenceType, BOOL UpdateFast, DOUBLE
LimitVariation, SHORT MoveMoment);

Arguments:
Name I/O Description
ReferenceType Specifies how the analogue signal is interpreted
UpdateFast Specifies how often the analogue reference is read when torque control is performed
LimitVariation et Speed/acceleration limit value for position/speed control expressed in TML internal units
MoveMoment Defines the moment when the motion is started
Return Output | TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external analogue reference read via a
dedicated analogue input (10-bit resolution). The analogue signal can be interpreted as a position, speed or torque
analogue reference. Through parameter ReferenceType you specify how the analogue signal is interpreted:

e Position reference when ReferenceType = REFERENCE_POSITION. The drive/motor performs position
control.

o Speed reference when ReferenceType = REFERENCE_SPEED. The drive/motor performs speed control.

e Torque reference when ReferenceType = REFERENCE_TORQUE. The drive/motor performs torque
control.

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application at Control Mode.

2. Perform the tuning of controllers associated with the selected control mode.

3. Setup the analogue reference. You specify the reference values corresponding to the upper and lower limits
of the analogue input. In addition, a dead-band symmetrical interval and its center point inside the analogue
input range may be defined.

In position control you can limit the maximum speed at sudden changes of the position reference and thus to reduce
the mechanical shocks. In speed control you can limit the maximum acceleration at sudden changes of the speed
reference and thus to get a smoother transition. These features are activated by setting the LimitVariation
parameter to a positive value and disabled when the LimitVariation is zero.

In torque control you can choose how often to read the analogue input: at each slow loop sampling period
(UpdateFast = TRUE) or at each fast loop sampling period (UpdateFast = FALSE).
The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

¢ When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the motion parameters are set, but does not execute. You'll
need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Related functions: TS_SetDigitalMoveExternal, TS_SetOnlineMoveExternal
Associated examples: Ex06_ExternalReference

© Technosoft 2021 56 TML_Lib — User Manual

3.5.6.7. TS_SetDigitalMoveExternal

Prototype:

BOOL TML_EXPORT TS_SetDigitalMoveExternal(BOOL SetGearRatio, SHORT Denominator, SHORT
Numerator, DOUBLE LimitVariation, SHORT MoveMoment);

Arguments:
Name 1/0 Description
SetGearRatio Specifies if the digital reference is followed by the drive with a gear ratio
Denominator Gear ratio denominator
Numerator Input | Gear ratio numerator
LimitVariation Acceleration limit value
MoveMoment Defines the moment when the motion is started
Return Output | TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external digital reference provided as
pulse & direction or quadrature encoder signals. In either case, the drive/motor performs a position control with the
reference computed from the external signals.

Remarks: The option for the input signals: pulse & direction or quadrature encoder is established during the
drive/motor setup.

The drive/motor follows the external reference with a gear ratio different than 1:1 when SetGearRatio = TRUE. The
gear ratio is specified as a ratio of 2 integer values: Numerator / Denominator. The Numerator value is signed,
while the Denominator is unsigned. The sign indicates the direction of movement: positive — same as the external
reference, negative — reversed to the external reference.

You can limit the maximum acceleration at sudden changes of the external reference and thus to get a smoother
transition. This feature is activated when the parameter LimitValue has a positive value and disabled when its value
is zero.

The motion is executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

o |If you select MoveMoment = UPDATE_NONE, the motion parameters are set, but the motion is not
activated. You'll need to issue an update command to determine the execution of the movement. Use the
TS Updatelmmediate or the TS _UpdateOnEvent functions in order to activate the movement.

Related functions: TS_SetAnalogueMoveExternal, TS_SetOnlineMoveExternal
Associated examples: Ex06_ExternalReference

© Technosoft 2021 57 TML_Lib — User Manual

3.5.6.8. TS_SetOnlineMoveExternal

Prototype:

BOOL TML_EXPORT TS_SetOnlineMoveExternal(SHORT ReferenceType, DOUBLE LimitVariation,
DOUBLE InitialValue, SHORT MoveMoment);

Arguments:
Name I/0 Description
ReferenceType Specifies how the analogue signal is interpreted
LimitVariation Speed/acceleration limit value for position/speed control expressed in TML internal units
Input
InitialValue The initial value of the reference received on-line
MoveMoment Defines the moment when the motion is started
Return Output | TRUE if no error, FALSE if error

Description: The function programs the drive/motor to work with a reference received via a communication channel
from an external device. Depending on the control mode chosen, the external reference is saved in one of the TML
variables:

e EREFP, which becomes the position reference if the ReferenceType = REFERENCE_POSITION
¢ EREFS, which becomes the speed reference if the ReferenceType = REFERENCE_SPEED

e EREFT, which becomes the torque reference if the ReferenceType = REFERENCE_TORQUE

e EREFV, which becomes voltage reference if the ReferenceType = REFERENCE_VOLTAGE

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application in Drive Setup dialogue.
2. Perform the tuning of controllers associated with the selected control mode.

In position control you can limit the maximum speed at sudden changes of the position reference and thus to reduce
the mechanical shocks. In speed control you can limit the maximum acceleration at sudden changes of the speed
reference and thus to get a smoother transition. These features are activated by setting the LimitVariation
parameter to a positive value and disabled when the LimitVariation is zero.

The motion is executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

¢ When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

If the external device starts sending the reference AFTER the motion mode is activated, it may be necessary to
initialize EREFP, EREFS, EREFT or EREFV. The desired starting value is set through InitialValue parameter.

Related functions: TS_SetAnalogueMoveExternal, TS_SetDigitalMoveExternal

Associated examples: Ex06_ExternalReference

© Technosoft 2021 58 TML_Lib — User Manual

3.5.6.9. TS _VoltageTestMode

Prototype:

BOOL TML_EXPORT TS VoltageTestMode(SHORT MaxVoltage, SHORT IncrVoltage, SHORT ThetaO,
SHORT Dtheta, SHORT MoveMoment);

Arguments:
Name I/0 Description
MaxVoltage Maximum test voltage expressed in TML voltage command units
IncrVoltage Voltage increment expressed in TML internal units
ThetaO Input Initial value of electrical angle expressed in TML electrical angle units
Dtheta Electric angle increment expressed in TML electrical angle increment units
MoveMoment Defines the moment when the motion is started
Return Output | TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in voltage test mode. In the test mode a saturated
ramp voltage is applied to the motor, i.e. the voltage will increase with the IncrVoltage increment at each slow
sampling period up to the MaxVoltage value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test mode is not supposed
to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a voltage reference vector
with a programmable speed. As a result, these motors can be moved in an “open-loop” mode without using the
position sensor. The main advantage of this test mode is the possibility to conduct in a safe way a series of tests,
which can offer important information about the motor parameters, drive status and the integrity of the its
connections.

The voltage reference vector initial position is set through parameter ThetaO and its speed through Dtheta. For DC
motors set these parameters to zero.

The motion is executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

¢ When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

o If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Related functions: TS _TorqueTestMode
Associated examples: —

© Technosoft 2021 59 TML_Lib — User Manual

3.5.6.10. TS _TorqueTestMode

Prototype:

BOOL TML_EXPORT TS_TorqueTestMode(SHORT MaxTorque, SHORT IncrTorque, SHORT Theta0, SHORT
Dtheta, SHORT MoveMoment);

Arguments:
Name I/O Description
MaxTorque Maximum test torque expressed in TML current units
IncrTorque Torque increment expressed in TML internal units
ThetaO Input Initial value of electrical angle expressed in TML electrical angle units
Dtheta Electric angle increment expressed in TML electrical angle increment units
MoveMoment Defines the moment when the motion is started
Return Output | TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in torque test mode. In the test mode a saturated
ramp current is applied to the motor, i.e. the current will increase with the IncrTorque increment at each slow
sampling period up to the MaxTorque value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test mode is not supposed
to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a current reference vector
with a programmable speed. As a result, these motors can be moved in an “open-loop” mode without using the
position sensor. The main advantage of this test mode is the possibility to conduct in a safe way a series of tests,
which can offer important information about the motor parameters, drive status and the integrity of the its
connections.

The current reference vector initial position is set through parameter Theta0 and its speed through Dtheta. For DC
motors set these parameters to zero.

The motion is executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS Updatelmmediate or the TS _UpdateOnEvent functions in order to activate the movement.

Related functions: TS VoltageTestMode
Associated examples: —

© Technosoft 2021 60 TML_Lib — User Manual

3.5.6.11. TS_PVTSetup

Prototype:

BOOL TML_EXPORT TS PVTSetup(SHORT ClearBuffer, SHORT IntegrityChecking, @SHORT
ChangePVTCounter, SHORT AbsolutePositionSource, SHORT ChangeLowLevel, SHORT
PVTCounterValue, SHORT LowLevelValue);

Arguments:
Name I/O | Description
ClearBuffer Specifies if the PVT buffer is cleared
IntegrityChecking Enable/disable PVT counter integrity checking
ChangePVTCounter Specifies if the integrity counter is updated with the value of PVTCounterValue

parameter

AbsolutePositionSource | Input Selects the source for initial position for absolute PVT mode

Specifies if the level for BufferLow signaling is updated with the value of

ChangelowLevel LowLevelValue parameter

PVTCounterValue The new value for the drive/motor PVT integrity counter
LowLevelValue The new value for the level of the BufferLow signal
Return Output | TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PVT motion mode. In PVT motion mode the
drive/motor performs a positioning path described through a series of points. Each point specifies the desired
Position, Velocity and Time, i.e. contains a PVT data. Between the points the built-in reference generator performs
a 3rd order interpolation.

Remark: The function block just programs the drive/motor for PVT mode. The motion mode is activated with function
TS _SendPVTFirstPoint and the PVT points are sent to the drive with function TS_SendPVTPoint.

A key factor for getting a correct positioning path in PVT mode is to set correctly the distance in time between the
points. Typically, this is 10-20ms, the shorter the better. If the distance in time between the PVT points is too big,
the 3rd order interpolation may lead to important variations compared with the desired path.

The PVT motion mode can be started only when the previous motion is complete. However, you can switch at any
moment to another motion mode.

The PVT mode can be relative or absolute. In the absolute mode, each PVT point specifies the position to reach.
The initial position may be either the current position reference TML variable TPOS (AbsolutePositionSource =
TRUE) or a preset value read from the TML parameter PVTPOSO (AbsolutePositionSource = FALSE). In the
relative mode, each PVT point specifies the position increment relative to the previous point. In both cases, the time
is relative to the previous point i.e. represents the duration of a PVT segment. For the first PVT point, the time is
measured from the starting of the PVT mode.

Remark: The PVT mode, absolute or relative, is set with function TS_SendPVTFirstPoint.

© Technosoft 2021 61 TML_Lib — User Manual

Each time when the drive receives a new PVT point, it is saved into the PVT buffer. The reference generator empties
the buffer as the PVT points are executed. The PVT buffer is of type FIFO (first in, first out). The default length of
the PVT buffer is 7 PVT points. Each entry in the buffer is made up of 9 words, so the default length of the PVT
buffer in terms of how much memory space is reserved is 63 (3Fh) words. The drive/motor automatically sends
messages to the host when the buffer is full, low or empty. The messages contain the PVT status (TML variable
PVTSTS). The buffer full condition occurs when the number of PVT points in the buffer is equal with the buffer size.
The buffer low condition occurs when the number of PVT points in the buffer is less or equal with a programmable
value. The level for BufferLow signaling is updated when ChangeLowLevel = TRUE with the value of parameter
LowLevelValue. The buffer empty condition occurs when the buffer is empty and the execution of the last PVT
point is over.

When the PVT buffer becomes empty the drive/motor;

e Remains in PVT mode if the velocity of last PVT point executed is zero and waits for new points to receive
e Enters in quick stop mode if the velocity of last PVT point executed is not zero

Therefore, a correct PVT sequence must always end with a last PVT point having velocity zero.
Remarks:

1. The PVT and PT modes share the same buffer. Therefore, the TML parameters and variables associated
with the buffer management are the same.

2. Both the PVT buffer size and its start address are programmable via TML parameters
PVTBUFBEGIN(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore, if needed, the PVT buffer size
can be substantially increased. Use TS_SetintegerVariable to change the PVT buffer parameters.

Each PVT point includes a 7-bit integrity counter. The integrity counter value must be incremented by the host by
one, each time a new PVT point is sent to the drive/motor. If the integrity counter error checking is activated
(IntegrityChecking = TRUE), the drive compares its integrity counter value with the one sent with the PVT point.
This comparison is done every time a PVT point is received. If the values of the two integrity counters do not match,
the integrity check error is triggered, the drive/motor sends messages with PVTSTS to the host and the received
PVT point is discarded. Each time a PVT point is accepted (the integrity counters match or the integrity counter
error checking is disabled), the drive automatically increments its internal integrity counter.

The default value of the internal integrity counter after power up is 0. Set ChangePVTCounter = TRUE to change
its value with PVTCounterValue parameter. The integrity counter checking is disabled when parameter
IntegrityChecking = FALSE.

Related functions: TS_SendPVTFirstPoint, TS_SendPVTPoint
Associated examples: Ex08_PVT

© Technosoft 2021 62 TML_Lib — User Manual

3.5.6.12. TS_SendPVTFirstPoint

Prototype:

BOOL TML_EXPORT TS_SendPVTFirstPoint(LONG Position, DOUBLE Velocity, WORD Time, SHORT

PVTCounter, SHORT PositionType, LONG InitialPosition, SHORT MoveMoment SHORT ReferenceBase);

Arguments:
Name I/0 Description
Position Position value for first PVT point expressed in TML position units
Velocity Speed at the end of the first PVT segment expressed in TML speed units
Ti Represents the time interval of the PVT segment expressed in TML time units. The maximum
ime S .

time interval is 511 IU.

PVTCounter Integrity counter for first PVT point.
Input

PositionType Specifies the type of PVT mode
InitialPosition The initial position at the start of an absolute PVT movement
MoveMoment Defines the moment when the motion is started

Specifies how the motion reference is computed: from actual values of position and speed
ReferenceBase o

reference or from actual values of load/motor position and speed
Return Output | TRUE if no error, FALSE if error

Description: The function sends the first PVT point and activates the PVT motion mode.

Parameter PositionType sets the PVT mode: absolute or relative. In the absolute mode (PositionType =
ABSOLUTE_POSITION), each PVT point specifies the position to reach. The initial position may be either the
current position reference TML variable TPOS or a preset value read from the TML parameter PVTPOSO. In the
relative mode (PositionType = RELATIVE_POSITION), each PVT point specifies the position increment relative
to the previous point.

Remark: The source for initial position, TPOS or PVTPOSO, is set with function TS_PVTSetup.
The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Related functions: TS_PVTSetup, TS_SendPVTPoint
Associated examples: Ex08_PVT

© Technosoft 2021 63 TML_Lib — User Manual

3.5.6.13. TS_SendPVTPoint

Prototype:

BOOL TML_EXPORT TS SendPVTPoint(LONG Position, DOUBLE Velocity, WORD Time, SHORT
PVTCounter);

Arguments:
Name 1/0 Description
Position Position at the end of the PVT segment expressed in TML position units
Velocity Velocity at the end of the PVT segment expressed in TML speed units

Input

Time Time interval for the current PVT segment expressed in TML time units
PVTCounter The integrity counter for the current PVT point
Return Output | TRUE if no error, FALSE if error

Description: The function sends a PVT point to the drive/motor. Each point specifies the desired Position, Velocity
and Time, i.e. contains a PVT data. Between the PVT points the reference generator performs a 3™ order
interpolation. The PVT point also includes a 7-bit integrity counter. The integrity counter value must be incremented
by the host by one, each time a new PVT point is sent to the drive/motor.

Related functions: TS_PVTSetup, TS_SendPVTFirstPoint
Associated examples: Ex08 PVT

© Technosoft 2021 64 TML_Lib — User Manual

3.5.6.14. TS_PTSetup

Prototype:

BOOL TML_EXPORT TS_PTSetup(SHORT ClearBuffer, SHORT IntegrityChecking, SHORT
ChangePTCounter, SHORT AbsolutePositionSource, SHORT ChangeLowLevel, SHORT PTCounterValue,
SHORT LowLevelValue);

Arguments:
Name 1/0 Description
ClearBuffer When TRUE the PT buffer is cleared
IntegrityChecking Enable/disable PT counter integrity checking
ChangePTCounter Specifies if the integrity counter is updated with the value of PTCounterValue

parameter

AbsolutePositionSource | Input Selects the source for initial position for absolute PT mode

Specifies if the level for BufferLow signaling is updated with the value of

ChangelowLevel LowLevelValue parameter

PTCounterValue The new value for the drive/motor PT integrity counter
LowLevelValue The new value for the level of the BufferLow signal
Return Output | TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PT motion mode. In PT motion mode the drive/motor
performs a positioning path described through a series of points. Each point specifies the desired Position and
Time, i.e. contains a PT data. Between the points the built-in reference generator performs a linear interpolation.

Remark: The function block just programs the drive/motor for PT mode. The motion mode is activated with function
TS_SendPTFirstPoint and the PT points are sent to the drive with function TS_SendPTPoint.

The PT motion mode can be started only when the previous motion is complete. However, you can switch at any
moment to another motion mode.

The PT mode can be relative or absolute. In the absolute mode, each PT point specifies the position to reach. The
initial position may be either the current position reference TML variable TPOS (AbsolutePositionSource = TRUE)
or a preset value read from the TML parameter PVTPOSO0 (AbsolutePositionSource = FALSE). In the relative
mode, each PT point specifies the position increment relative to the previous point. In both cases, the time is relative
to the previous point i.e. represents the duration of a PT segment. For the first PT point, the time is measured from
the starting of the PT mode.

Remark: The PT mode, absolute or relative, is set with function TS_SendPTFirstPoint.

Each time when the drive receives a new PT point, it is saved into the PT buffer. The reference generator empties
the buffer as the PT points are executed. The PT buffer is of type FIFO (first in, first out). The default length of the
PT buffer is 7 PT points. The drive/motor automatically sends messages to the host when the buffer is full, low or
empty. The messages contain the PT status (TML variable PVTSTS). The buffer full condition occurs when the

© Technosoft 2021 65 TML_Lib — User Manual

number of PT points in the buffer is equal with the buffer size. The buffer low condition occurs when the number of
PT points in the buffer is less or equal with a programmable value. Set ChangeLowLevel = TRUE to change the
level for BufferLow signaling with the value of parameter LowLevelValue. The buffer empty condition occurs when
the buffer is empty and the execution of the last PT point is over. When the PT buffer becomes empty the drive/motor
keeps the position reference unchanged.

Remarks:

1. The PT and PVT modes share the same buffer. Therefore, the TML parameters and variables associated
with the buffer management are the same.

2. Both the PT buffer size and its start address are programmable via TML parameters
PVTBUFBEGIN(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore, if needed, the PT buffer size can
be substantially increased. Use TS_SetIntegerVariable to change the PT buffer parameters.

Each PT point also includes a 7-bit integrity counter. The integrity counter value must be incremented by the host
by one, each time a new PT point is sent to the drive/motor. If the integrity counter error checking is activated
(IntegrityChecking = FALSE), the drive compares its integrity counter value with the one sent with the PT point.
This comparison is done every time a PT point is received. If the values of the two integrity counters do not match,
the integrity check error is triggered, the drive/motor sends messages with PVTSTS to the host and the received
PT point is discarded. Each time a PT point is accepted (the integrity counters match or the integrity counter error
checking is disabled), the drive automatically increments its internal integrity counter.

The default value of the internal integrity counter after power up is 0. Set ChangePTCounter = TRUE to change
the value of integrity counter with PTCounterValue parameter. The integrity counter checking is disabled when
parameter IntegrityChecking = TRUE.

Related functions: TS_SendPTFirstPoint, TS_SendPTPoint
Associated examples: —

© Technosoft 2021 66 TML_Lib — User Manual

3.5.6.15. TS_SendPTFirstPoint

Prototype:

BOOL TML_EXPORT TS_SendPTFirstPoint(LONG Position, WORD Time, SHORT PTCounter, SHORT
PositionType, LONG InitialPosition, SHORT MoveMoment SHORT ReferenceBase);

Arguments:
Name I/0 Description
Position Position value for first PT point expressed in TML position units
Time Time interval of the PT segment expressed in TML time units.
PTCounter Integrity counter for first PT point.

PositionType Input Specifies the type of PT mode

InitialPosition The initial position at the start of an absolute PT movement

MoveMoment Defines the moment when the motion is started

ReferenceBase Specifies how the motion reference is computed: from actual values of position and speed
reference or from actual values of load/motor position and speed

Return Output | TRUE if no error, FALSE if error

Description: The function sends the first PT point and activates the PT motion mode.

Parameter PositionType sets the PT mode: absolute or relative. In the absolute mode (PositionType =
ABSOLUTE_POSITION), each PT point specifies the position to reach. The initial position may be either the current
position reference TML variable TPOS or a preset value read from the TML parameter PVTPOSO. In the relative
mode (PositionType = RELATIVE_POSITION), each PT point specifies the position increment relative to the
previous point.

Remark: The initial position source, TPOS or PVTPOSO, is set with function TS_PTSetup.
The motion is executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

¢ When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS_Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Related functions: TS PTSetup, TS_SendPTPoint
Associated examples: —

© Technosoft 2021 67 TML_Lib — User Manual

3.5.6.16. TS_SendPTPoint

Prototype:

BOOL TML_EXPORT TS_SendPTPoint(LONG Position, WORD Time, SHORT PTCounter);

Arguments:
Name 1/0 Description
Position Position at the end of the PT segment expressed in TML position units
Time Input Time interval for the current PT segment expressed in TML time units
PTCounter The integrity counter for the current PT point
Return Output | TRUE if no error, FALSE if error

Description: The function sends a PT point to the drive/motor. Each point specifies the desired Position, and
Time. Between the PT points the reference generator performs a linear interpolation. The PT point also includes a
7-bit integrity counter. The integrity counter value must be incremented by the host by one, each time a new PT
point is sent to the drive/motor.

Related functions: TS _PTSetup, TS_SendPTFirstPoint
Associated examples: —

© Technosoft 2021 68 TML_Lib — User Manual

3.5.6.17. TS_SetGearingMaster

Prototype:

BOOL TML_EXPORT TS_SetGearingMaster(BOOL Group, BYTE SlavelD, SHORT ReferenceBase, BOOL
Enable, BOOL SetSlavePos, SHORT MoveMoment);

Arguments:
Name I/O Description
Group Specifies if the master sends its position to one slave or a group of slaves
SlavelD The axis ID of the slave or group ID of group of slaves
ReferenceBase Specifies if the master sends its load position or its position reference
Input
Enable Enable/disables the master in electronic gearing
SetSlavePos Specify if the master is initializing the slave(s)
MoveMoment Defines the moment when the settings are activated
Return Output | TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic gearing. Once at each slow loop
sampling time interval, the master sends either its load position APOS (ReferenceBase = FROM_MEASURE) or
its position reference TPOS (ReferenceBase = FROM_REFERENCE) to the axis or the group of axes specified in
the parameter SlavelD.

Remark: The ReferenceBase = FROM_MEASURE option is not valid if the master operates in open loop. It is
meaningless if the master drive has no position sensor.

The SlavelD is interpreted either as the Axis ID of one slave (Group = FALSE) or the value of a Group ID i.e. the
group of slaves to which the master should send its data (Group = TRUE).

The master operation is enabled with Enable = TRUE and is disabled when Enable = FALSE. In both cases, these
operations have no effect on the motion executed by the master.

If the master activation is done AFTER the slaves are set in electronic gearing mode, set SetSlavePos = TRUE to
determine the master to send an initialization message to the slaves.

The commands are executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e |If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS Updatelmmediate or the TS _UpdateOnEvent functions in order to activate the movement.

Related functions: TS_SetGearingSlave, TS_SendSynchronization
Associated examples: Ex07_MultiAxes

© Technosoft 2021 69 TML_Lib — User Manual

3.5.6.18. TS_SetGearingSlave

Prototype:

BOOL TML_EXPORT TS_SetGearingSlave(SHORT Denominator, SHORT Numerator, SHORT
ReferenceBase, SHORT EnableSlave, DOUBLE LimitVariation, SHORT MoveMoment);

Arguments:
Name I/O | Description
Denominator Gear ratio denominator (always positive)
Numerator Gear ratio numerator (positive or negative)
Specifies how the motion reference is computed: from actual values of position and speed
ReferenceBase .
reference or from actual values of load/motor position and speed
EnableSlave Input Enables the electronic gearing slave mode
EnableSuperposition Enables/disables motion superposition
LimitVariation Acceleration limit when the slave is coupling
MoveMoment Defines the moment when the settings are activated
Return Output | TRUE if no error, FALSE if error

Description: The function programs the active axis to operate as slave in electronic gearing. In electronic gearing
slave mode, the drive/motor performs a position control. At each slow loop sampling period, the slave computes the
master’s position increment and multiplies it with its programmed gear ratio. The result is the slave’s position
reference increment, which added to the previous slave position reference gives the new slave position reference.

The gear ratio is the result of the division Numerator / Denominator. Numerator is a signed integer, while the
Denominator is unsigned integer. The Numerator sign indicates the direction of movement: positive — same as
the master, negative — reversed to the master. Numerator and Denominator are used by an automatic
compensation procedure that eliminates the round off errors, which occur when the gear ratio is an irrational number
like: 1/3 (Slave = 1, Master = 3).

The slave can get the master position in two ways:

1. Via a communication channel (EnableSlave = SLAVE_COMMUNICATION_CHANNEL), from a
drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (EnableSlave =
SLAVE_2ND_ENCODER)

Remark: Set EnableSlave = SLAVE_NONE if you want to program the motion mode parameters without enabling
it.
When master position is provided via the external digital interface, the slave computes the master position by

counting the pulse & direction or quadrature encoder signals. The initial value of the master position is set by default
to 0. Use function TS_SetLongVariable to change its value by writing the desired value in the TML variable APOS2.

© Technosoft 2021 70 TML_Lib — User Manual

You can smooth the slave coupling with the master, by limiting the maximum acceleration on the slave. This is
particularly useful when the slave must couple with a master running at high speed. This feature is activated when
the parameter LimitVariation has a positive value and disabled when its value is zero.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the slave position
starting from the actual values of the position and speed reference. Set ReferenceBase = FROM_MEASURE if
you want the reference generator to compute the slave position starting from the actual values of the load/motor
position and speed. When this option is used, at the beginning of each new motion profile, the position and speed
reference are updated with the actual values of the load/motor position and speed.

Remarks:

1. The function requires drive/motor position loop to be closed. During the drive/motor setup select Position
at Control Mode and perform the position controller tuning.

Use function block TS_SetGearingMaster to program a drive/motor as master in electronic gearing
When the reference is read from second encoder or pulse & direction inputs you don’t need to program a
drive/motor as master in electronic gearing

2.
3.

Related functions: TS_SetGearingMaster, TS_SetMasterResolution
Associated examples: Ex07_MultiAxes

© Technosoft 2021 71 TML_Lib — User Manual

3.5.6.19. TS_MotionSuperposition

Prototype:
BOOL TML_EXPORT TS_MotionSuperposition(short Enable, short Update);

Arguments:

Name | /O | Description

0 | Disable the Superposition mode

Enable
1 | Enable the Superposition mode
Input - - - —
0 Doesn't send UPD command to the drive, in order to take into account, the Superposition
mode
Update

1 | Sends UPD command to the drive, in order to take into account, the Superposition mode

Return | Output TRUE if no error, FALSE if error

Description: Enable or disable the superposition of the electronic gearing mode with a second motion mode.
When this superposed mode activated, the position reference is computed as the sum of the position references
for each of the 2 superposed motions.

You may enable the superposed mode at any moment, independently of the activation/deactivation of the electronic
gearing slave.

If the superposed mode is activated during an electronic gearing motion, any subsequent motion mode change is
treated as a second move to be superposed over the basic electronic gearing move, instead of replacing it.

If the superposed mode is activated during another motion mode, a second electronic gearing mode will start using
the motion parameters previously set. This move is superposed over the first one. After the first move ends, any
other subsequent motion will be added to the electronic gearing.

When you disable the superposed mode, the electronic gearing slave move is stopped and the drive/motor executes
only the other motion. If you want to remain in the electronic gearing slave mode, set first the electronic gearing
slave move and then disable the superposed mode.

Related functions: -
Associated examples: -

© Technosoft 2021 72 TML_Lib — User Manual

3.5.6.20. TS_SetCammingMaster

Prototype:

BOOL TML_EXPORT TS_SetCammingMaster(BOOL Group, BYTE SlavelD, SHORT ReferenceBase, BOOL
Enable, SHORT MoveMoment);

Arguments:
Name I/O Description
Group Specifies if the master sends its position to one slave or a group of slaves
SlavelD The axis ID of the slave or group ID of group of slaves

ReferenceBase | Input Specifies if the master sends its load position or its position reference

Enable Enable/disables the master in electronic camming
MoveMoment Defines the moment when the settings are activated
Return Output | TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic camming. Once at each slow loop
sampling time interval, the master sends either its load position APOS (ReferenceBase = FROM_MEASURE) or
its position reference TPOS (ReferenceBase = FROM_REFERENCE) to the axis or the group of axes specified in
the parameter SlavelD.

Remark: The ReferenceBase = FROM_MEASURE option is not valid if the master operates in open loop. It is
meaningless if the master drive has no position sensor.

The SlavelD is interpreted either as the Axis ID of one slave (Group = FALSE) or the value of a Group ID i.e. the
group of slaves to which the master should send its data (Group = TRUE).

The master operation is enabled with Enable = TRUE and is disabled when Enable = FALSE. In both cases, these
operations have no effect on the motion executed by the master.

The commands are executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE
When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT
If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does not execute.
You'll need to issue an update command to determine the execution of the movement. Use the
TS _Updatelmmediate or the TS_UpdateOnEvent functions in order to activate the movement.

Related functions: TS_CambDownload, TS_Caminitialization TS_SetCammingSlaveRelative,
TS_SetCammingSlaveAbsolute, TS_SendSynchronization

Associated examples: Ex07_MultiAxes

© Technosoft 2021 73 TML_Lib — User Manual

3.5.6.21. TS_SetCammingSlaveRelative

Prototype:

BOOL TML_EXPORT TS_SetCammingSlaveRelative(WORD RunAddress, SHORT ReferenceBase, SHORT
EnableSlave, SHORT MoveMoment, LONG OffsetFromMaster, DOUBLE MultinputFactor, DOUBLE
MultOutputFactor);

Arguments:

Name 1/0 Description

RunAddress Drive/motor RAM address where the cam table is copied with function TS_Camlnitialization
Specifies how the motion reference is computed: from actual values of position and speed

ReferenceBase o
reference or from actual values of load/motor position and speed

EnableSlave Enable the electronic camming slave mode

MoveMoment Input Defines the moment when the settings are activated

OffsetFromMaster Cam table offset expressed in TML position units

MultinputFactor CAM table input scaling factor

MultOutputFactor CAM table output scaling factor

Return Output | TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic camming relative mode.
The slave drive/motor executes a cam profile function of the master drive/motor position. The cam profile is defined
by a cam table — a set of (X, Y) points, where X is cam table input i.e. the master position and Y is the cam table
output i.e. the corresponding slave position. Between the points the drive/motor performs a linear interpolation. In
electronic camming relative mode, the output of the cam table is added to the slave actual position.

The cam tables are previously stored in drive/motor non-volatile memory with function TS_CamDownload. After
download, previously starting the camming slave, you have to initialize the cam table, i.e. to copy it from non-volatile
memory to RAM memory. Use function TS_Camlnitialization to initialize a cam table. The active cam table is
selected through parameter RunAddress. The RunAddress must contain the drive/motor RAM address where the
cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (EnableSlave = SLAVE_COMMUNICATION_CHANNEL), from a
drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (EnableSlave =
SLAVE_2ND_ENCODER)

Remark:

1. Set EnableSlave = SLAVE_NONE to program the motion mode parameters without enabling it.

© Technosoft 2021 74 TML_Lib — User Manual

2. Use function block TS_SetCammingMaster to program a drive/motor as master in electronic camming.
When the reference is read from second encoder or pulse & direction inputs you don’t need to program a
drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master position by
counting the pulse & direction or quadrature encoder signals. The initial value of the master position is set by default
to 0. Use function block TS_SetLongVariable to change its value by writing the desired value in the TML variable
APOS2.

With parameter OffsetFromMaster you can shift the cam profile versus the master position, by setting an offset for
the slave. The cam table input is computed as the master position minus the cam offset. For example, if a cam table
is defined between angles 100 to 250 degrees, a cam offset of 50 degrees will make the cam table to execute
between master angles 150 and 300 degrees.

You can compress/extend the cam table input. Set the parameter MultinputFactor with the correction factor by
which the cam table input is multiplied. For example, an input correction factor of 2, combined with a cam offset of
180 degrees, will make possible to execute a cam table defined for 360 degrees of the master in the last 180
degrees.

You can also compress/extend the cam table output. Specify through input MultOutputFactor the correction factor
by which the cam table output is multiplied. This feature addresses the applications where the slaves must execute
different position commands at each master cycle, all having the same profile defined through a cam table. In this
case, the drive/motor is programmed with a unique normalized cam profile and the cam table output is multiplied
with the relative position command updated at each master cycle.

Remark: If the OffsetFromMaster, MultinputFactor and/or MultOutputFactor are set to zero the drive/motor will use
the value previously set for the parameter or the default value. With this option the TML code generated by this
function is reduced.

Related functions: TS _CamDownload, TS_Camlinitialization, TS_SetCammingSlaveAbsolute,
TS_SetCammingMaster, TS_SetMasterResolution

Associated examples: Ex07_MultiAxes

© Technosoft 2021 75 TML_Lib — User Manual

3.5.6.22. TS_SetCammingSlaveAbsolute

Prototype:

BOOL TML_EXPORT TS_SetCammingSlaveAbsolute(WORD RunAddress, DOUBLE LimitVariation, SHORT
ReferenceBase, SHORT EnableSlave, SHORT MoveMoment, LONG OffsetFromMaster, DOUBLE
MultinputFactor, DOUBLE MultOutputFactor);

Arguments:
Name le] Description
RunAddress Drive/motor RAM address where the cam table is copied with function TS_Camlnitialization
LimitVariation Slave speed limit value expressed in TML speed units
Specifies how the motion reference is computed: from actual values of position and speed
ReferenceBase o
reference or from actual values of load/motor position and speed
EnableSlave Input Enable the electronic camming slave mode
MoveMoment Defines the moment when the settings are activated
OffsetFromMaster Cam table offset expressed in TML position units
MultinputFactor CAM table input scaling factor
Return Output | TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic camming absolute mode.
The slave drive/motor executes a cam profile function of the master drive/motor position. The cam profile is defined
by a cam table — a set of (X, Y) points, where X is cam table input i.e. the master position and Y is the cam table
output i.e. the corresponding slave position. Between the points the drive/motor performs a linear interpolation. In
electronic camming absolute mode, the output of the cam table represents the position to reach.

The electronic camming absolute mode may generate abrupt variations on the slave position reference, mainly at
entry in the camming mode. Set parameter LimitVariation to limit the speed of the slave during travel towards the
position to reach. The limitation is disabled if the LimitVariation is set to zero.

The cam tables are previously stored in drive/motor non-volatile memory with function TS_CambDownload. After
download, previously starting the camming slave, you have to initialize the cam table, i.e. to copy it from non-volatile
memory to RAM memory. Use function TS_Camlnitialization to initialize a cam table. The active cam table is
selected through parameter RunAddress. The RunAddress must contain the drive/motor RAM address where the
cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (EnableSlave = SLAVE_COMMUNICATION_CHANNEL), from a
drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder (EnableSlave =
SLAVE_2ND_ENCODER)

© Technosoft 2021 76 TML_Lib — User Manual

Remark:

1. Set EnableSlave = SLAVE_NONE if you want to program the motion mode parameters without enabling
it.

2. Use function block TS_SetCammingMaster to program a drive/motor as master in electronic camming.
When the reference is read from second encoder or pulse & direction inputs you don’t need to program a
drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master position by
counting the pulse & direction or quadrature encoder signals. The initial value of the master position is set by default
to 0. Use function block TS_SetLongVariable to change its value by writing the desired value in the TML variable
APQOS2.

Set the parameter OffsetFromMaster to shift the cam profile versus the master position, by setting an offset for the
slave. The cam table input is computed as the master position minus the cam offset. For example, if a cam table is
defined between angles 100 to 250 degrees, a cam offset of 50 degrees will make the cam table to execute between
master angles 150 and 300 degrees.

You can compress/extend the cam table input. Set the parameter MultinputFactor with the correction factor by
which the cam table input is multiplied. For example, an input correction factor of 2, combined with a cam offset of
180 degrees, will make possible to execute a cam table defined for 360 degrees of the master in the last 180
degrees.

You can also compress/extend the cam table output. Specify through input MultOutputFactor the correction factor
by which the cam table output is multiplied. This feature addresses the applications where the slaves must execute
different position commands at each master cycle, all having the same profile defined through a cam table. In this
case, the drive/motor is programmed with a unique normalized cam profile and the cam table output is multiplied
with the relative position command updated at each master cycle.

Remark: If the OffsetFromMaster, MultinputFactor and/or MultOutputFactor are set to zero the drive/motor will use
the value previously set for the parameter or the default value. With this option the TML code generated by this
function is reduced.

Related functions: TS_CambDownload, TS_Camlnitialization, TS_SetCammingSlaveRelative,
TS_SetCammingMaster, TS_SetMasterResolution

Associated examples: —

© Technosoft 2021 77 TML_Lib — User Manual

3.5.6.23. TS_CambDownload

Prototype:

BOOL TML_EXPORT TS_CambDownload(LPCSTR pszCamFile, WORD LoadAddress, WORD RunAddress,
WORD& wNextLoadAddr, WORD& wNexLoadAddr);

Arguments:
Name I/0 Description
pszCamkFile The name of the file containing the cam table description
LoadAddress Input The non-volatile memory (EEPROM) address where the cam table is downloaded
RunAddress The RAM address where the cam table is copied at initialization
wNextLoadAddr Next available EEPROM address from where a cam table can be downloaded
wNextRunAddr | Output | Next available RAM address where a cam table can be copied
Return TRUE if no error, FALSE if error

Description: The function downloads a cam table in the drive/motor non-volatile memory (EEPROM) starting with
address LoadAddress. The RunAddress parameter is required to compute the wNextRunAddr. The function
returns the next valid memory addresses for cam tables trough output parameters wNextLoadAddr respectively
wNextRunAddr. If the values returned by the function are 0 then there is no memory available.

The LoadAddress and RunAddress for the first cam table downloaded are computed by EasyMotion Studio and
displayed in the dialogue Memory Settings. To open the dialogue Memory Settings, select the appropriate TML
application and in Application General Information press the button Memory Settings. For the next cam tables,
if available, the LoadAddress and RunAddress are the values returned by the previous call of function
TS_CambDownload (parameters wNextLoadAddr and wNextRunAddr).

The cam table description is read from the file pszCamFile. The file is generated from EasyMotion Studio and
has the extension *.cam.

Steps to follow when using cam tables:

1. Create or import a cam table in EasyMotion Studio. The cam table is saved by EasyMotion Studio as a
*.cam file in the application directory.

2. Download the cam table in the drive/motor non-volatile memory with TS_CamDownload

3. Initialize the cam table with TS_Caminitialization function

4. Program the drive/motor to operate as slave in electronic camming mode with
TS_SetCammingSlaveAbsolute or TS_SetCammingSlaveRelative. Select the cam table used with the
parameter RunAddress.

Related functions: TS_SetCammingSlaveRelative, TS_SetCammingSlaveAbsolute, TS_Camlnitialization
Associated examples: ExQ7_Multiaxes

© Technosoft 2021 78 TML_Lib — User Manual

3.5.6.24. TS_Camlnitialization

Prototype:

BOOL TML_EXPORT TS_Camlnitialization(WORD LoadAddress, WORD RunAddress);

Arguments:
Name I/O Description
LoadAddress Non-volatile memory (EEPROM) address where the cam table is downloaded
Input
RunAddress RAM address where the cam table is copied at run time
Return Output | TRUE if no error, FALSE if error

Description: The function copies a cam table from drive/motor non-volatile memory in the RAM memory at address
RunAddress. The cam table was previously downloaded with function TS_CamDownload at non-volatile memory
address LoadAddress.

The function must be called for each cam table used by the application.

Related functions: TS_SetCammingSlaveRelative, TS_SetCammingSlaveAbsolute, TS_CamDownload
Associated examples: Ex07_MultiAxes

© Technosoft 2021 79 TML_Lib — User Manual

3.5.6.25. TS_SetMasterResolution

Prototype:
BOOL TML_EXPORT TS_SetMasterResolution(LONG MasterResolution);

Arguments:

Name I/0 Description

MasterResolution | Input Number of encoder counts per one revolution of the master position sensor.

Return Output | TRUE if no error, FALSE if error

Description: The function sets the TML parameter MASTERRES with the value MasterResolution.

The master resolution is needed by the electronic gearing or camming slaves to compute correctly the master
position and speed (i.e. the position increment). If master position is not cyclic (i.e. the resolution is equal with the
whole 32-bit range of position), set master resolution to 0x80000001.

Remark: Call function TS_SetMasterResolution before activating the electronic gearing or camming slave mode
with function TS_SetGearingSlave respectively TS _SetCammingSlaveAbsolute/Relative.

Related functions: TS_SetGearingSlave, TS_SetCammingSlaveAbsolute, TS_SetCammingSlaveRelative
Associated examples: ExQ07_MultiAxes

© Technosoft 2021 80 TML_Lib — User Manual

3.5.6.26. TS_SendSynchronization

Prototype:

BOOL TML_EXPORT TS_SendSynchronization(LONG Period);

Arguments:

Name le] Description

Period | Input Time period between two synchronization messages. It is expressed in TML time units

Return | Output | TRUE if no error, FALSE if error

Description: The function enables/disables the synchronization procedure between axes. The synchronization
process is activated when the parameter Period has a non-zero value. The active axis is set as the synchronization
master and the other axes become synchronization slaves. To disable the synchronization procedure set the Period
to zero.

The synchronization process is performed in two steps. First, the master sends a synchronization message to all
axes, including to itself. When this message is received, all the axes read their own internal time. Next, the master
sends its internal time to all the slaves, which compare it with their own internal time. If there are differences, the
slaves correct slightly their sampling periods in order to keep them synchronized with those of the master. As effect,
when synchronization procedure is active, the execution of the control loops on the slaves is synchronized with
those of the master within a 10ps time interval. Due to this powerful feature, drifts between master and slave axes
are eliminated. The Period represents the time interval in internal units between the synchronization messages
sent by the master. Recommended value is 20ms.

Related functions: TS_SetGearingMaster, TS_SetGearingSlave TS_SetCammingMaster, TS_SetCammingSlave
Associated examples: —

© Technosoft 2021 81 TML_Lib — User Manual

3.5.7. Motor commands

3.5.7.1. TS_Power

Prototype:

BOOL TML_EXPORT TS_Power(BOOL Enable);

Arguments:

Name I/O | Description

Enable | Input Enables/disables the power stage of the active axis

Return | Output | TRUE if no error, FALSE if error

Description: The function enables/disables the power stage of the active axis. If Enable = TRUE, the power stage
is enabled (executes the TML command AxisON). The power stage is disabled (executes the TML command
AXisOFF) when Enable = FALSE.

Related functions: TS _ResetFault, TS_Reset
Associated examples: All

© Technosoft 2021 82 TML_Lib — User Manual

3.5.7.2. TS_Updatelmmediate

Prototype:
BOOL TML_EXPORT TS_Updatelmmediate(void);

Arguments:

Name le] Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function updates the motion mode immediately. It allows you to start a motion previously
programmed. This can be useful for example if you already defined a motion and you want to start it in a specific
context (after testing a condition, event, input port, etc.). The command can also be useful to repeat the last motion
that was already defined and eventually executed (as for example a relative move).

Related functions: TS_UpdateOnEvent
Associated examples: Ex08 PVT

© Technosoft 2021 83 TML_Lib — User Manual

3.5.7.3. TS_UpdateOnEvent

Prototype:
BOOL TML_EXPORT TS_UpdateOnEvent(void);

Arguments:

Name I/O | Description

- Input -

Return | Output TRUE if no error, FALSE if error

Description: The function updates the motion mode on next event occurrence. It allows you to start a motion that
was previously programmed at the occurrence of the active event. This can be useful for example if you already
defined a motion and you want to start it when an event occurs. The command can also be used to repeat the last
motion that was already defined and eventually executed (as for example a relative move), when the event will

occur.

Related functions: TS_Updatelmmediate
Associated examples: -

© Technosoft 2021 84 TML_Lib — User Manual

3.5.7.4.

TS_Stop

Prototype:

BOOL TML_EXPORT TS_Stop(void);

Arguments:

Name

le] Description

Input -

Return

Output | TRUE if no error, FALSE if error

Description: The functions stops the motor with the deceleration rate setin CACC TML parameter. The drive/motor
decelerates following a trapezoidal speed profile. If the function is called during the execution of an S-curve profile,
the deceleration profile may be chosen between a trapezoidal or an S-curve profile. You can detect when the motor
has stopped by setting a motion complete event with function TS_SetEventOnMotionComplete and waiting until
the event occurs (WaitEvent = TRUE). When the drive performs torque control the drive is set in torque external
mode with current reference = 0.

Remarks:

In order to restart after a TS_Stop call you need to set the motion mode again. This operation disables the
stop mode and allows the motor to move

When TS_Stop is executed the drive/motor will stop the execution of the TML program (if present), to avoid
overwriting the stop command from the TML program

During abrupt stops an important energy may be generated. If the power supply can’t absorb the energy
generated by the motor, it is necessary to foresee an adequate surge capacitor in parallel with the drive
supply to limit the over voltage.

Related functions: TS_QuickStopDecelerationRate
Associated examples: Ex02_DriveStatus, Ex04_BasicMove, Ex05_Homing, Ex06_ExternalReference

© Technosoft 2021 85 TML_Lib — User Manual

3.5.7.5. TS_SetPosition

Prototype:

BOOL TML_EXPORT TS_SetPosition(long PosValue);

Arguments:

Name le] Description

PosValue | Input The value used to set the position, expressed in TML position units

Return Output | TRUE if no error, FALSE if error

Description: The function sets/changes the referential for position measurement by changing simultaneously the
load position (TML variable APOS) and the target position values (TML variable APOS), while keeping the position
error (difference between the TPOS and APOS). Future motion commands will be related to the absolute value, as
updated at this point to PosValue.

Related functions: —
Associated examples: Ex04_BasicMove, Ex05_Homing, Ex07_MultiAxes, Ex09_Logger, Ex11 IOHandling

© Technosoft 2021 86 TML_Lib — User Manual

3.5.7.6. TS_SetTargetPositionToActual

Prototype:
BOOL TML_EXPORT TS_SetTargetPositionToActual(void);

Arguments:

Name I/O | Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function sets the value of the target position (the position reference) to the value of the actual
load position i.e. TPOS = APOS_LD. The command may be used in closed loop systems when the load/motor is
still following a hard stop, to reposition the target position to the actual load position.

Remark: The command is automatically executed by the drive if the next motion mode is set with ReferenceBase
= FROM_MEASURE. In this case the target position and speed are both updated with the actual values of the load
position and respectively load speed: TPOS = APOS_LD and TSPD = ASPD_LD.

Related functions: —
Associated examples: —

© Technosoft 2021 87 TML_Lib — User Manual

3.5.7.7. TS_SetCurrent

Prototype:
BOOL TML_EXPORT TS_SetCurrent(short CrtValue);

Arguments:

Name 1/0 Description

CrtValue | Input Value at which the motor current reference is set expressed in TML current units

Return Output | TRUE if no error, FALSE if error

Description: The function sets the motor run current with CrtValue. The run current is used by the drive to control
the step motor in open loop.

Remark: The command is valid only for configurations with step motor operating in open loop.

Related functions: —
Associated examples: —

© Technosoft 2021 88 TML_Lib — User Manual

3.5.7.8.

TS_QuickStopDecelerationRate

Prototype:

BOOL TML_EXPORT TS_QuickStopDecelerationRate(DOUBLE Deceleration);

Arguments:

Name

I/O

Description

Deceleration | Input

The value written in TML parameter CDEC

Return

Output

TRUE if no error, FALSE if error

Description: The function sets on the active axis the TML parameter CDEC with the value Deceleration. The
drive/motor uses the deceleration rate when:

The function TS_Stop is executed during a positioning set with TS_MoveSCurveRelative/Absolute and
option DecelerationType = TRAPEZOIDAL_SPEED_PROFILE

Enters in quick stop mode. The drive enters in quick stop mode if an error requiring the immediate stop of
the motion occurs (like triggering a limit switch or following a command error), the drive/motor enters

automatically

Related functions: TS_Stop, TS_MoveSCurveRelative, TS_MoveSCurveAbsolute
Associated examples: Ex05_Homing, Ex11_IOHanding

© Technosoft 2021

89 TML_Lib — User Manual

3.5.8. Events

3.5.8.1. TS CheckEvent

Prototype:

BOOL TML_EXPORT TS_CheckEvent(BOOL &event);

Arguments:
Name | I/O Description
Input
Event Signal if event occurred
Return | Output | TRUE if no error, FALSE if error

Description: The function checks if the actually active event occurred. If an event was defined using one of the
SetEvent... functions with WaitEvent = FALSE, then you can check if the event occurred using the
TS_CheckEvent function.

This is an interesting alternative to the case when WaitEvent parameter was set to TRUE in one of the SetEvent...
functions. In that case, if the event will not occur, due to some unexpected problems, the program will hang-up in
an internal loop of the SetEvent... function, waiting for the event to occur.

Thus, in order to avoid such a problem, set the WaitEvent parameter to FALSE, in the SetEvent... function, and
then call the TS_CheckEvent function from your application. In this way, you can detect if the event does not occur
and eventually exit from the test loop after a given time period.

Related functions: all SetEvent... functions
Associated examples: Ex10_EventHandling

© Technosoft 2021 90 TML_Lib — User Manual

3.5.8.2. TS_SetEventOnMotionComplete

Prototype:

BOOL TML_EXPORT TS_SetEventOnMotionComplete(BOOL WaitEvent, BOOL EnableStop);

Arguments:
Name 1/0 Description
WaitEvent -
Input
EnableStop On motion complete stop the motion
Return Output | TRUE if no error, FALSE if error

Description: The function sets an event when the motion is completed. You can use, for example, this event to
start your next move only after the actual move is finalized.

The motion complete condition is set in the following conditions:
e During position control:

o If UPGRADE.11=1, when the position reference arrives at the position to reach (commanded
position) and the position error remains inside a settle band for a preset stabilize time interval. The
settle band is set with TML parameter POSOKLIM and the stabilize time with TML parameter
TONPOSOK. This is the default condition.

o If UPGRADE.11=0, when the position reference arrives at the position to reach (commanded
position)

e During speed control, when the speed reference arrives at the commanded speed
The motion complete condition is reset when a new motion is started i.e. when the update command — UPD is
executed.
Remark:

1. Use function TS_SetIntVariable to change the settle band and/or the stabilize time.

2. In case of steppers controlled open-loop, the motion complete condition for positioning is always set when
the position reference arrives at the position to reach independently of the UPGRADE.11 statuses.

If the WaitEvent = TRUE, the function will continuously test the status of the drive event, and will wait until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnMotionComplete waiting for the event to
occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if you
do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated exemples : Ex04_BasicMove, Ex05_Homing, Ex07_MultiAxes, Ex09_Logger, Ex11_IOHandling

© Technosoft 2021 91 TML_Lib — User Manual

3.5.8.3. TS_SetEventOnMotorPosition

Prototype:

BOOL TML_EXPORT TS_SetEventOnMotorPosition(SHORT PositionType, LONG Position, BOOL Over,
BOOL WaitEvent, BOOL EnableStop);

Arguments:
Name 1/0 Description
PositionType Specifies the motor position type: absolute or relative
Position The position value that triggers the event expressed in TML position units.
Over Input Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor position. The events can be: when the absolute
(PositionType = ABSOLUTE_POSITION) or relative (PositionType = ABSOLUTE_RELATIVE) motor position is
equal or over/under Position.

The absolute motor position is the measured position of the motor. The relative position is the load displacement
from the beginning of the actual movement. For example, if a position profile was started with the absolute load
position 50 revolutions, when the absolute load position reaches 60 revolutions, the relative motor position is 10
revolutions.

The condition monitored for the event is set with parameter Over. For Over = TRUE the event is set when the motor
position is equal or over the Position. When Over = FALSE the event is set if the motor position becomes equal
or under Position.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the event occurs. There
is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such a case, the
program hangs-up in an internal loop of the TS_SetEventOnMotorPosition waiting for the event to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if you
do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: Ex10_EventHandling

© Technosoft 2021 92 TML_Lib — User Manual

3.5.8.4. TS_SetEventOnLoadPosition

Prototype:

BOOL TML_EXPORT TS_SetEventOnLoadPosition(LONG Position, BOOL Over, BOOL WaitEvent, SHORT
EnableStop);

Arguments:
Name 1/0 Description
PositionType Specifies the load position type: absolute or relative
Position The position value that triggers the event expressed in TML position units.
Over Input Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of load position. The events can be: when the absolute
(PositionType = ABSOLUTE_POSITION) or relative (PositionType = ABSOLUTE_RELATIVE) load position is
equal or over/under Position.

The absolute load position is the measured position of the load. The relative position is the load displacement from
the beginning of the actual movement.

The condition monitored for the event is set with parameter Over. For Over = TRUE the event is set when the load
position is equal or over the Position. When Over = FALSE the event is set if the load position becomes equal or
under Position.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the event occurs. There
is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such a case, the
program hangs-up in an internal loop of the TS_SetEventOnLoadPosition waiting for the event to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if you
do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 93 TML_Lib — User Manual

3.5.8.5. TS_SetEventOnMotorSpeed

Prototype:

BOOL TML_EXPORT TS_SetEventOnMotorSpeed(DOUBLE Speed, BOOL Over, BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name 1/0 Description
Speed The speed value that triggers the event expressed in TML speed units.
Over Specifies the condition tested
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor speed. The events can be: when the motor speed
is over (Over = TRUE) or under (Over = FALSE) the Speed parameter.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the event occurs. There
is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such a case, the
program hangs-up in an internal loop of the TS_SetEventOnMotionComplete waiting for the event to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if you
do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: Ex04_BasicMove, Ex10_EventHandling

© Technosoft 2021 94 TML_Lib — User Manual

3.5.8.6. TS_SetEventOnLoadSpeed

Prototype:

BOOL TML_EXPORT TS_SetEventOnLoadSpeed(DOUBLE Speed, BOOL Over, BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name 1/0 Description
Speed The speed value that triggers the event expressed in TML speed units.
Over Specifies the condition tested
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of load speed. The events can be: when the load speed is
over (Over = TRUE) or under (Over = FALSE) the Speed parameter.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the event occurs. There
is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such a case, the
program hangs-up in an internal loop of the TS_SetEventOnLoadSpeed waiting for the event to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if you
do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 95 TML_Lib — User Manual

3.5.8.7. TS_SetEventOnTime

Prototype:

BOOL TML_EXPORT TS_SetEventOnTime(WORD Time, BOOL WaitEvent, BOOL EnableStop);

Arguments:
Name 1/0 Description
Time Time delay expressed in TML time units

WaitEvent Input Specifies if the function waits the event occurrence

EnableStop On event stop the motion

Return Output | TRUE if no error, FALSE if error

Description: The function programs an event after a time period equal to the value of the Time parameter.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnTime function, waiting for the event to
occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Remark: The timers start ONLY after the execution of the ENDINIT (end of initialization) command. Therefore, you
should not set wait events before calling the TS_Drivelnitialisation function.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: Ex04_BasicMove, Ex06_ExternalReference

© Technosoft 2021 96 TML_Lib — User Manual

3.5.8.8. TS_SetEventOnPositionRef

Prototype:

BOOL TML_EXPORT TS_SetEventOnPositionRef(LONG Position, BOOL Over, BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name 1/0 Description
Position The position reference value that triggers the event expressed in TML position units.
Over Specifies the condition tested
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of position reference. Setting this event, you can detect
when the position reference is over (Over = TRUE) or under (Over = FALSE) the value of parameter Position.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnPositionRef function, waiting for the event
to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: Ex07_MultiAxes

© Technosoft 2021 97 TML_Lib — User Manual

3.5.8.9. TS_SetEventOnSpeedRef

Prototype:

BOOL TML_EXPORT TS_SetEventOnSpeedRef(DOUBLE Speed, BOOL Over, BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name 1/0 Description
Speed The speed reference value that triggers the event expressed in TML speed units.
Over Specifies the condition tested
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of speed reference. Setting this event, you can detect when
the speed reference is over (Over = TRUE) or under (Over = FALSE) the value of parameter Speed.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnSpeedRef function, waiting for the event
to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 98 TML_Lib — User Manual

3.5.8.10. TS_SetEventOnTorqueRef

Prototype:

BOOL TML_EXPORT TS_SetEventOnTorqueRef(DOUBLE Torque, BOOL Over, BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name 1/0 Description
Torque The torque reference value that triggers the event expressed in TML current units.
Over Specifies the condition tested
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of torque reference. Setting this event, you can detect when
the torque reference is over (Over = TRUE) or under (Over = FALSE) the value of parameter Torque.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnTorqueRef function, waiting for the event
to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 99 TML_Lib — User Manual

3.5.8.11. TS_SetEventOnEncoderindex

Prototype:

BOOL TML_EXPORT TS_SetEventOnEncoderindex(SHORT IndexType, SHORT TransitionType, BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name I/0 Description
IndexType Specifies the index monitored for transition
TransitionType Specifies the input transition monitored
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor encoder index inputs. You can monitor the
first encoder index (IndexType = Index_1) or the second encoder index (IndexType = Index_2). The event is
trigger by encoder index transition low to high when TransitionType = TRANSITION_LOW_TO_HIGH or by the
transition high to low when TransitionType = TRANSITION_ HIGH_TO_LOW.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnEncoderindex function, waiting for the
event to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 100 TML_Lib — User Manual

3.5.8.12. TS_SetEventOnLimitSwitch

Prototype:

BOOL TML_EXPORT TS_SetEventOnLimitSwitch(SHORT LSWType,
WaitEvent, BOOL EnableStop);

SHORT TransitionType, BOOL

Arguments:
Name I/0 Description
LSWType Specifies the limit switch monitored for transition
TransitionType Specifies the input transition monitored
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor limit switch inputs. The event is set:

¢ when a transition occurs on limit switch negative if parameter LSWType = LSW_NEGATIVE
¢ when a transition occurs on limit switch negative if parameter LSWType = LSW_POSITIVE

You can monitor the limit switch transition low to high when TransitionType = TRANSITION_LOW_TO_HIGH or
the transition high to low when TransitionType = TRANSITION_ HIGH_TO_LOW.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnLimitSwitch function, waiting for the event

to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent and all other SetEvent... functions
Associated examples: Ex05_Homing

© Technosoft 2021

101

TML_Lib — User Manual

3.5.8.13. TS_SetEventOnDigitallnput

Prototype:

BOOL TML_EXPORT TS_SetEventOnDigitalinput(BYTE InputPort, SHORT IOState BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name I/0 Description
InputPort Specifies the digital input monitored
IOState The input state that trigger the event
Input
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital inputs. The event is
set when a transition occurs on digital input InputPort.

You can monitor when the digital input goes high (IOState = 10_HIGH) or the digital input goes low (IOState =
IO_LOW).

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnDigitallnput function, waiting for the event
to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 102 TML_Lib — User Manual

3.5.8.14. TS_SetEventOnHomelnput

Prototype:

BOOL TML_EXPORT TS_SetEventOnHomelnput(SHORT IOState BOOL WaitEvent, BOOL EnableStop);

Arguments:
Name 1/0 Description
IOState Input port state (High/low)

WaitEvent Input Specifies if the function waits the event occurrence

EnableStop Stop the motion when at event occurrence

Return Output | TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital input assigned as
home input. The home input is specific for each product and based on the setup data. The event is set when a
transition occurs on home input.

You can monitor when the home input goes high (IOState = IO0_HIGH) or the home input goes low (IOState =
IO_LOW).

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits until the event
occurs. There is a drawback of this situation, if the event will not occur, due to some unexpected problems. In such
a case, the program hangs-up in an internal loop of the TS_SetEventOnHomelnput function, waiting for the event
to occur.

If the parameter WaitEvent = FALSE, you can check if the event occurred using the TS_CheckEvent function. In
this way, you can detect if the event does not occur and eventually exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set EnableStop = FALSE if
you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent and all other SetEvent... functions
Associated examples: -

© Technosoft 2021 103 TML_Lib — User Manual

3.5.9. TML jumps and function calls

3.59.1. TS _GOTO

Prototype:

BOOL TML_EXPORT TS_GOTO(WORD address);

Arguments:
Name I/O | Description
address | Input The memory address where the jump is made
Return Output | TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from the address until
TML instruction END is encountered. The TML code can be stored in the drive/motor non-volatile memory
(EEPROM) or in the TML program memory.

Prior calling the TS_GOTO function you have to:

a. Create a TML sequence using EasyMotion Studio.

b. Build the TML program with the Application | Motion | Build menu command

c. Download the TML program in the drive/motor memory with EasyMotion Studio with the Application |
Motion | Download Program. The TML program can be downloaded with the TS_DownloadProgram
function too using the out file generated by EasyMotion Studio when the TML program is built.

d. Make sure that a valid instruction is found at address. Otherwise, unpredictable effects can occur, which
can affect to correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio
help.

2. During the execution of a local TML program on the drive, any TML command sent on-line from the PC is
treated with higher priority, and will be executed before executing the local TML code.

Related functions: TS_DownloadProgram, TS_GOTO_Label, TS_CALL, TS _CALL_Label
Associated examples: Ex08 PVT, Ex12_ DistributedTasks

© Technosoft 2021

104 TML_Lib — User Manual

3.5.9.2. TS_GOTO_Label

Prototype:
BOOL TML_EXPORT TS_GOTO_Label(LPCSTR pszLabel);

Arguments:

Name 1/0 Description

pszLabel | Input TML program label where the jump is made

Return Output | TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from label pszLabel until
TML instruction END is encountered. The TML code can be stored in the drive/motor non-volatilie memory
(EEPROM) or in the TML program memory.

The string pszLabel must be a valid TML label, defined in EasyMotion Studio prior generating the setup information.
Prior calling the TS_GOTO_Label function you have to:

a. Create a TML motion sequence using EasyMotion Studio. The commands sequence must start with
pszLabel label declaration.

b. Build the TML program with the Application | Motion | Build menu command

c. Download the TML program in the drive/motor memory with EasyMotion Studio with the Application |
Motion | Download Program. The TML program can be downloaded with the TS_DownloadProgram
function too using the out file generated by EasyMotion Studio when the TML program is built.

d. Generate the setup data (*.t.zip) for TML_lib using the menu command Application | Export to TML_lib...
to include the new pszLabel label

Remarks:

1. For more details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio
help.

2. During the execution of a local TML program on the drive, any TML command sent on-line from the PC is
treated with higher priority, and will be executed before executing the local TML code.

Related functions: TS_DownloadProgram, TS _GOTO, TS _CALL, TS CALL Label, TS CancelableCALL,
TS_CancelableCALL_Label

Associated examples: -

© Technosoft 2021 105 TML_Lib — User Manual

3.5.9.3.

TS_CALL

Prototype:

BOOL TML_EXPORT TS_CALL (WORD address);

Arguments:

Name

I/O | Description

address | Input | The memory address where the jump is made

Return

Output | TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at address. The TML
functions can be stored in the drive/motor non-volatile memory or in the TML program memory. The function
execution ends when the TML instruction RET is encountered.

Prior calling the TS_CALL function you have to:

a. Create at least one TML function using EasyMotion Studio

b. Select, in the Memory Setting dialogue, from where you want to run the TML program: TML program or
non-volatile memory.

c. Build the TML program with the Application | Motion | Build menu command

d. Download the TML program in the drive/motor memory with EasyMotion Studio with the Application |
Motion | Download Program. The TML program can be downloaded with the TS_DownloadProgram
function too using the out file generated by EasyMotion Studio when the TML program is built.

e. Usethe Command Interpreter to retrieve the address of the TML functions by typing “?Function_name”,
where the Function_name is the function names. Repeat the above procedure for all the functions defined
in EasyMotion Studio application.

f. Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable effects can occur,
which can affect to correct operation of the drive/motor.

Remarks:

1. For more details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio
help.

2. During the execution of a local TML program on the drive, any TML command sent on-line from the PC is
treated with higher priority, and will be executed before executing the local TML code.

Related functions: TS_DownloadProgram, TS_CALL_Label, TS_CancelableCALL,

TS_CancelableCALL_Label, TS_GOTO, TS_GOTO_Label

Associated examples: -

© Technosoft 2021 106 TML_Lib — User Manual

3.5.9.4. TS_CALL_Label

Prototype:
BOOL TML_EXPORT TS_CALL_Label (LPCSTR pszFunctionName);

Arguments:

Name I/0 Description

pszFunctionName | Input Name of the TML function

Return Output | TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function pszFunctionName. The TML
functions can be stored in the drive/motor non-volatile memory or in the TML program memory. The function
execution ends when the TML instruction RET is encountered.

The string pszFunctionName must be a valid TML function name, defined in EasyMotion Studio prior generating
the setup information.

Prior calling the TS_CALL_Label function you have to:

a. Create a TML function having the pszFunctionName name using EasyMotion Studio

b. Build the TML program with the Application | Motion | Build menu command

c. Download the TML program in the drive/motor memory with EasyMotion Studio with the Application |
Motion | Download Program. The TML program can be downloaded with the TS_DownloadProgram
function too using the out file generated by EasyMotion Studio when the TML program is built.

d. Generate the setup data (*.t.zip) for TML_lib using the menu command Application | Export to TML_lib...
to include the new pszFunctionName

Remark:
1. For more details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio
help.

2. During the execution of a local TML program on the drive, any TML command sent on-line from the PC is
treated with higher priority, and will be executed before executing the local TML code.

Related functions: TS_DownloadProgram, TS_CALL, TS_GOTO, TS_GOTO_Label, TS_CancelableCALL,
TS_CancelableCALL_Label

Associated examples: -

© Technosoft 2021 107 TML_Lib — User Manual

3.5.9.5.

TS_CancelableCALL

Prototype:

BOOL TML_EXPORT TS_CancelableCALL(WORD address);

Arguments:

Name

I/O | Description

address | Input | The TML program memory address from where the TML function is stored

Return

Output | TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at address. Use this
command if the exit from the called TML function depends on conditions that may not be reached. In this case,
using function TS_Abort you can terminate the function execution and return to the next instruction after the call.
The TML functions can be stored in the drive/motor non-volatile memory or in the TML program memory. The
execution of a function called with TS_CancelableCALL is signaled with bit SRL.8, when the function execution
ends the bit is reset.

Prior calling the TS_CancelableCALL function you have to:

a. Create at least one TML function using EasyMotion Studio

b. Build the TML program with the Application | Motion | Build menu command

c. Download the TML program in the drive/motor memory with EasyMotion Studio with the Application |
Motion | Download Program. The TML program can be downloaded with the TS_DownloadProgram
function too using the out file generated by EasyMotion Studio when the TML program is built.

d. Inthe Command Interpreter type the command “?Function_name” to retrieve the memory address where
the Function_name is stored. Repeat the procedure above for all the functions defined in EasyMotion
Studio.

e. Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable effects can occur,
which can affect to correct operation of the drive/motor.

Remarks:

1. Only one function at a time can be called with the TS_CancelableCALL_Label or TS_CancelableCALL
functions. A cancelable call issued during the execution of a function called with
TS _CancelableCALL_Label or TS_CancelableCALL is ignored. This situation is signaled with SRL.7 bit.

2. For more details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio
help.

3. During the execution of a local TML program on the drive, any TML command sent on-line from the PC is

treated with higher priority, and will be executed before executing the local TML code.

Related functions: TS_DownloadProgram, TS_CALL, TS_CALL_Label, TS_CancelableCALL_Label
Associated examples: -

© Technosoft 2021 108 TML_Lib — User Manual

3.5.9.6.

TS_CancelableCALL_Label

Prototype:

BOOL TML_EXPORT TS_CancelableCALL_Label (LPCSTR pszFunctionName);

Arguments:

Name

I/0 Description

pszFunctionName | Input Name of the TML function

Return

Output | TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at pszFunctionName.
Use this command if the exit from the called TML function depends on conditions that may not be reached. In this
case, using function TS_Abort you can terminate the TML function execution and return to the next instruction after

the call.
function

The execution of a function called with TS_CancelableCALL_Label is signaled with bit SRL.8, when the
execution ends the bit is reset.

Prior calling the TS_CancelableCALL_Label function you have to:

a. Create a TML function having the name pszFunctionName using EasyMotion Studio

b. Build the TML program with the Application | Motion | Build menu command

c. Download the TML program in the drive/motor memory with EasyMotion Studio with the Application |
Motion | Download Program. The TML program can be downloaded with the TS_DownloadProgram
function too using the out file generated by EasyMotion Studio when the TML program is built.

d. Generate the setup data (*.t.zip) for TML_lib using the menu command Application | Export to TML_lib...
to include the new pszFunctionName

Remarks:

1. Only one function at a time can be called with the TS_CancelableCALL_Label or TS_CancelableCALL
functions. A cancelable call issued during the execution of a function called with
TS_CancelableCALL_Label or TS_CancelableCALL is ignored. This situation is signaled with SRL.7 bit.

2. For more details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio
help.

3. During the execution of a local TML program on the drive, any TML command sent on-line from the PC is

treated with higher priority, and will be executed before executing the local TML code.

Related functions: TS_DownloadProgram, TS_CALL, TS_CALL_Label, TS_CancelableCALL
Associated examples: Ex05_Homing, Ex12_DistributedTasks

© Technosoft 2021 109 TML_Lib — User Manual

3.5.9.7. TS_Homing

Prototype:

BOOL TML_EXPORT TS_Homing(BYTE homingNumber);

Arguments:

Name I/O Description

homingNumber | Input The number of homing routine to be executed.

Return Output | TRUE if no error, FALSE if error

Description: The function triggers the execution of a homing routine embedded in the firmware of the drive/motor.
The execution of the homing routine can be aborted with the TS_Abort function.

The parameters of the homing routine (acceleration, velocity and home position) must be set previously with the
TS_SetFixedVariable respectively TS_SetLongVariable functions. The execution of the homing routine is signaled
with bit SRL.8, when the homing is completed the bit is reset.

Remark

The TS Homing routine can be called while no TML function is triggered with the
TS_CancelableCALL_Label or TS_CancelableCALL functions. A homing routine triggered during the
execution of a function called with TS_CancelableCALL_Label or TS_CancelableCALL is ignored. This
situation is signaled with SRL.7 bit.

Related functions: TS_CancelableCALL, TS _CancelableCALL_Label, TS_Abort
Associated examples: Ex05_Homing

© Technosoft 2021 110 TML_Lib — User Manual

3.5.9.8. TS_ABORT

Prototype:

BOOL TML_EXPORT TS_ABORT(void);

Arguments:

Name I/O | Description

- Input -

Return | Output | TRUE if no error, FALSE if error

Description: The function aborts the execution of a TML function started with TS_CancelableCALL or
TS_CancelableCALL_Label functions.

Related functions: TS _DownloadProgram, TS_CancelableCALL, TS_CancelableCALL_Label
Associated examples: Ex05_Homing, Ex12_DistributedTasks

© Technosoft 2021 111 TML_Lib — User Manual

3.5.9.9. TS_DownloadProgram

Prototype:

BOOL TML_EXPORT TS_DownloadProgram(LPCSTR pszOutFile, WORD& wEntryPoint);

Arguments:
Name I/0 Description
pszOutFile The name of the COFF (*.out) file generated with EasyMotion Studio
Input
wEntryPoint Start address of downloaded file
Return Output | TRUE if no error, FALSE if error

Description: The function downloads a COFF formatted file to the drive/motor, and returns the entry point of the
file. Parameter pszOutFile specifies the name of the file to be downloaded. If the operation is successful, the
function will return the entry point (start address) of the downloaded code in the wEntryPoint parameter. The
downloaded code can be launched with TS_GOTO function, the argument of the TS_GOTO being the wEntryPoint

address.

The COFF file (*.out) is generated from EasyMotion Studio with the Application | Motion | Build menu command
and is saved in the application directory. You can download several such applications in different locations of the
drive internal memory, and execute them according to your application status, with the TS_GOTO function.

Related functions: TS_GOTO
Associated examples: Ex12_DistributedTasks

© Technosoft 2021

112 TML_Lib — User Manual

3.5.9.10. TS_DownloadSwFile

Prototype:
BOOL TML_EXPORT TS_DownloadSwFile(LPCSTR pszSwFile);

Arguments:

Name 1/0 Description

pszSwFile | Input The path to the SW file generated with EasyMotion Studio

Return Output | TRUE if no error, FALSE if error

Description: The function downloads a software file (*. sw) to the non-volatile memory of drive/motor.

The software file (*. sw) contains the TML program and/or setup table and it is generated from EasyMotion Studio
with the Application | Create EEPROM Programmer File menu command. You can download several TML
programs in different locations of the drive internal memory, and execute them according to your application
structure, with the TS_GOTO or TS_CALL functions.

Remark: If a setup table is downloaded through a software file, it will become active once the drive is reset with
TS_Reset or the power supply is cycled.

Related functions: TS_GOTO, TS_CALL
Associated examples: —

© Technosoft 2021 113 TML_Lib — User Manual

3.5.10.

IO handling

3.5.10.1. TS_Setuplnput

Prototype:

BOOL TML_EXPORT TS_SetupInput(BYTE nlO);

Arguments:
Name le] Description
nlO Input Port number to be set as input
Return | Output | TRUE if no error, FALSE if error

Description: The function sets the 1/0 port with number nlO of the drive/motor as an input port.

Use the function only if the input may also be used as an output. Check the drive/motor user manual to find
what inputs are available. The input setup must be done only once before the first use of the input. If inputs of the
drive/motor are separated from the outputs (i.e. none of the input line can be used as output) then there is no need

to use the function.

Remark: Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of the

maximum number of I/Os is used.

Related functions: TS_Getlnput, TS_SetupOutput, TS_SetOutput

Associated examples: Ex06_ExternalReference, Ex11 IOHandling, Ex12_DistributedTasks

© Technosoft 2021

114

TML_Lib — User Manual

3.5.10.2. TS_GetInput

Prototype:

BOOL TML_EXPORT TS_Getlnput(BYTE nlO, BYTE& InValue);

Arguments:
Name I/O | Description
nloO Input port number read
Input
InValue Pointer to the variable where the port status is stored
Return | Output | TRUE if no error, FALSE if error

Description: The function returns the status of digital input port nlO. When the function is executed, the variable
InValue, where the input line status is saved, becomes:

e Zero if the input line was low
¢ Non-zero if the input line was high

If the IO port selected can be used as input or an output, then prior calling TS _Getinput you need to call
TS_Setuplnput and configure 10 port as input. Check the drive/motor user manual to find what inputs are
available.

Remark: Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of the
maximum number of I/Os is used.

Related functions: TS_Setuplnput, TS_SetupOutput, TS SetOutput
Associated examples: Ex06_ExternalReference, Ex11_|IOHandling, Ex12_DistributedTasks

© Technosoft 2021 115 TML_Lib — User Manual

3.5.10.3. TS_SetupOutput

Prototype:

BOOL TML_EXPORT TS_SetupOutput(BYTE nlO);

Arguments:

Name I/O | Description

nloO Input Port number to be set as output

Return | Output | TRUE if no error, FALSE if error

Description: The function configures the digital I/0 port with number nlO of the drive/motor as an output port.

Use the function only if the output selected may also be used as an input. Check the drive/motor user manual to
find what outputs are available. Do this operation only once, first time when you use the output. If the drive/motor
has the outputs separated from the inputs (i.e. none of the output line can be used as an input) you don’t have to
use the function.

Remark: Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of the
maximum number of I/Os is used.

Related functions: TS_Getlnput, TS_SetupOutput, TS_SetOutput
Associated examples: -

© Technosoft 2021 116 TML_Lib — User Manual

3.5.10.4. TS_SetOutput

Prototype:

BOOL TML_EXPORT TS_SetOutput(BYTE nlO, BYTE OutValue);

Arguments:
Name le] Description
nloO Output port number to be written
Input
OutValue Output status value to be set
Return Output | TRUE if no error, FALSE if error

Description: The function set/resets the status of digital output port nlO of the drive/motor.
The port status I0_LOW or IO_HIGH is set corresponding to the value of the OutValue parameter.

If the 10 port selected may also be used as input or an output, then prior calling TS_SetOutput you need to call
TS_SetupOutput and configure 10 port as output.

Remark: Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of the
maximum number of I/Os is used.

Related functions: TS_SetupOutput, TS_Setuplnput, TS_Getlnput
Associated examples: Ex11_IOHandling

© Technosoft 2021 117 TML_Lib — User Manual

3.5.10.5. TS_GetHomelnput

Prototype:
BOOL TML_EXPORT TS_GetHomelnput(BYTE& InValue);

Arguments:

Name 1/0 Description

InValue | Input Pointer to the variable where the port status is stored

Return | Output | TRUE if no error, FALSE if error

Description: The function returns the status of the general purpose digital input assigned as home input. Check
the drive/motor user manual to find the 10 configuration.

When the function is executed, the variable InValue where the input line status is saved becomes:

e Zero if the input line was low
e Non-zero if the input line was high

If the input port may also be used as output, then prior calling TS_GetHomelnput you need to call TS_Setuplinput
and configure it as input.

Related functions: TS_Setuplnput, TS_Getlnput
Associated examples: Ex07_MultipleAxes

© Technosoft 2021 118 TML_Lib — User Manual

3.5.10.6. TS_GetMultiplelnputs

Prototype:

BOOL TML_EXPORT TS_GetMultiplelnputs(PCSTR pszVarName, SHORT& Status);

Arguments:
Name 1/0 Description
pszVarName TML variable where the inputs status is saved
Input
Status Pointer to variable where the value of pszVarName is stored
Return Output | TRUE if no error, FALSE if error

Description: The function reads simultaneously the status of more inputs and save their status in TML variable
pszVarName on the drive/motor. The value of pszVarName is then uploaded from the drive and stored in Status
variable.

The digital inputs are numbered from 0 to 15. The input’s number represents also the position of the corresponding
bit from the pszVarName, i.e. input number x has associated bit x from the pszVarName.

The Status bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is high. The
other bits of the variable are set to O.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the variable is inverted
too. Hence, these bits always show the inputs status at connectors level (0 if input is low and 1 if input is high) even
when the inputs are inverted.

The variable pszVarName is of type integer and must be defined with EasyMotion Studio before generating the
setup data for TML_lib.

Related functions: TS_Setlnput, TS_Getlnput
Associated examples: Ex11_IOHandling

© Technosoft 2021 119 TML_Lib — User Manual

3.5.10.7. TS_SetMultipleOutputs2

Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs2(SHORT SelectedPorts, SHORT &Status);

Arguments:
Name I/O | Description
SelectedPorts Mask for selecting the outputs controlled. Each bit of the parameter represents an output port.
Input
Status Parameter containing the outputs status to be set
Return Output | TRUE if no error, FALSE if error

Description: The function sets simultaneously the digital outputs selected with the SelectedPorts mask using the
value of the Status parameter.

Remark: The function is designed for iPOS and iMOT families therefore the TS_SetMultipleOutputs function should
be used for previous generation of Technosoft products.

The digital outputs are numbered from 0 to 15 and they form an ordered list, for example, a product with 3 outputs
will have 0, 1 and 2. The input's number represents also the position of the corresponding bit from the
SelectedPorts mask, i.e. input number x has associated bit x from the SelectedPorts.

The outputs are set as follows:

¢ low if the corresponding bit from the SelectedPorts is 1 and the corresponding bit from Status variable is
0.

e high if it's the corresponding bit from SelectedPorts is 1 and the corresponding bit from SelectedPorts is
1.

Remarks: If one of these outputs is inverted inside the drive/motor, its command is inverted. Hence, the outputs
are always set at connectors level according with the bits values (low if bit is 0 and high if bit is 1) even when the
outputs are inverted.

Related functions: TS_SetupOutput, TS_SetOutput
Associated examples: —

© Technosoft 2021 120 TML_Lib — User Manual

3.5.11. Data transfer

3.5.11.1. TS SetIntVariable

Prototype:

BOOL TML_EXPORT TS_SetIntVariable(LPCSTR pszName, SHORT value);

Arguments:
Name le] Description
pszName Parameter name
Input
value Parameter value
Return Output | TRUE if no error, FALSE if error

Description: The function writes the value in the pszName TML data on the active axis. The TML data (parameter,
variable or user defined variable) is of type integer (16-bit).

Remarks:

1. The TML data available is configuration dependent and it is listed in the variables.cfg file from *t.zip

configuration description file.
2. The user defined variables are set with EasyMotion Studio prior generating the configuration description

file (*.t.zip).

Related functions: TS_GetIntVariable, TS SetLongVariable, TS_GetLongVariable, TS_SetFixedVariable,
TS_GetFixedVariable
Associated examples: Ex03_ErrorHandling, Ex06_ExternalReference, Ex12DistributedTasks

© Technosoft 2021 121 TML_Lib — User Manual

3.5.11.2. TS_GetIntVariable

Prototype:

BOOL TML_EXPORT TS_GetIntVariable(LPCSTR pszName, short& value);

Arguments:
Name I/O | Description
pszName Name of the TML parameter, variable or used defined variable
Input
value Pointer to the variable where the value is stored
Return Output | TRUE if no error, FALSE if error

Description: The function reads the value of pszName TML data. The TML data (parameter, variable or user
defined variable) is of type integer (16-bit). The value read is saved in the variable pointed by value.

Remarks:

1.

2.

Related functions:

The TML data available is configuration dependent and it is included in the variables.cfg file from *t.zip
configuration description file.
The user defined variables are set with EasyMotion Studio prior generating the configuration description

file (*.t.zip).

TS_SetIntVariable, TS_SetLongVariable, TS_SetFixedVariable, TS_GetLongVariable,
TS_GetFixedVariable

Associated examples: Ex03_ErrorHandling, Ex06_ExternalReference

© Technosoft 2021

122 TML_Lib — User Manual

3.5.11.3. TS_SetLongVariable

Prototype:

BOOL TML_EXPORT TS_SetLongVariable(LPCSTR pszName, long value);

Arguments:
Name le] Description
pszName Name of the parameter
Input
value The value to be written
Return Output | TRUE if no error, FALSE if error

Description: The function writes the value in the pszName TML data on the active axis. The TML data (parameter,
variable or user defined variable) is of type long (32-bit).

Remarks:

1. The TML data available is configuration dependent and is listed in the variables.cfg file from *t.zip

configuration description file.
2. The user defined variables are set with EasyMotion Studio prior generating the configuration description

file (*.t.zip).

Related functions: TS_GetIntVariable, TS_SetIintVariable, TS _GetLongVariable, TS_SetFixedVariable,
TS_GetFixedVariable

Associated examples: Ex05_Homing

© Technosoft 2021 123 TML_Lib — User Manual

3.5.11.4. TS_GetLongVariable

Prototype:

BOOL TML_EXPORT TS_GetLongVariable(LPCSTR pszName, long& value);

Arguments:
Name I/O | Description
pszName Name of the parameter
Input
value Pointer to the variable where the parameter value is stored
Return Output | TRUE if no error, FALSE if error

Description: The function reads the value of pszName TML data. The TML data (parameter, variable or user
defined variable) is of type long (32-bit). The value read is saved in the variable pointed by value.
Remarks:

1. The TML data available is configuration dependent and is listed in the variables.cfg file from *t.zip

configuration description file.
2. The user defined variables are set with EasyMotion Studio prior generating the configuration description

file (*.t.zip).

Related functions: TS_SetIntVariable, TS_SetLongVariable, TS_SetFixedVariable, TS_GetIntVariable,
TS_GetFixedVariable

Associated examples: Ex04_BasicMove, Ex05_Homing, Ex10_EventHandling

© Technosoft 2021 124 TML_Lib — User Manual

3.5.11.5. TS_SetFixedVariable

Prototype:

BOOL TML_EXPORT TS_SetFixedVariable(LPCSTR pszName, DOUBLE value);

Arguments:
Name I/0 Description
pszName Name of the parameter
Input
value The value to be written
Return Output | TRUE if no error, FALSE if error

Description: The function converts the value to type fixed and writes it in the pszName TML data on the active
axis. The TML data (parameter, variable or user defined variable) is of type fixed (16 bits integer part, 16 bits’
fractional part).

Remarks:

1. The TML data available is configuration dependent and is listed in the variables.cfg file from *t.zip
configuration description file.
2. The user defined variables are set with EasyMotion Studio prior generating the configuration description

file (*.t.zip).

Related functions: TS_SetIntVariable, TS_GetIntVariable, TS_SetLongVariable, TS_GetLongVariable,
TS_GetFixedVariable

Associated examples: Ex04_BasicMove, Ex05_Homing

© Technosoft 2021 125 TML_Lib — User Manual

3.5.11.6. TS_GetFixedVariable

Prototype:

BOOL TML_EXPORT TS_GetFixedVariable(LPCSTR pszName, double& value);

Arguments:
Name I/O | Description
pszName Name of the parameter
Input
value Pointer where the parameter value is stored
Return Output | TRUE if no error, FALSE if error

Description: The function reads the value of pszName TML data from the active axis. The TML data (parameter,
variable or user defined variable) is of type fixed (16 bits integer part, 16 bits fractional part). The value read is
converted to double and saved in the variable pointed by value.

Remarks:

1. The TML data available is configuration dependent and is listed in the variables.cfg file from *t.zip
configuration description file.

2. The user defined variables are set with EasyMotion Studio prior generating the configuration description
file (*.t.zip).

Related functions: TS_SetIntVariable, TS_SetLongVariable, TS_SetFixedVariable, TS_GetIntVariable,
TS_GetlLongVariable

Associated examples: —

© Technosoft 2021 126 TML_Lib — User Manual

3.5.11.7. TS_GetVariableAddress

Prototype:

BOOL TML_EXPORT TS_GetVariableAddress(LPCSTR pszName, WORD& value);

Arguments:
Name I/O | Description
pszName Name of the parameter
Input
value Pointer where the parameter value is stored
Return Output | TRUE if no error, FALSE if error

Description: The function returns the address of the pszName variable. The variable address is read from the
configuration description file (*.t.zip) generated from EasyMotion Studio.

Related functions: TS_SetIntVariable, TS_SetLongVariable, TS_SetFixedVariable, TS_GetIntVariable,
TS_GetLongVariable, TS_GetFixedVariable

Associated examples: —

© Technosoft 2021 127 TML_Lib — User Manual

3.5.11.8. TS_SetBuffer

Prototype:

BOOL TML_EXPORT TS_SetBuffer(WORD address, WORD* arrayValues, WORD nSize);

Arguments:
Name I/0 Description
address Start address where to download the data buffer

arrayValues | Input Pointer to the array with data to be downloaded

nSize The number of words to download

Return Output | TRUE if no error, FALSE if error

Description: The function downloads a data buffer on the active axis. The parameter arrayValues points to the
beginning of the array from where the data will be downloaded. The length of the buffer is set with parameter nSize.
The data is stored on the drive/motor starting with address. The address can belong to non-volatile memory or
TML data memory.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio on
line help.

Related functions: TS_GetBuffer
Associated examples: —

© Technosoft 2021 128 TML_Lib — User Manual

3.5.11.9. TS_GetBuffer

Prototype:

BOOL TML_EXPORT TS_GetBuffer(WORD address, WORD* arrayValues, WORD nSize);

Arguments:
Name I/0 Description
address Start address from where the data will be uploaded

arrayValues | Input Pointer to the array where the uploaded data will be stored

nSize The number of words to upload

Return Output | TRUE if no error, FALSE if error

Description: The function uploads a data buffer from the active axis. The start address of the buffer is set with
parameter address and its length is nSize. The address can belong to drive/motor non-volatile memory or TML
data memory. The parameter arrayValues points to the beginning of the array where the uploaded data is stored.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from EasyMotion Studio on
line help.

Related functions: TS_SetBuffer
Associated examples: -

© Technosoft 2021 129 TML_Lib — User Manual

3.5.12. Miscellaneous

3.5.12.1. TS _Execute

Prototype:
BOOL TML_EXPORT TS_Execute(LPCSTR pszCommands);

Arguments:

Name I/O Description

pszCommands | Input String containing the TML source code to be executed.

Return Output | TRUE if no error, FALSE if error

Description: The function executes the TML commands entered in TML source code format (as is send from the
Command Interpreter, in EasyMotion Studio/EasySetUp), from a string containing that code. Use this function if you
want to send a specific motion sequence, directly written in TML language.

Build a string pszCommands containing the source TML code and then call the TS_Execute function in order to
compile the code and to send on-line the associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions: TS_ExecuteScript
Associated examples: Ex02_DriveStatus, Ex06_ExternalReference, Ex08_PVT

© Technosoft 2021 130 TML_Lib — User Manual

3.5.12.2. TS_ExecuteScript

Prototype:
BOOL TML_EXPORT TS_ExecuteScript(LPCSTR pszFileName);

Arguments:

Name 1/0 Description

pszFileName | Input The name of the file containing the TML source code to be executed.

Return Output | TRUE if no error, FALSE if error

Description: The function executes TML commands entered in TML source code format (as is sent from the
Command Interpreter in EasyMotion Studio/EasySetUp) from a script file. Use this function if you want to send a
specific motion sequence, directly written in TML language.

Define a data file pszFileName containing the source TML code you want to send to the drive and then call the
TS_ExecuteScript function in order to compile the code and to send on-line the associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions: TS _Execute
Associated examples: -

© Technosoft 2021 131 TML_Lib — User Manual

3.5.12.3. TS_GetOutputOfExecute

Prototype:
BOOL TML_EXPORT TS_GetOutputOfExecute(LPSTR pszOutput, int nMaxChars);

Arguments:

Name 1/0 Description

pszOutput | Input String containing the TML source code generated at the last library function call.

Return Output | TRUE if no error, FALSE if error

Description: The function returns the TML output source code of the last previously executed TML_LIB library
function call. Use this function if you want to examine the binary code of the TML commands that are generated
when you call one of the functions of the TML_LIB library.

The binary code is returned in the pszOutput string. Set the maximum number of characters to be returned as the
value of the nMaxChars parameter.

Related functions: TS_Execute
Associated examples: —

© Technosoft 2021 132 TML_Lib — User Manual

3.5.13. Datalogger

3.5.13.1. TS_SetuplLogger

Prototype:

BOOL TML_EXPORT TS _SetupLogger(WORD wLogBufferAddr, WORD wLogBufferLen, WORD*
arrayAddresses, WORD countAddr, WORD period);

Arguments:
Name I/O | Description
wLogBufferAddr The _address of the logger buffer in drive/motor memory, where data will be stored during
logging
wLogBufferLen The length in words of the logger buffer

arrayAddresses | Input Pointer to the array containing the drive/motor memory addresses to be logged

countAddr The number of memory addresses to be logged
period Time interval between two consecutive data logging expressed in drive/motor time units
Return Output | TRUE if no error, FALSE if error

Description: The function sets the parameters of the data logger on the active axis. Use this function if you want
to perform data logging on the drive/motor during the motion execution and analyze it in the PC application.

Set the wLogBufferAddress parameter with the starting address of the drive RAM memory data buffer where a
number of wLogBufferLenlength data points of logged data will be stored.

The addresses of TML data logged are stored in an array of length countAddr. Parameter arrayAddresses points
to the beginning of the array with.

Remark: The number of data sets which can be stored will be determined as the integer part of the ratio [length /
countAddr].

The parameter period sets how often the TML data is logged. The period can have any value between 1 and 7FFF.

Remark: Be careful when using the data logger functions! Incorrect settings related to data logger buffer location
and size may lead to improper operation of the drive, with unpredictable results.

Related functions: TS_StartLogger, TS_UploadLoggerResults, TS CheckLoggerStatus
Associated examples: Ex09_Logger

© Technosoft 2021 133 TML_Lib — User Manual

3.5.13.2. TS_StartLogger

Prototype:

BOOL TML_EXPORT TS_StartLogger(WORD wLogBufferAddr, BYTE type);

Arguments:
Name I/0 Description
wLogBufferAddr l‘ggziigdress of the logger buffer in drive/motor memory, where data will be stored during
Input
type Sets the control loop used to trigger the data log
Return Output | TRUE if no error, FALSE if error

Description: The function starts the data logger on the active axis. The function may be called only after the
initialization of the data logger with the TS__ SetupLogger function.

Use the parameter type to set if the data logging process must be done in the slow control loop (type =
LOGGER_SLOW), or in the fast control loop (type = LOGGER_FAST).

Related functions: TS SetupLogger, TS_UploadLoggerResults, TS CheckLoggerStatus
Associated examples: Ex09_Logger

© Technosoft 2021 134 TML_Lib — User Manual

3.5.13.3. TS_CheckLoggerStatus

Prototype:

BOOL TML_EXPORT TS_CheckLoggerStatus(WORD& status);

Arguments:
Name I/0 Description
wLogBufferAddr l‘ggziigdress of the logger buffer in drive/motor memory, where data will be stored during
Input
status Number of points still remaining to capture; if it is 0, the logging is completed
Return Output | TRUE if no error, FALSE if error

Description: The function checks the data logger status on the active axis. Use this function in order to check if the
data logging process is still running, or if the data logging process was ended. The function returns the status
parameter; whose value indicates how many points are still to be captured. If status = 0 the data logging process

is finished.

The function may be called only after the start of the logging process with the TS_StartLogger function.

Related functions: TS SetupLogger, TS_StartLogger, TS_UploadLoggerResults
Associated examples: Ex09_Logger

© Technosoft 2021

135 TML_Lib — User Manual

3.5.13.4.TS_ UploadLoggerResults

Prototype:

BOOL TML_EXPORT TS_UploadLoggerResults(WORD wLogBufferAddr, WORD* arrayValues, WORD&
countValues);

Arguments:
Name I/0 Description
wLogBufferAddr The .address of the logger buffer in drive/motor memory, where data will be stored during
logging
arrayValues Input Pointer to the array where the uploaded data is stored on the PC
countValues The size of arrayValues, expressed in WORDs
countValues The number of uploaded data
Output
Return TRUE if no error, FALSE if error

Description: The function uploads the data logged from the active axis. Use this function to upload the data stored
during the data logger execution. Before calling the function, you must declare a data buffer in the PC program,
starting at the arrayValues address, with a size equal to the countValues parameter.

The TS_UploadLoggerResults function will fill the arrayValues data buffer with the data transferred from the drive,
and will also return the actual number of transferred data words, in the countValues parameter. Once the data is
transferred, you can use it for data analysis, graphical representation.

Remarks:

1. Prior uploading the data logged, call function TS_CheckLoggerStatus to test the end of data logging.

2. The number of data sets which were stored will be determined as the integer part of the ratio [length /
countAddr] where length and countAddr are setup parameters defined when calling the TS_
SetupLogger function.

The uploaded data is stored in consecutive data sets, i.e. the first set of countAddr words will contain the first
logged point for the selected variables, and the second set of countAddr words will contain the second logged
point for the selected variables, and so on. The following table illustrates this data structure for an example of 2
logged variables.

Data WORD | Meaning

1 Variable 1, point 1
2 Variable 2, point 1
5 Variable 1, point 2
6 Variable 2, point 2
7 Variable 1, point 3

© Technosoft 2021 136 TML_Lib — User Manual

Related functions: TS__ SetupLogger, TS_StartLogger, TS_CheckLoggerStatus
Associated examples: Ex09_Logger

© Technosoft 2021 137 TML_Lib — User Manual

1. Examples

This chapter presents a collection of applications which use the functions of the TML_LIB library to provide you a
first, basic insight about using the TML_LIB library to implement your motion control applications.

Note that most of these examples contain function calls to TML_LIB functions, and are based on the hypothesis
that the setup data is already downloaded into the non-volatile memory of the drive so that you'll directly start
sending motion commands from the PC to the drive.

The examples are built for the iPOS family of drives.
Remarks:

1. Prior running the examples, generate the setup data and modify the examples to accommodate the 10
configuration of your drive/motor. Also, the examples are switching between position control and speed
control, therefore during the Drive Setup phase enable all 3 control loops, current, speed and position, and
tune the controllers.

2. The examples for Microsoft Windows platform, require the Working Directory to be set to the examples
folder of the TML_lib, by default C:\Program Files\Technosof\TML_ LIB\examples\. For details about setting
the Working Directory read the development environment online help.

3. For projects developed under Delphi and C#, the TML_lib.dll and tmlcomm.dll must be present in the Output
Directory of the project.

Most TML_LIB functions return a Boolean TRUE if the function executed correctly, and a FALSE if any error
occurred (incorrect parameters, failed operation at the PC level). Normally, you must check after each function call
if there was an error or not. In case of error use function TS_GetLastTextError to obtain a description of the error
occurred.

4.1. Start Up

The example details the steps required to build the host application based on TML_lib. Before starting to build the
host application you must setup the drive/motor accordingly with your application. The drive/motor setup is done
using EasySetUp/EasyMotion Studio. When the setup is finished the host application must include the basic
functionality:

4. Open communication channel using the TS_OpenChannel. The TML_lib library supports RS232, CAN and
Ethernet communication.

5. Load the setup data for each axis controlled from the host with TS_LoadSetup function. The setup data
must be generated from EasySetUp/EasyMotion Studio. The setup information is included in a *.t.zip file
and is used by the library to validate your commands; it doesn’t contain the setup data downloaded in the
drive non-volatile memory.

6. Associate each axis with the setup information using the TS_SetupAxis. An axis is defined by its Axis ID
and the setup information. The Axis ID is assigned to a drive/motor in the Drive setup dialog.

7. Select the destination of the commands sent from the host. For single axis applications the selection of the
destination must be done once, after the axis setup. In multi-axis applications the TS_SelectAxis must be
called every time the messages’ destination is changed.

8. Call TS_Drivelnitialization function to check the integrity of the setup data downloaded in the non-volatile
memory of the drive. The setup data validation is performed automatically by the drive when it is powered.
The TS_Drivelnitialization function also signals the end of the drive initialization.

9. Enable the power stage of the drive with TS_Power function.

10. Send the motion commands required by your application using the functions included in the TML_lib.

© Technosoft 2021 138 TML_Lib — User Manual

11. When the application is finished, disable the power stage of the drive by calling the TS_Power function.

Close the communication channels using the TS CloseChannel function. To close the current
communication channel pass -1 to the TS_CloseChannel.

4.2, Drive status

The drive’s/motor’s key information is grouped in 2 status registers: Status Register (32-bit) and Motion Error
Register (16-bit). The host can monitor the status of the drive/motor by:

e Requesting periodically the values of the status registers (SRL, SRH and MER) using the TS_ReadStatus
function.

e Enable the drive to send automatically its status. The message transmission is triggered by conditions
which change the status registers or the error register. The host selects the bits from the registers that will
trigger a message, via 3 masks one for each register: SRL_MASK, SRH_MASK and MER_MASK.

The host analyze the message content in the user callback function, called automatically by the TML_lib when the
host receives a message from the host.

4.3. Error handling

When an error occurs, the drive enters in the fault status. In the fault status the power stage is disabled, the MER
register signals the errors occurred and bit 15 from the SRH is set high to signal the fault state.

The normal operation of the drive can be restored by:

e Calling the TS_ResetFault function. The function call must be followed by the TS_Power in order to enable
the power stage of the drive. If the error persists then the drive will return to the fault state.

o Resetting the drive using the TS_Reset function when the application depends on special routines to be
executed, i.e. homing routines. After a reset command the communication with the drive is disabled until
the reset routines end. Hence the host application should add a delay before restoring the communication
with the drive/motor.

After the reset the drive communicates using the default baudrate, i.e. 9600bps for serial communication
and 500kbps for CAN communication. If the host application was using a different baudrate before the
reset, then use MSK_SetBaudRate function to first set baudrate to the default values and then set it to the
initial value.

4.4, Basic move

Technosoft drives/motors can execute a broad range of motion profiles. The example covers only the basic motion
profiles like

e positioning with trapezoidal speed profile
e positioning with S-curve speed profiles
e velocity profiles

Remark: The example requires all control loops to be enabled. The control scheme is selected in the Drive Setup
dialog. To enable all control loops first select Position in the Control mode, then open the Advanced dialog. In the
Advanced dialog select the Close position, speed and current loop option and press the OK button.

© Technosoft 2021 139 TML_Lib — User Manual

4.5, Homing

The homing procedure is based on the existence of a specific motion sequence containing the TML code needed
to implement the homing, on the drive.

The search for the home position can be done in various ways. In order to offer maximum flexibility, Technosoft
provides a set of predefined homing methods that can be used as default or can be customized according to the
application needs. The predefined homing methods are displayed in the Homing Modes branch form the
EasyMotion Studio project tree.

(® EasyMotion Studio - Untitled ==
Project Application Communication View Control Panel Window Help
o
LEE S @0k R |5 ?
[T, Project [=][]
B & Untitled Homing Modes A
= Untitled Application home1 - Homing on the negative limit switch and index pulse. Move negative | (@ Default e ——
S Setup until the negative limit switch is reached. Reverse and stop at the first index (ClUser defined £load defau
= M Motion hnrnez-”Hnrr.lin.g on .the F-us'rtive limit switch and index pulse. ang positive until | (8 Default Reload defaul
- the positive limit switch is reached. Reverse and stop at the first index pulse Cluszer defined o
[l Homing Modes - - - - =
. home3 - Homing on the positive home switch and index pulse. Intial movement | (@) Default Reload defaul
m Functions is negative if the home switch is high. Otherwise, initial movement is positive, | (T User defined St Il
ﬁ] Interrupts home4 - Homing on the positive home switch and index pulse. Initial movement | (@ Default Reload defaul
[CAM Tables is positive if the home switch is low. Otherwise, initial movement is negative, | (T User defined =load defau
homeSs - Homing on the negative home switch and index pulse. Initial movement @ Default Reload defaut
iz positive if the home switch is high. Otherwise, inttial movement is negative, () User defined Sralessl
homes - Homing on the negative home switch and index pulse. Initial movement @ Default Reload defaut
iz negative if the home switch is low. Otherwise, intial movement is positive, (T User defined £load defau
home7 - Homing on the home switch and index pulse. Initial movement is @ Default Reload defaut
positive if the home switch is low, otherwise is negative. If moving positive, ClUser defined £load defau
homed - Homing on the home switch and index pulse. Initial mevement is @ Default Reload defaut
positive if the home switch is low, otherwise is negative. If moving negative, (ClUser defined £load defau
home% - Homing on the home switch and index pulse. Initial mavement is (@ Defautt Reload defaul
positive. Reverse either after the home switch high-low transition or if the Cluszer defined Sutodlidil
home10 - Homing on the home switch and index pulse. Initial movement is (@ Default Reload defaul
positive. Reverse if the positive limit switch is reached, then reverse once Cluser defined St Il
home11 - Homing on the home switch and index pulse. Initial movement is (@ Defautt Reload defaul
negative if the home switch is low, otherwise is positive. If moving negative, ClUser defined S
home12 - Homing on the home switch and index pulse. Initial movement is @ Default Reload defaut
negative if the home switch is low, otherwise is positive. If moving positive, ClUser defined Sralessl
home13 - Homing on the home switch and index pulse. Initial movement is @ Default Reload defaut
negative. Reverse etther after the home switch high-low transttion or if the ClUser defined £load defau
home14 - Homing on the home switch and index pulse. Initial movement is @ Default Reload defaut
negative. Reverse if the negative limit switch is reached, then reverse once (CUser defined £load defau
home17 - Homing without an index pulse. Move negative until the negative limit @ Default Reload defaut
switch is reached. Reverse and stop at negative limit switch active-inactive (ClUser defined £load defau
home18 - Homing without an index pulse. Move positive until the positive limit | () Default Reload defaul
=switch iz reached. Reverse and stop at positive limit switch active-inactive Cluszer defined Sutodlidil
home1%9 - Homing without an index pulse. Initial movement is negative if the (@ Defautt Bt e W
Ready Offline iPO53604 VX-CAN SetuplD 2419

The homing procedure is a TML function that can be triggered using its name or its number. The homing routine
can be triggered with its number by using the TS_Homing(xx) function, where “xx” = 1...40 and represents the
desired homing type. The name of the homing routine can be used only after it is set as User defined and it is
downloaded with EasyMotion Studio to the non volatile memory of the drive. The homing routine can be triggered
by name with the TS_CancelableCALL_Label(“Homexx”).

The homing routine execution can be aborted at any moment with the TS_ABORT function. Hence, if the homing
procedure can’t find the home signal then you have the option to cancel it. The TS_Stop function should be called
to stop the motion after canceling the execution of the homing routine.

Bit 8 from Status Register Low part is set during the execution of a homing procedure. Hence the status of the
homing routine can be easily monitored by checking periodically bit 8 from SRL. As long as a homing sequence is
in execution, you cannot start another one. If the TS_CancelableCALL_Label or TS_Homing functions are called to

© Technosoft 2021 140 TML_Lib — User Manual

trigger a homing routine while another one is executing then the new homing routine will not be triggered and a
warning is generated by setting bit 7 from SRL.
The homing methods embedded in the drive/motor can be customized and used in the TML_LIB environment by
performing the following steps:

e Open the EasyMotion Studio project for the respective axis or create a new project for the used

configuration.

e Select the Homing Modes branch and chose the homing method that will be customized.

e Set the respective homing method as Used defined and modify it as required.

o Download the customized homing procedure with the Application | Motion | Download Program menu

command.
e Generate the configuration setup for TML_LIB with the Application | Export to TML_LIB menu
command.
Remarks:

1. The homing parameters must be set before calling the TS_CancelableCALL_Label or TS_Homing functions
otherwise the homing behavior will be undefined.

2. The homing parameters can be set with: TS_SetFixedVariable, TS_SetLongVariable and
TS_SetiIntVariable, depending on the type of the parameters.

Parameter | Type | Address | Description

CACC Fixed | 0x02A2 Acceleration/deceleration rate for the position / speed profiles during homing.
CDEC Fixed | 0x0858 Deceleration rate for quick stop when a limit switch is reached.
CSPD Fixed | 0x02A0 High/normal speed for the position / speed profiles done during homing.

HOMESPD | Fixed | 0x0994 Low speed for the final approach towards the home position.

HOMEPOS | Long | 0x0992 New home position set at the end of the homing procedure.

HOMECRT Int 0x08AC Current threshold for homing routines based on mechanical limit.

HOMETIME | Int 0x08AD Time window for homing routines based on mechanical limit.

3. The parameter values must be set in drive internal units. For more information, please check the “Internal
units and Scaling factors” section.

4. The HOMECRT and HOMETIME parameters are used only by the homing routines based on mechanical
limit (hardstop).

5. The value of HOMECRT must be smaller than the current limit set in Drive Setup dialog to ensure correct
execution of the homing routine.
If HOMECRT is greater than the current limit then the homing routine will not be able to detect the
mechanical limit and the motor will keep pushing against it. The homing routine will not be completed.
If the value of HOMECRT is too small, then the homing routine may detect a false mechanical limit condition.

4.6. External reference

Technosoft drives/motors are capable to use external reference signals provided by other devices. There are 3
types of external references:

e Analogue - read by the drive/motor via a dedicated analogue input (10-bit resolution)

© Technosoft 2021 141 TML_Lib — User Manual

e Digital — computed by the drive/motor from:

= Pulse & direction signals
= Quadrature signals like A, B signals of an incremental encoder
e Online —received online via a communication channel from a host and saved in a dedicated TML variable

The example is split in 4 parts, one for each type of external reference and in the fourth the analog reference is
used to compute a speed command.

4.7. Multi-axis

In multi-axis mode one of the drives acts as master providing the reference for the other drives. The drives/motors
can operate in electronic gearing or electronic camming.

When set as master, in electronic gearing, the drive/motor sends its position via a multi-axis communication
channel, like the CAN bus. When set as slave, the drive/motor follows the master position with a programmable
gear ratio.

In electronic camming the drive/motor set as master, sends its position via a multi-axis communication channel,
and the drive/motor set as slave executes a cam profile function of the master position. The cam profile is defined
by a cam table — a set of (X, Y) points, where X is cam table input i.e. the master position and Y is the cam table
output i.e. the corresponding slave position. Between the points the drive/motor performs a linear interpolation.

The first part of the example presents the steps required to set 2 drives in electronic gearing mode, one as master
and the other as slave. The second part of the example illustrates the use of the cam table files and the phases
required to set the electronic camming mode.

4.8. PVT - multithreading

In the PVT motion mode the built-in reference generator computes a positioning path using a series of points. Each
point specifies the desired Position, Velocity and Time, i.e. contains a PVT data. Between the PVT points the
reference generator performs a 3 order interpolation.

The example walks through the steps required to set the PVT mode and use separates threads for each axis. The
drives follow a complex path composed from lines and circles. The main thread computes the PVT points, then
creates a thread for each axis. In the treads the host sends the PVT points and handles the PVT status received
from the drives. When the trajectory is completed each thread closes the communication channel.

4.9. Logger

The Data Logger is an advanced graphical analysis tool, allowing you to do data acquisitions on any variable of
your drive / motor and plot the results.

Please note that the uploaded data is stored alternatively. Also you have to take in consideration the type of the
data received (integer, long, fixed) especially for fixed (16-bit integer part. 16-bit fixed part) variables which must be
converted from a 32-bit integer to float.

4.10. Event handling

© Technosoft 2021 142 TML_Lib — User Manual

An event is a programmable condition, which once set, is monitored for occurrence. Only a single event can be
programmed at a time. You can do the following actions in relation with an event:

e Change the motion mode and/or the motion parameters, when the event occurs
e Stop the motion when the event occurs
e Wait for the programmed event to occur

The host application can:

e tests continuously the event status, and waits until the event occurs. There is a drawback of this situation,
if the event will not occur, due to some unexpected conditions the program hangs-up in an internal loop
waiting for the event to occur.

e Check periodically if the event occurred using the TS_CheckEvent function. In this way, you can detect if
the event does not occur and eventually exit from the test loop after a given time period.

4.11. 1/0 handling

Each Technosoft drive/motor has a specific number of digital inputs and outputs. Some drives/motors include I/O
lines that may be used either as inputs or as outputs. In these cases, before using these lines, you need to specify
how you want to use them by calling the TS_Setuplnput and TS_SetupOutput functions.

Remarks:

¢ Read carefully the drive/motor user manual to find which I/O lines are available.
e You need to set an I/O line as input or output, only once, after power on

The I/O lines can be controlled individually or simultaneously; the example covers both cases.

4.12. Distributed tasks

The embedded intelligence of the drive/motor allows you to distribute the application between the host and the
drives/motors in complex multi-axis applications. Thus, the host, instead of sending commands for each step of an
axis movement, it can simply trigger the execution of a TML function, stored on the drive, and monitor the drive
status. This approach allows the host to focus on system functionality, leaving the drive to handle the motion tasks.

The steps for building a distributed application are:

1. implement the TML functions using EasyMotion Studio
2. download the TML code on the drive:

a. from EasyMotion Studio in the non-volatile memory
b. from the host application using the executable file (COFF) resulted after compiling the TML code. The
COFF file can be downloaded with TS_DownloadProgram function.
c. from the host application using the software file (sw) generated from EasyMotion Studio.
3. export the setup data for TML_lib. The setup data generated for TML_lib will contain the name of the TML
functions created in EasyMotion Studio.
4. trigger, from the host, the execution of the TML functions by calling the TS_CancelableCALL_Label function.
5. monitor the function execution status by requesting periodically the status registers or by enabling the drive
to send its status automatically.

The example shows 2 possible ways of executing TML code developed using the EasyMotion Studio.

© Technosoft 2021 143 TML_Lib — User Manual

Appendix A — CAM files format

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y is the cam output
i.e. the slave position. The X points are expressed in the master internal position units, while the Y points are
expressed in the slave internal position units. Both X and Y points 32-bit long integer values. The X points must be
positive (including 0) and equally spaced at: 1, 2, 4, 8, 16, 32, 64 or 128 i.e. having the interpolation step a power
of 2 between 0 and 7. The maximum number of points for one cam table is 8192.

As cam table X points are equally spaced, they are completely defined by two data: The Master start value or the
first X point and the Interpolation step providing the distance between the X points. This offers the possibility to
minimize the cam size, which is saved in the drive/motor in the following format:

1st word (1 word = 16-bit data)

Bits 15-13 - the power of 2 of the interpolation step. For example, if these bits have the binary value 010
(2), the interpolation step is 22 = 4, hence the master X values are spaced from 4 to 4: 0, 4, 8, 12, etc.
Bits 12-0 - the length -1 of the table. The length represents the number of points

2nd and 3rd words: The Master start value (long), expressed in master position units. 2nd word contains
the low part, 3rd word the high part

4th and 5th words: Reserved. Must be set to 0

Next pairs of 2 words: the slave Y positions (long), expressed in position units. The 1st word from the pair
contains the low part and the 2nd word from the pair the high part

Last word: the cam table checksum, representing the sum modulo 65536 of all the cam table data except the
checksum word itself.

© Technosoft 2021 144 TML_Lib — User Manual

Appendix B — Package contents of TML_LIB for Microsoft Windows

Details the package contents of TML_LIB for Microsoft Windows.

Directory Files Description
Root directory P091.040.UM.PDF The PDF file of the TML_LIB user manual (this document)
Default c:\Program Files . . .
(x86)\Technosoft\ TML_LIB\ Changelog.txt Contains the release information
TML_lib.dll TML_LIB DLL library file
tmlcomm.dll TML_lib communication module file
. TML_lib.lib Import library of TML_LIB
b tmlcomm.lib Import library of tmlcomm
TML_lib-borlandc.lib import library variant of TML_LIB for Borland C++ linker projects
tmlcomm-borlandc.lib import library of tmlcomm for Borland C++ projects
TML_lib.DLL DLL variant with multithread capabilities
tmlcomm.DLL communication module variant with multithread capabilities
TML_lib.lib lib file for TML_lib variant with multithread capabilities
lib-multithread tmicomm.lib lib file for tmicomm.dll with multithread
TML_lib-borlandc.lib import library of TML_lib variant with multithread capabilities for
Borland C++
tmlcomm-borlandc.lib import library of tmlcomm.dll with multithread for Borland C++
TML_lib.h Header file for VC++ applications
TML_lib.bas Header file for VB applications
include
TML_lib.pas Header file for Pascal applications
TML_lib.cs TML_lib classes for C#
Ex05_Homing.t.zip Setup data used in example Ex05_Homing
Ex12_cmd_variable.t.zip Setup data used in example Ex12_DistributedTasks
Ex12_cmd_variable.out Executable file (COFF) used in example Ex12_DistributedTasks
Ex12_COFF2RAM.t.zip Setup data used in example Ex12_DistributedTasks
Ex12_COFF2RAM.out Executable file (COFF) used in example Ex12_DistributedTasks
examples Exx_setup_file_ID1.t.zip

Setup data used in the rest of the examples
Exx_setup_file_ID2.t.zip Setup data used in example Ex07_MultiAxes
Cam table generated from EasyMotion Studio. The cam table is
ExampleCam.cam : X
used in example Ex07_Multiaxes

Cam table in text format. Can be imported in EasyMotion Studio
ExampleCam.cam N :
to generate the *.cam file

. Archive of TML project used for examples Ex05_Homing and
TML_lib_examples Ex12_ DistributedTasks.

© Technosoft 2021 145 TML_Lib — User Manual

examples\Cdemo?

examples\C#demo?

examples\VBdemo?

examples\DELPHIdemo?

examples\VCvirtRS232

C projects with all the
examples

C# projects with all the
examples

VB project and all
examples in Visual Basic

Delphi project and all
examples in Pascal

Visual C project of the
virtual serial driver

Complete projects for Visual C++ and Borland C++ Builder
implementing the examples from Chapter 4.

Complete projects for C# implementing the examples from
Chapter 4.

A complete Visual Basic project implementing equivalent
examples of the examples presented Chapter 4. The example
requires the single thread variant of the TML_lib.

A complete Delphi project implementing equivalent examples of
those presented in Chapter 4.

A complete Visual C project of a communication driver example
for the virtual serial communication

2 The examples are available for 32-bit and 64-bit versions of the TML_lib for Microsoft Windows platforms
3 The examples are available only for the 32-bit version of the TML_lib for Microsoft Windows platforms

© Technosoft 2021

146 TML_Lib — User Manual

Appendix C — Package contents of TML_LIB for Linux

Details the package contents for TML_LIB for Linux.

Directory Files
TML_lib.h
/usr/include
tmlcomm.h
libTML_lib.so

Jusr/lib
libtmlcomm.so

Changelog
Check-for-updates_linux_x86
lusr/share/doc/TML_lib/
License

P091.040.UM.xxxx.PDF

lusr/share/doc/TML_lib/examp

les/src/ C examples

Ex05_Homing.t.zip

Ex12_cmd_variable.t.zip
Ex12_cmd_variable.out
Ex12_COFF2RAM.t.zip

Ex12_COFF2RAM.out

lusr/share/doc/TML_lib/examp
les/TML_LIB_User/ Exx_setup_file_ID1.t.zip

Exx_setup_file_ID2.t.zip

ExampleCam.cam
ExampleCam.cam

TML_lib_examples

Jusr/share/doc/TML_lib/peak-
linux-drivers-patches

© Technosoft 2021 147

Description
Header file for TML_lib library
Header file for tmlcomm library
TML_LIB library file
TML communication library file
Contains the release information

Web page which facilitates the update of the library via
Internet

License agreement for TML_LIB

The PDF file of the TML_LIB user manual (this
document)

Complete C projects implementing the examples from
Chapter 4.

Setup data used in example Ex05_Homing
Setup data used in example Ex12_DistributedTasks

Executable file (COFF) used in example
Ex12_DistributedTasks

Setup data used in example Ex12_DistributedTasks

Executable file (COFF) used in example
Ex12_DistributedTasks

Setup data used in the rest of the examples
Setup data used in example Ex07_MultiAxes

Cam table generated from EasyMotion Studio. The cam
table is used in example Ex07_Multiaxes

Cam table in text format. Can be imported in EasyMotion
Studio to generate the *.cam file

Archive of TML project used for examples Ex05_Homing
and Ex12_DistributedTasks.

Patches for Peak System CAN-bus devices drivers versions 3.17 and 4.3

TML_Lib — User Manual

Appendix D — TML_Lib.h file

The TML_LIB.h file is the header file containing the prototypes of all TML_LIB functions, as well as all the constants
needed to call functions of the library.

This file must be included in any C file that refers functions from TML_LIB. Use the TML_LIB.lib and the TML_LIB.dII
to build the corresponding executable file.

#ifndef TML LIB H
#define TML LIB H

#if defined (WINDOWS) || defined (WIN32)

ifdef TMLDLL

define TML EXPORT _ declspec(dllexport) _ stdcall
else

define TML EXPORT _ declspec(dllimport) _ stdcall
endif

telse

define TML EXPORT

#endif

#undef BYTE

#undef WORD

#undef DWORD

#undef BOOL

#if defined (WINDOWS) || defined (WIN32)
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;

#telse
typedef u int8 t BYTE;
typedef u intl6 t WORD;
typedef u int32 t DWORD;
#endif

typedef int BOOL;
#ifndef FALSE

#define FALSE O
#endif
#ifndef TRUE

#define TRUE 1
#endif

typedef const char* LPCSTR;
typedef char* LPSTR;

© Technosoft 2021 148 TML_Lib — User Manual

//supported CAN protocols

#define PROTOCOL_ TMLCAN 0x00 /*use TMLCAN protocol (default, 29-bit
identifiers) */

#define PROTOCOL TECHNOCAN 0x80 /* use TechnoCAN protocol
(11-bit identifiers) */

#define PROTOCOL MASK 0x80 /*this bits are used for

specifying CAN protocol through nChannelType param of MSK OpenComm function*/

/***** supported C’AN deVlceS R e b b b g b b b g b b b b b b g b b b b b g g b g
CHANNEL IXXAT CAN - see http://www.ixxat.com
CHANNEL SYS TEC USBCAN - see www.systec-electronic.com
CHANNEL ESD CAN - see http://www.esd-electronics.com
CHANNEL PEAK SYS PCAN * - see http://www.peak-system.com
CHANNEL LAWICEL USBCAN - see http://www.canusb.com

**/

/*Constants used as values for 'OpenChannel' parameters*/
#define CHANNEL RS232 0
#define CHANNEL IXXAT CAN 2
#define CHANNEL SYS TEC USBCAN 3
#define CHANNEL PEAK SYS PCAN PCI 4
#define CHANNEL ESD CAN 5
#define CHANNEL PEAK SYS PCAN ISA 6

#define CHANNEL PEAK SYS PCAN PC104 CHANNEL PEAK SYS PCAN ISA /* Same with
PCAN ISA*/

#define CHANNEL PEAK SYS PCAN USB 7
#define CHANNEL PEAK SYS PCAN DONGLE 8
#define CHANNEL LAWICEL USBCAN 9
#define CHANNEL KVASER USBCAN 10
#define CHANNEL SOCKET CAN 11
#define CHANNEL VIRTUAL SERIAL 15
#define CHANNEL XPORT IP 16
#define CHANNEL ETHERNET CAN 17

/*Constant used for host ID*/
#define HOST ID 1

/*Constants used as values for 'Logger' parameters*/
#define LOGGER SLOW
#define LOGGER FAST 2

/*Constants used as values for 'MoveMoment' parameters*/
#define UPDATE NONE -1

#define UPDATE ON EVENT 0

#define UPDATE IMMEDIATE 1

© Technosoft 2021 149 TML_Lib — User Manual

/*Constants used for 'ReferenceType' parameters*/

#define REFERENCE POSITION 0
#define REFERENCE SPEED

#define REFERENCE TORQUE

#define REFERENCE VOLTAGE

/*Constants used for EnableSuperposition*/
#define SUPERPOS DISABLE -1

#define SUPERPOS NONE 0

#define SUPERPOS ENABLE 1

/*Constants used for PositionType*/
#define ABSOLUTE POSITION 0
#define RELATIVE POSITION 1

/*Constants used for EnableSlave*/
#define SLAVE NONE

#define SLAVE COMMUNICATION CHANNEL
#define SLAVE 2ND ENCODER

/*Constants used for ReferenceBase*/
#define FROM MEASURE 0
#define FROM REFERENCE 1

/*Constants used for DecelerationType*/
#define S CURVE SPEED PROFILE 0
#define TRAPEZOIDAL SPEED PROFILE 1

/*Constants used for IOState*/
#define IO HIGH 1
#define IO LOW 0

/*Constants used for TransitionType*/
#define TRANSITION HIGH TO LOW -1
#define TRANSITION DISABLE

#define TRANSITION LOW TO HIGH 1

/*Constants used for IndexType*/
#define INDEX 1 1
#define INDEX 2 2

/*Constants used for LSWType*/
#define LSW NEGATIVE -1

© Technosoft 2021 150

TML_Lib — User Manual

#define LSW_POSITIVE

/*Constants used for TS Power; to activate/deactivate the PWM commands*/

#define POWER ON
#define POWER OFF

/*Constants used as inputs parameters of the I/O functions*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

INPUT 0

INPUT 1

INPUT 2

INPUT 3

INPUT 4

INPUT 5

INPUT 6

INPUT 7

INPUT 8

INPUT 9

INPUT 10
INPUT 11
INPUT 12
INPUT 13
INPUT 14
INPUT 15
INPUT 16
INPUT 17
INPUT 18
INPUT 19
INPUT 20
INPUT 21
INPUT 22
INPUT 23
INPUT 24
INPUT 25
INPUT 26
INPUT 27
INPUT 28
INPUT 29
INPUT 30
INPUT 31
INPUT 32
INPUT 33
INPUT 34
INPUT 35
INPUT 36
INPUT 37

© Technosoft 2021

0

1
2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

151

TML_Lib — User Manual

#define INPUT 38 38

#define INPUT 39 39
#define OUTPUT O 0

#define OUTPUT 1 1

#define OUTPUT 2 2

#define OUTPUT 3 3

#define OUTPUT 4 4

#define OUTPUT 5 5

#define OUTPUT 6 6

#define OUTPUT 7 7

#define OUTPUT 8 8

#define OUTPUT 9 9

#define OUTPUT 10 10
#define OUTPUT 11 11
#define OUTPUT 12 12
#define OUTPUT 13 13
#define OUTPUT 14 14
#define OUTPUT 15 15
#define OUTPUT 16 16
#define OUTPUT 17 17
#define OUTPUT 18 18
#define OUTPUT 19 19
#define OUTPUT 20 20
#define OUTPUT 21 21
#define OUTPUT 22 22
#define OUTPUT 23 23
#define OUTPUT 24 24
#define OUTPUT 25 25
#define OUTPUT 26 26
#define OUTPUT 27 27
#define OUTPUT 28 28
#define OUTPUT 29 29
#define OUTPUT 30 30
#define OUTPUT 31 31
#define OUTPUT 32 32
#define OUTPUT 33 33
#define OUTPUT 34 34
#define OUTPUT 35 35
#define OUTPUT 36 36
#define OUTPUT 37 37
#define OUTPUT 38 38
#define OUTPUT 39 39

/*Constants used for the register for function TS ReadStatus*/

© Technosoft 2021 152 TML_Lib — User Manual

#define REG MCR
#define REG MSR
#define REG ISR
#define REG SRL
#define REG SRH
#define REG MER
#define REG DER
#define REG DER2

~N o OB W N PO

/*Constants used to select or set the group*/
#define GROUP 0 0

#define GROUP 1
#define GROUP 2
#define GROUP_ 3
#define GROUP 4
#define GROUP 5
#define GROUP_ 6
#define GROUP 7
#define GROUP 8

O J o O w N -

/*Special parameter values*/
#define FULL RANGE 0
#define NO VARIATION 0

/***

Callback function used by client application for handling unsolicited
messages which this driver receives in unexpected places

***/

#if defined (WINDOWS) || defined (WIN32)

typedef void (stdcall *pfnCallbackRecvDriveMsg) (WORD wAxisID, WORD wAddress,
long Value) ;
#else

typedef void (*pfnCallbackRecvDriveMsg) (WORD wAxisID, WORD wAddress, long
Value) ;
#endif

#ifdef cplusplus
extern "C" {
#endif

LPCSTR TML EXPORT TS_GetLastErrorText (void);

/***

Function: Returns a text related to the last occurred error when one of the
library functions

was called.

© Technosoft 2021 153 TML_Lib — User Manual

Input arguments:
Output arguments:
return: A text related to the last occurred error

***/

/***/
/*******************Parametrization*********************************/

/***/

int TML EXPORT TS_LoadSetup (LPCSTR setupPath);

/**
Function: Load setup information from a zip archive or a directory containing
setup.cfg and variables.cfg files.

Input arguments:

setupPath: path to the zip archive or directory that contains
setup.cfg and variables.cfg of the given setup

Output arguments:

return: >=0 index of the loaded setup; -1 if error

***/

/***/
/******************* communication Channels ************************/

/***/

int TML EXPORT TS_OpenChannel(LPCSTR pszDevName, BYTE btType, BYTE nHostID, DWORD

baudrate) ;
/***
Function: Open a communication channel.

Input arguments:

pszDevName: communication device name
RS232,CHANNEL LAWICEL USBCAN: COM port number or COM port
name ("1","2","3"... -> "coMm1", "comM2", "COM3"...)
CHANNEL IXXAT CAN: "I1I'" .. "4"
CHANNEL SYS TEC USBCAN and CHANNEIL ESD CAN: ro" .. "io"
CHANNEL PEAK SYS PCAN PCI: "1" or "2"
CHANNEL LAWICEL USBCAN: "" for the first device found or

the serial number of the device
CHANNEL XPORT IP: "IP" or "hostname"

btType: channel type (CHANNEL *) with an optional protocol (PROTOCOL *,
default is PROTOCOL_TMLCAN)

nHostID: Is the address of your PC computer. A value between 1 and 255

For RS232: axis ID of the drive connected to the PC serial
port (usually 255)

For XPORT: "IP:port"

© Technosoft 2021 154 TML_Lib — User Manual

BaudRate: Baud rate
serial ports: 9600, 19200, 38400, 56000 or 115200
CAN devices: 125000, 250000, 500000, 1000000
Output arguments:

return: channel's file descriptor or -1 if error

***/

BOOL TML EXPORT TS_SelectChannel (int fd);

/***
Function: Select active communication channel. If you use only one channel there
is no need to call this function.
Input arguments:
fd: channel file descriptor (-1 means selected communication channel)
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

#ifdef cplusplus

void TML EXPORT TS_CloseChannel (int fd = -1);

felse

void TML EXPORT TS_CloseChannel (int fd);

#endif
/***
Function: Close the communication channel.
Input arguments:

fd: channel file descriptor (-1 means selected communication channel)

***/

/***/
/*******************Drive Admlnlstfatlon ***************************/

/***/

BOOL TML EXPORT TS_SetupAxis (BYTE axisID, int idxSetup);
/***
Function: Select setup configuration for the drive with axis ID.
Input arguments:
axisID: axis ID. It must be a value between 1 and 255;
idxSetup: Index of previously loaded setup,
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SelectAxis (BYTE axisID);

/***

Function: Selects the active axis.

© Technosoft 2021 155 TML_Lib — User Manual

Input arguments:
axisID: The ID of the axis to become the active one. It must be a
value between 1 and 255;
defined at TS OpenChannel function call.
Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_SetupGroup (BYTE groupID, int idxSetup);
/***
Function: Select setup configuration for the drives within group.
Input arguments:
groupID: group ID. It must be a value between 1 and 8;
idxSetup: Index of previously loaded setup,
Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_SelectGroup (BYTE grouplD);
/***
Function: Selects the active group.
Input arguments:

groupID: The ID of the group of axes to become the active
ones. It must be a value

between 1 and 8.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetupBroadcast (int idxSetup);

/***

Function: Select setup configuration for all drives on the active channel.
Input arguments:

idxSetup: Index of previously loaded setup,
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SelectBroadcast (void);

/***

Function: Selects all axis on the active channel.
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_Reset (void) ;

© Technosoft 2021 156 TML_Lib — User Manual

/*** Function:
Resets selected drives.
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_ResetFault (void);

/***
Function: This function clears most of the errors bits from Motion Error Register
(MER) .

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_Power (BOOL Enable);
/***
Function: Controls the power stage (ON/OFF).
Input arguments:
Enable: TRUE -> Power ON the drive,; FALSE -> Power OFF the drive
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_ReadStatus (short SelIndex, WORD& Status);
felse

BOOL TML EXPORT TS_ReadStatus (short SellIndex, WORD* Status);
#endif

/*** Function:
Returns drive status information.
Input arguments:
SellIndex:
REG MCR -> read Motion Control Register
REG MSR -> read Motion Status Register
REG ISR -> read Interrupt Status Register
REG SRL -> read Status Register Low
REG SRH -> read Status Register High
REG MER -> read Motion Error Register
REG DER -> read Detailed Error Register
Output arguments:
Status:drive status information (value of the selected register)

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_Save (void);

/***

Function: Saves actual values of all the parameters from the drive/motor working
memory into

© Technosoft 2021 157 TML_Lib — User Manual

the EEPROM setup table.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_UpdateImmediate (void);
/***
Function: Update the motion mode immediately.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_UpdateOnEvent (void) ;
/***
Function: Update the motion mode on next event occurrence.

Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetPosition (long PosValue);
/***
Function: Set actual position value.
Input arguments:
PosValue: Value at which the position 1is set
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetCurrent (short Crtvalue);
/***
Function: Set actual current value.
Input arguments:
CrtValue: Value at which the motor current is set
REMARK: this command can be used
step motor drives
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetTargetPositionToActual (void);

/***

only for

Function: Set the target position value equal to the actual position value.

Output arguments:
return: TRUE if no error; FALSE if error

***/

© Technosoft 2021 158 TML_Lib — User Manual

BOOL TML EXPORT TS_SetIntVariable(LPCSTR pszName, short value);

/*** Function:
Writes an integer type variable to the drive.
Input arguments:
pszName: Name of the variable
value: Variable value
Output arguments:

return: TRUE if no error,; FALSE if error

***/

#ifdef cplusplus
BOOL TML EXPORT TS_GetIntVariable (LPCSTR pszName, shorté& value);
#else
BOOL TML EXPORT TS_GetIntVariable(LPCSTR pszName, short* value);
#endif
/***
Function: Reads an integer type variable from the drive.
Input arguments:
pszName: Name of the variable
Output arguments:
value: Variable value

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetLongVariable (LPCSTR pszName, long value);

/*** Function:
Writes a long integer type variable to the drive.
Input arguments:
pszName: Name of the variable
value: Variable value
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

#ifdef cplusplus
BOOL TML EXPORT TS_GetLongVariable (LPCSTR pszName, longé& value);
#else
BOOL TML EXPORT TS_GetLongVariable (LPCSTR pszName, long* value);
#endif
/***
Function: Reads a long integer type variable from the drive.
Input arguments:
pszName: Name of the variable

Output arguments:

© Technosoft 2021 159 TML_Lib — User Manual

value: Variable value

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetFixedVariable (LPCSTR pszName, double value);
/***
Function: Writes a fixed point type variable to the drive.
Input arguments:
pszName : Name of the variable
value: Variable value
Output arguments:

return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus
BOOL TML EXPORT TS_GetFixedVariable (LPCSTR pszName, double& value);
felse
BOOL TML EXPORT TS_GetFixedVariable (LPCSTR pszName, double* value);
#endif
/***
Function: Reads a fixed point type variable from the drive.
Input arguments:
pszName: Name of the variable
Output arguments:
value: Variable value

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetBuffer(WORD address, WORD* arrayValues, WORD nSize);
/***
Function: Download a data buffer to the drive's memory.
Input arguments:
address: Start address where to download the data buffer
arrayValues: Buffer containing the data to be downloaded
nSize: the number of words to download
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_GetBuffer (WORD address, WORD* arrayValues, WORD nSize);
/***
Function: Upload a data buffer from the drive (get it from motion chip's memory).
Input arguments:
address: Start address where from to upload the data buffer

arrayValues: Buffer address where the uploaded data will be stored

© Technosoft 2021 160 TML_Lib — User Manual

nSize: the number of words to upload
Output arguments:
arrayValues: the uploaded data
return: TRUE if no error,; FALSE if error

***/

/***/
/*******************MOTION functions********************************/

/***/

BOOL TML EXPORT TS MoveAbsolute (long AbsPosition, double Speed, double
Acceleration, short MoveMoment, short ReferenceBase);

/***
Function: Move Absolute with trapezoidal speed profile. This function allows you
to program a position profile
with a trapezoidal shape of the speed.
Input arguments:

AbsPosition: Absolute position reference value

Speed: Slew speed,; 1if 0, use previously defined value

Acceleration: Acceleration deceleration; if 0, use previously defined value
MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value

FROM REFERENCE -> the position reference starts from the actual
reference position value

Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS MoveRelative (long RelPosition, double Speed, double
Acceleration, BOOL IsAdditive, short MoveMoment, short ReferenceBase);

/***

Function: Move Relative with trapezoidal speed profile. This function allows you

to program a position profile

with a trapezoidal shape of the speed.

Input arguments:
RelPosition: Relative position reference value
Speed: Slew speed,; if 0, use previously defined value
Acceleration: Acceleration deceleration; if 0, use previously defined value

MoveMoment :

© Technosoft 2021 161 TML_Lib — User Manual

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Iimmediate
UPDATE ON EVENT -> start moving on event
IsAdditive:

TRUE -> Add the position increment to the position to reach set by
the previous motion command

FALSE -> No position increment is added to the target position
ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value

FROM REFERENCE -> the position reference starts from the actual
reference position value

Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_MoveVelocity (double Speed, double Acceleration, short
MoveMoment, short ReferenceBase);
/***
Function: Move at a given speed, with acceleration profile.
Input arguments:
Speed: Jogging speed
Acceleration: Acceleration deceleration; if 0, use previously defined value
MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value

FROM REFERENCE -> the position reference starts from the actual
reference position value

Output arguments:
return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetAnalogueMoveExternal (short ReferenceType, BOOL UpdateFast,
double LimitVariation, short MoveMoment) ;
/***
Function: Set Motion type as using an analogue external reference.
Input arguments:
ReferenceType:
REFERENCE POSITION -> external position reference
REFERENCE SPEED -> external speed reference
REFERENCE TORQUE -> external torque reference

© Technosoft 2021 162 TML_Lib — User Manual

REFERENCE VOLTAGE -> external voltage reference
UpdateFast:
TRUE -> generate the torque reference in the fast control loop
FALSE -> generate the torque reference in the slow control loop
LimitVariation:
NO VARIATION (0) -> the external reference 1is limited at the value
set in the Drive Setup
A value which can be an acceleration or speed in function of the
reference type.
MoveMoment :
UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)
UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event

Output arguments:
return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_SetDigitalMoveExternal (BOOL SetGearRatio = FALSE, short
Denominator = 1, short Numerator = 1, double LimitVariation = 0, short MoveMoment
1);

#else

BOOL TML EXPORT TS_SetDigitalMoveExternal (BOOL SetGearRatio, short Denominator,
short Numerator, double LimitVariation, short MoveMoment) ;

#endif

/***

Function: Set Motion type as using a digital external reference. This function is
used only for Positioning.
Input arguments:
MoveMoment :
UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)
UPDATE IMMEDIATE -> start moving Iimmediate
UPDATE ON EVENT -> start moving on event
LimitVariation:
NO VARIATION (0) -> the external reference 1is limited at the value
set in the Drive Setup
A value which can be an acceleration or speed in function of the
reference type.
SetGearRatio: Set the gear parameters,; if TRUE, following parameters are
needed
Denumerator: Gear master ratio
Numerator: Gear slave ratio
Output arguments:
return: TRUE if no error,; FALSE if error

***/

© Technosoft 2021 163 TML_Lib — User Manual

#ifdef cplusplus

BOOL TML EXPORT TS_SetOnlineMoveExternal (short ReferenceType, double
LimitVariation = 0, double InitialValue = 0., short MoveMoment = 1);

#else

BOOL TML EXPORT TS_SetOnlineMoveExternal (short ReferenceType, double
LimitVariation, double InitialValue, short MoveMoment) ;

#endif

/*** Functj_on:
Set Motion type as using an analogue external reference.
Input arguments:
ReferenceType:
REFERENCE POSITION -> external position reference
REFERENCE SPEED -> external speed reference
REFERENCE TORQUE -> external torque reference
REFERENCE VOLTAGE -> external voltage reference
LimitVariation:
NO VARIATION (0) -> the external reference is limited at the value
set in the Drive Setup

A value which can be an acceleration or speed in function of the
reference type.

MoveMoment :
UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)
UPDATE IMMEDIATE -> start moving Iimmediate
UPDATE ON EVENT -> start moving on event
InitialValue: If non zero, set initial value of EREF
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_VoltageTestMode (short MaxVoltage, short IncrVoltage, short

Theta0O, short Dtheta, short MoveMoment) ;
/***
Function: Use voltage test mode.

Input arguments:

MaxVoltage: Maximum test voltage value
IncrVoltage: Voltage increment on each slow sampling period
ThetaO: Initial value of electrical angle value

Remark: used only for AC motors; set to 0 otherwise
Dtheta: Electric angle increment on each slow sampling period
MoveMoment :
UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)
UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event

© Technosoft 2021 164 TML_Lib — User Manual

Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_TorqueTestMode (short MaxTorque, short IncrTorque, short Thetal,
short Dtheta, short MoveMoment) ;
/***

Function: Use torque test mode.

Input arguments:

MaxTorque: Maximum test torque value
IncrTorque: Torque increment on each slow sampling period
ThetaO: Initial value of electrical angle value

Remark: used only for AC motors; set to 0 otherwise
Dtheta: Electric angle increment on each slow sampling period
MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetGearingMaster (BOOL Group, BYTE SlaveID, short ReferenceBase,
BOOL Enable,

BOOL SetSlavePos, short MoveMoment) ;
/***
Function: Setup master parameters in gearing mode.
Input arguments:

Group
TRUE -> set slave group ID with value;
FALSE-> set slave axis ID with SlaveID value,
SlavelD: Axis ID in the case that Group is FALSE or a Group ID when

Group is TRUE
ReferenceBase:
FROM MEASURE -> send position feedback
FROM REFERENCE -> send position reference

Enable: TRUE -> enable gearing operation,; FALSE -> disable gearing
operation

SetSlavePos: TRUE -> initialize slave(s) with master position

MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event

Output arguments:

© Technosoft 2021 165 TML_Lib — User Manual

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetGearingSlave (short Denominator, short Numerator, short

ReferenceBase,
short

EnableSlave, double LimitVariation, short MoveMoment) ;

/***

Function: Setup slave parameters 1in gearing mode.

Input arguments:

Denominator: Master gear ratio value
Numerator: Slave gear ratio value
ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value
FROM REFERENCE -> the position reference starts from the actual
reference position value
EnableSlave:
SLAVE NONE -> do not enable slave operation
SLAVE COMMUNICATION CHANNEL -> enable operation got via a
communication channel
SLAVE 2ND ENCODER -> enable operation read from 2nd encoder or P&D
inputs
LimitVariation:
NO VARIATION (0) -> the external reference 1s limited at the value
set in the Drive Setup
A value which can be an acceleration or speed in function of the
reference type.
MoveMoment :
UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)
UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event

Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_MotionSuperposition (short Enable, short Update);

/*** Function:
enable or disable the superposition of the electronic gearing mode with a second
motion mode
Input arguments:
Enable: 1f 0, disable the Superposition mode
if 1, enable the Superposition mode
Update: if 0, doesn't send UPD command to the drive, in order to take into
account the
Superposition mode

© Technosoft 2021 166 TML_Lib — User Manual

if 1, sends UPD command to the drive, in order to take into
account the

Superposition mode
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetCammingMaster(BOOL Group, BYTE SlaveID, short ReferenceBase,
BOOL Enable, short MoveMoment) ;

/***
Function: Setup master parameters in camming mode.
Input arguments:
Group
TRUE -> set slave group ID with (SlaveID + 256) value;
FALSE-> set slave axis ID with SlaveID value;,

SlavelID: Axis ID in case Group 1is FALSE, or group mask otherwise (0
means broadcast)

ReferenceBase:
FROM MEASURE -> send position feedback
FROM REFERENCE -> send position reference

Enable: TRUE -> enable camming operation, FALSE -> disable camming
operation

MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Iimmediate
UPDATE ON EVENT -> start moving on event
Output arguments:
return: TRUE if no error,; FALSE if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_CamDownload (LPCSTR pszCamFile, WORD wLoadAddress, WORD
wRunAddress, WORD& wNextLoadAddr, WORD& wNexRunAddr) ;

#else

BOOL TML EXPORT TS_CamDownload(LPCSTR pszCamFile, WORD wLoadAddress, WORD
wRunAddress, WORD* wNextLoadAddr, WORD* wNexRunAddr) ;

#endif
/*** Function:
Download a CAM file to the drive, at a specified address.
Input arguments:
pszCamFile: the name of the file containing the CAM information
wLoadAddress: memory address where the CAM is loaded

wRunAddress: memory where the actual CAM table is transferred and executed
at run time

Output arguments:

© Technosoft 2021 167 TML_Lib — User Manual

wNextLoadAddr: memory address available for the next CAM file;, if 0 there
is no memory left

wNextRunAddress: memory where the next CAM table is transferred and
executed at run time;

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_CamInitialization (WORD LoadAddress, WORD RunAddress) ;

/***

Function: Copies a CAM file from E2ROM to RAM memory. You should not use this

if you download CAMs directly to RAM memory

(load address == run address)

Input arguments:
LoadAddress: memory address in E2ROM where the CAM is already loaded
RunAddress: memory address in RAM where the CAM is copied.

Output arguments:

return: TRUE if no error; FALSE 1if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_SetCammingSlaveRelative(WORD RunAddress, short ReferenceBase,
short EnableSlave, short MoveMoment,

long OffsetFromMaster = 0, double MultInputFactor = 0, double
MultOutputFactor = 0);

#else

BOOL TML EXPORT TS_SetCammingSlaveRelative (WORD RunAddress, short ReferenceBase,
short EnableSlave, short MoveMoment,

long OffsetFromMaster, double MultInputFactor, double MultOutputFactor);
#endif
/***
Function: Setup slave parameters in relative camming mode.
Input arguments:

RunAddress: memory addresses where the CAM is executed at run time. If any
of them is 0 it means that no start address 1is set

ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value

FROM REFERENCE -> the position reference starts from the actual
reference position value

EnableSlave:
SLAVE NONE -> do not enable slave operation

SLAVE COMMUNICATION CHANNEL -> enable operation got via a
communication channel

SLAVE 2ND ENCODER -> enable operation read from 2nd encoder or P&D
inputs

© Technosoft 2021 168 TML_Lib — User Manual

MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event

nOffsetFromMaster, nMultInputFactor, nMultOutputFactor: 1if non-zero, set
the correspondent parameter

Output arguments:
return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus

BOOL TML_ EXPORT TS_SetCammingSlaveAbsolute (WORD RunAddress, double LimitVariation,
short ReferenceBase, short EnableSlave, short MoveMoment,

long OffsetFromMaster = 0, double MultInputFactor = 0, double
MultOutputFactor = 0);
#else

BOOL TML EXPORT TS_SetCammingSlaveAbsolute (WORD RunAddress, double LimitVariation,
short ReferenceBase, short EnableSlave, short MoveMoment,

long OffsetFromMaster, double MultInputFactor, double MultOutputFactor);
#endif
/**
Function: Setup slave parameters in absolute camming mode.
Input arguments:

RunAddress: memory addresses where the CAM is executed at run time. If any
of them is 0 it means that no start address is set

LimitVariation:

NO VARIATION (0) -> no limitation on speed value at the value set
in the Drive Setup

A value which can be an acceleration or speed in function of the
reference type.

ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value

FROM REFERENCE -> the position reference starts from the actual
reference position value

EnableSlave:
SLAVE NONE -> do not enable slave operation

SLAVE COMMUNICATION CHANNEL -> enable operation got via a
communication channel

SLAVE 2ND ENCODER -> enable operation read from Znd encoder or P&D
inputs
MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving immediate

© Technosoft 2021 169 TML_Lib — User Manual

UPDATE ON EVENT -> start moving on event
nOffsetFromMaster, nMultInputFactor, nMultOutputFactor: if non-zero, set
the correspondent parameter
Output arguments:
return: TRUE if no error; FALSE if error

**/

BOOL TML EXPORT TS_SetMasterResolution (long MasterResolution);

/***

Function: Setup the resolution for the master encoder connected on the second
encoder input of the drive.
Input arguments:
MasterResolution:
FULL RANGE (0) -> select this option if the master position is not
cyclic. (e.g. the resolution is equal with the whole
32-bit range of
position)
Value that represents the number of lines of the 2nd master encoder
Output arguments:
return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SendSynchronization (long Period);
/***
Function: Setup drives to send synchronization messages.
Input arguments:
Period: the time period between 2 sends
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_Stop (void) ;
/***
Function: Stop the motion.
Output arguments:
return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_QuickStopDecelerationRate (double Deceleration);

/***
Function: Set the deceleration rate used for QuickStop or SCurve positioning
profile.
Input Arguments:
Deceleration: the value of the deceleration rate
Output arguments:
return: TRUE if no error,; FALSE if error

© Technosoft 2021 170 TML_Lib — User Manual

***/

BOOL TML_ EXPORT TS_SendPVTPoint (long Position, double Velocity, unsigned int Time,
short PVTCounter);
/***

Function: Sends a PVT point to the drive.

Input arguments:

Position: drive position for the desired point
Velocity: desired velocity of the drive at the point
Time: amount of time for the segment

PVTCounter: integrity counter for current PVT point

Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_SendPVTFirstPoint (long Position, double Velocity, unsigned int
Time, short PVTCounter,

short
PositionType, long InitialPosition, short MoveMoment, short ReferenceBase);

/***
Function: Sends the first point from a series of PVT points and sets the PVT
motion mode.

Input arguments:

Position: drive position for the desired point
Velocity: desired velocity of the drive at the point
Time: amount of time for the segment

PVTCounter: 1integrity counter for current PVT point
PositionType: ABSOLUTE POSITION or RELATIVE POSITION
InitialPosition: drive initial position at the start of an absolute PVT
movement.
It is taken into
consideration only if an absolute movement is requested
MoveMoment :
UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)
UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
ReferenceBase:
FROM MEASURE -> the position reference starts from the actual
measured position value
FROM REFERENCE -> the position reference starts from the actual
reference position value
Output arguments:
return: TRUE if no error; FALSE if error

***/

© Technosoft 2021 171 TML_Lib — User Manual

BOOL TML EXPORT TS_PVTSetup (short ClearBuffer, short IntegrityChecking, short
ChangePVTCounter,

short AbsolutePositionSource, short
ChangelLowLevel, short PVTCounterValue, short LowLevelValue);

/*** Function:
For PVT motion mode parametrization and setup.
Input arguments:
ClearBuffer: 0 -> nothing
1 -> clears the PVT buffer
IntegrityChecking: (0 -> PVT integrity counter checking is active (default)
1 -> PVT integrity counter checking is inactive
ChangePVTCounter: 0 -> nothing

1 -> drive internal PVT integrity counter is changed with
the value specified PVTCounterValue

AbsolutePositionSource: specifies the source for the initial position in case
the PVT motion mode will be absolute

0 -> initial position read from PVTPOSO0O

1 -> initial position read from current value of
target position (TPOS)

ChangeLowLevel: 0 -> nothing

1 -> the parameter for BufferLow signaling is changed
with the value specified LowLevelValue

PVTCounterValue: New value for the drive internal PVT integrity counter
LowLevelValue: New value for the level of the BufferLow signal
Output arguments:

return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_SendPTPoint (long Position, unsigned int Time, short PTCounter);
/***

Function: Sends a PT point to the drive.

Input arguments:

Position: drive position for the desired point
Time: amount of time for the segment
PTCounter: integrity counter for current PT point

Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SendPTFirstPoint (long Position, unsigned int Time, short
PTCounter,

short
PositionType, long InitialPosition, short MoveMoment, short ReferenceBase);

/***

Function: Sends the first point from a series of PT points and sets the PT motion
mode.

Input arguments:

© Technosoft 2021 172 TML_Lib — User Manual

Position: drive position for the desired point

Time: amount of time for the segment

PTCounter: integrity counter for current PT point

PositionType: ABSOLUTE POSITION or RELATIVE POSITION

InitialPosition: drive initial position at the start of an absolute PT

movement. It is taken into consideration only if an absolute movement 1is requested
MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
ReferenceBase:

FROM MEASURE -> the position reference starts from the actual
measured position value

FROM REFERENCE -> the position reference starts from the actual
reference position value

Output arguments:
return: TRUE if no error,; FALSE if error
***/
BOOL TML EXPORT TS_PTSetup (short ClearBuffer, short IntegrityChecking, short
ChangePTCounter,

short AbsolutePositionSource, short
ChangeLowLevel, short PTCounterValue, short LowLevelValue);

/***
Function: For PT motion mode parametrization and setup.
Input arguments:
ClearBuffer: 0 -> nothing
1 -> clears the PT buffer
IntegrityChecking: 0 -> PT integrity counter checking is active (default)
1 -> PT integrity counter checking is inactive

ChangePVTCounter: 0 -> nothing

1 -> drive internal PT integrity counter is changed with the
value specified PTCounterValue

AbsolutePositionSource: specifies the source for the initial position in case
the PT motion mode will be absolute

0 -> initial position read from PVTPOS0O

1 -> initial position read from current value of target
position (TPOS)

ChangeLowLevel: 0 -> nothing

1 -> the parameter for BufferLow signaling is changed with
the value specified LowLevelValue

PTCounterValue: New value for the drive internal PT integrity counter
LowLevelValue: New value for the level of the BufferLow signal
Output arguments:

return: TRUE if no error; FALSE if error

***/

© Technosoft 2021 173 TML_Lib — User Manual

BOOL TML EXPORT TS_MoveSCurveRelative (long RelPosition, double Speed, double
Acceleration, long JerkTime, short MoveMoment, short DecelerationType);
/***
Function: For relative S-Curve motion mode.
Input arguments:

RelPosition: Relative position reference value

Speed: Slew speed

Acceleration: Acceleration deceleration

JerkTime: The time after the acceleration reaches the desired value.
MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
DecelerationType:
S CURVE _SPEED PROFILE -> s-curve speed profile
TRAPEZOIDAL SPEED PROFILE -> trapezoidal speed profile
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_MoveSCurveAbsolute (long AbsPosition, double Speed, double

Acceleration, long JerkTime, short MoveMoment, short DecelerationType);
/***
Function: For absolute S-Curve motion mode.

Input arguments:

AbsPosition: Absolute position reference value

Speed: Slew speed

Acceleration: Acceleration deceleration

JerkTime: The time after which the acceleration reaches the desired
value.

MoveMoment :

UPDATE NONE -> setup motion parameters, movement will start latter
(on an Update command)

UPDATE IMMEDIATE -> start moving Immediate
UPDATE ON EVENT -> start moving on event
DecelerationType:
S CURVE SPEED PROFILE -> s-curve speed profile
TRAPEZOIDAL SPEED PROFILE -> trapezoidal speed profile
Output arguments:

return: TRUE if no error; FALSE if error

***/

/***/

/*******************EVENT—RELATED fUHCtiOHS*************************/

/***/

© Technosoft 2021 174 TML_Lib — User Manual

#ifdef cplusplus
BOOL TML EXPORT TS_CheckEvent (BOOL& event) ;
felse
BOOL TML EXPORT TS_CheckEvent (BOOL* event);
#endif
/***
Function: Check if the actually active event occured.
Output arguments:
event: TRUE on event detected
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnMotionComplete (BOOL WaitEvent, BOOL EnableStop);
/***
Function: Setup event when the motion is complete.
Input arguments:
wWaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue

EnableStop: TRUE -> On motion complete, stop the motion, FALSE -> Don't
stop the motion

Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnMotorPosition (short PositionType, long Position, BOOL
Over, BOOL WaitEvent, BOOL EnableStop);
/***
Function: Setup event when motor position is over/under imposed value.
Input arguments:
PositionType: ABSOLUTE POSITION or RELATIVE POSITION

Position: Position value to be reached

Over: TRUE -> Look for position over,; FALSE -> Look for position
below

WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the
motion

Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnLoadPosition (short PositionType, long Position, BOOL
Over, BOOL WaitEvent, BOOL EnableStop);
/***
Function: Setup event when load position is over/under imposed value.
Input arguments:
PositionType: ABSOLUTE POSITION or RELATIVE POSITION

© Technosoft 2021 175 TML_Lib — User Manual

Position: Position value to be reached

Over: TRUE -> Look for position over,; FALSE -> Look for position
below

WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the
motion

Output arguments:

return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnMotorSpeed (double Speed, BOOL Over, BOOL WaitEvent,
BOOL EnableStop) ;

/***

Function: Setup event when motor speed 1s over/under imposed value.
Input arguments:

Speed: Speed value to be reached

Over: TRUE -> Look for speed over,; FALSE -> Look for speed below
WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetEventOnLoadSpeed (double Speed, BOOL Over, BOOL WaitEvent,
BOOL EnableStop):;

/***

Function: Setup event when load speed is over/under imposed value.
Input arguments:

Speed: Speed value to be reached

Over: TRUE -> Look for speed over,; FALSE -> Look for speed below
WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetEventOnTime (WORD Time, BOOL WaitEvent, BOOL EnableStop);
/***
Function: Setup event after a time interval.

Input arguments:

Time: Time after which the event will be set
WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion

© Technosoft 2021 176 TML_Lib — User Manual

Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnPositionRef (long Position, BOOL Over, BOOL WaitEvent,
BOOL EnableStop) ;

/***

Function: Setup event when position reference 1s over/under imposed value.
Input arguments:

Position: Position value to be reached

Over: TRUE -> Look for speed over,; FALSE -> Look for speed below
WaitEvent: TRUE -> Wait until event occurs; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetEventOnSpeedRef (double Speed, BOOL Over, BOOL WaitEvent, BOOL
EnableStop) ;
/***

Function: Setup event when speed reference is over/under imposed value.

Input arguments:

Speed: Speed value to be reached

Over: TRUE -> Look for speed over,; FALSE -> Look for speed below
wWaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetEventOnTorqueRef(int Torque, BOOL Over, BOOL WaitEvent, BOOL
EnableStop) ;
/***

Function: Setup event when torque reference 1is over/under imposed value.

Input arguments:

Torque: Torque value to be reached

Over: TRUE -> Look for speed over,; FALSE -> Look for speed below
WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE if error

***/

© Technosoft 2021 177 TML_Lib — User Manual

BOOL TML EXPORT TS_SetEventOnEncoderIndex (short IndexType, short TransitionType,
BOOL WaitEvent, BOOL EnableStop);

/***
Function: Setup event when encoder index is triggered.
Input arguments:

IndexType: INDEX 1 or INDEX 2

TransitionType: TRANSITION HIGH TO LOW or TRANSITION LOW TO HIGH
WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnLimitSwitch (short LSWType, short TransitionType, BOOL
WaitEvent, BOOL EnableStop);

/***
Function: Setup event when selected limit switch is triggered.

Input arguments:

LSWType: LSW NEGATIVE or LSW POSITIVE

TransitionType: TRANSITION HIGH TO LOW or TRANSITION LOW TO HIGH
WaitEvent: TRUE -> Wait until event occurs; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't stop the

motion
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetEventOnDigitalInput(BYTE InputPort, short IOState, BOOL
WaitEvent, BOOL EnableStop);

/***
Function: Setup event when selected input port status is IOState.

Input arguments:

InputPort: Input port number

IOState: IO LOW or IO HIGH

WaitEvent: TRUE -> Wait until event occurs,; FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't

stop the motion
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetEventOnHomeInput (short IOState, BOOL WaitEvent, BOOL
EnableStop) ;

/*** Function-

Setup event when selected input port status is IOState.

© Technosoft 2021 178 TML_Lib — User Manual

Input arguments:

IOState: IO LOW or IO HIGH
WaitEvent: TRUE -> Wait until event occurs, FALSE -> Continue
EnableStop: TRUE -> On event, stop the motion, FALSE -> Don't

stop the motion
Output arguments:
return: TRUE if no error; FALSE 1if error

***/

/***/

/*******************INPUT / OUTPUT functions************************/

/***/

BOOL TML EXPORT TS_SetupInput (BYTE nIO);
/***
Function: Setup IO port as input.
Input arguments:
nIOo: Port number to be set as input
Output arguments:
return: TRUE if no error,; FALSE if error

***/

#ifdef cplusplus
BOOL TML EXPORT TS_GetInput (BYTE nIO, BYTE& InValue);
#else
BOOL TML EXPORT TS_GetInput (BYTE nIO, BYTE* InValue);
#endif
/***
Function: Get input port status.
Input arguments:
nIO: Input port number to be read
Output arguments:
InValue: the input port status value (0 or 1)
return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus

BOOL TML_EXPORT TS_GetHomeInput(BYTE& InValue) ;
#else

BOOL TML EXPORT TS_GetHomeInput(BYTE* InValue) ;
#endif

/***

Function: Get home input port status.

Output arguments:

© Technosoft 2021 179 TML_Lib — User Manual

InValue: the input port status value (0 or 1)
return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetupOutput (BYTE nIO) ;

/*** Functj_on:
Setup IO port as output.
Input arguments:
nIlo: Port number to be set as output
Output arguments:
return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetOutput (BYTE nIO, BYTE OutValue);
/***
Function: Set output port status.
Input arguments:
nIOo: Output port number to be written
OutValue: Output port status value to be set (0 or 1)
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

#ifdef cplusplus
BOOL TML EXPORT TS_GetMultipleInputs (LPCSTR pszVarName, shorts& Status);
#else
BOOL TML EXPORT TS_GetMultipleInputs(LPCSTR pszVarName, short* Status);
#endif
/***
Function: Read multiple inputs.
Input arguments:
pszVarName: temporary variable name used to read input status
Output arguments:
Status:value of multiple input status.
return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_SetMultipleOutputs (LPCSTR pszVarName, short Status);
/***
Function: Set multiple outputs (for firmware versions FAXX).
pszVarName: temporary variable name used to set output status
Status: value to be set
Output arguments:
return: TRUE if no error; FALSE if error

***/

© Technosoft 2021 180 TML_Lib — User Manual

BOOL TML EXPORT TS_SetMultipleOutputs2 (short SelectedPorts, short Status);
/***
Function: Set multiple outputs (for firmware versions FBxX).

SelectedPorts: port mask. Set bit n to 1 if you want to update the status
of port n.

Status: value to be set
Output arguments:

return: TRUE if no error,; FALSE if error

***/

/***/
/*******************General use********************************/

/***/

BOOL TML EXPORT TS_SendDataToHost (BYTE HostAddress, DWORD StatusRegMask, WORD
ErrorRegMask) ;
/***
Function: Send status and error registers to host.
Input arguments:
HostAddress: axis ID of host
StatusRegMask: bit mask for status register
ErrorRegMask: bit mask for error register
Output arguments:

return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_inineChecksum(WORD startAddress, WORD endAddress, WORD&
checksum) ;

#else

BOOL TML EXPORT TS_OnlineChecksum (WORD startAddress, WORD endAddress, WORD*
checksum) ;

#endif
/***
Function: Get checksum of a memory range.

startAddress: start memory address

endAddress: end memory address
Output arguments:

checksum: checksum (sum modulo OxFFFF) of a memory range returned
by the active drive/motor

return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus
BOOL TML EXPORT TS DownloadProgram (LPCSTR pszOutFile, WORD& wEntryPoint);

© Technosoft 2021 181 TML_Lib — User Manual

#else
BOOL TML EXPORT TS_pownloadProgram(LPCSTR pszOutFile, WORD* wEntryPoint);
#endif

/***

Function: Download a COFF formatted file to the drive, and return the entry point
of that file.

Input arguments:
pszOutFile: Name of the output TML object file

Output arguments:
wEntryPoint: the entry point (start address) of the downloaded file
return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_GOTO (WORD address) ;
/***
Function: Execute a GOTO instruction on the drive.
Input arguments:
address: program memory address of the instruction
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_GOTO_Label (LPCSTR pszLabel);
/***
Function: Execute a GOTO instruction on the drive.
Input arguments:
pszLabel: label of the instruction
Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_CALL (WORD address) ;
/***
Function: Execute a CALL instruction on the drive.
Input arguments:
address: address of the procedure
Output arguments:

return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_CALL Label (LPCSTR pszFunctionName) ;

/***

Function: Execute a CALL instruction on the drive.
Input arguments:

pszFunctionName: name of the procedure to be executed

© Technosoft 2021 182 TML_Lib — User Manual

Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_CancelableCALL (WORD address) ;
/***
Function: Execute a cancelable call (CALLS) instruction on the drive.

Input arguments:
address: address of the procedure
Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_CancelableCALL Label (LPCSTR pszFunctionName) ;
/***
Function: Execute a cancelable call (CALLS) instruction on the drive.

Input arguments:
pszFunctionName: name of the procedure to be executed
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS Homing (BYTE homingNumber) ;
/**
Ak Kk Kk Kk kK Kk kK
Function: Execute predefined homing routine (HOMING instruction).
Input arguments:
homingNumber: the number of the homing routine to be executed (1 to 40). The
number of the homing routines available are product dependent.
Output arguments:
return: TRUE if no error; FALSE if error

KK A AR AR A A A A A A AR A A A A A A A A A A A A A AR A AR A A A A AR A AR A A A A I A A I A A I A A I A A A A A A A A I AR AR A AR A AR A A A A kA kK

********/

BOOL TML EXPORT TS_ABORT (void) ;

/***

Function: Execute ABORT instruction on the drive (aborts execution of a procedure
called
with cancelable call instruction).
Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_Execute (LPCSTR pszCommands) ;

/***

© Technosoft 2021 183 TML_Lib — User Manual

Function: Execute TML commands entered in TML source code format (as is entered 1in
Command Interpreter).

Input arguments:

pszCommands: String containing the TML source code to be executed. Multiple
lines are allowed.

Output arguments:

return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_ExecuteScript (LPCSTR pszFileName) ;

/***
Function: Execute TML commands in TML source code, from a script file (as 1is
entered in Command Interpreter).

Input arguments:

pszFileName: The name of the file containing the TML source code to be
executed.

Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML EXPORT TS_GetOutputOfExecute (LPSTR pszOutput, int nMaxChars);

/***
Function: Return the TML output code of the last previously executed library
function call.

Input arguments:

pszOutput: String containing the TML source code generated at the last
library function call.

nMaxChars: maximum number of characters to return in the string
Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS_SetupLogger (WORD wLogBufferAddr, WORD wLogBufferLen, WORD*
arrayAddresses, WORD countAddr, WORD period);

/***

Function: Setup logger parameters (could be set up on a group/broadcast
destination).
Input arguments:

wLogBufferAddr: The address of logger buffer in drive memory, where data
will be stored during logging

wLogBufferLen: The length in WORDs of the logger buffer
arrayAddresses: An array containing the drive memory addresses to be logged
countAddr: The number of memory addresses to be logged

period: How offen to log the data: a value between 1 and 7FFF (useful only
for new generation drives).

If it is different than 1, one set of data will be stored at every
"period" samplings.

© Technosoft 2021 184 TML_Lib — User Manual

Output arguments:
return: TRUE if no error,; FALSE if error

***/

BOOL TML EXPORT TS_StartLogger (WORD wLogBufferAddr, BYTE LogType) ;

/***

Function: Start the logger on a drive (could be started on a group/broadcast
destination).
Input arguments:
wLogBufferAddr: address of logger buffer (previously set by TS SetupLogger)
LogType:
LOGGER FAST: logging occurs in fast sampling control loop
(current loop)
LOGGER _SLOW: logging occurs in slow sampling control loop
(position/speed loop)
Output arguments:
return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_CheckLoggerStatus (WORD wLogBufferAddr, WORD& status);
telse

BOOL TML EXPORT TS_CheckLoggerStatus (WORD wLogBufferAddr, WORD* status);
#tendif

/***

Function: Check logger status. (destination must be a single axis).

Input arguments:
wLogBufferAddr: address of logger buffer (previously set by TS SetupLogger)

Output arguments:

status: Number of points still remaining to capture; if it is 0, the
logging is completed

return: TRUE if no error; FALSE if error

***/

#ifdef cplusplus

BOOL TML EXPORT TS_UploadLoggerResults (WORD wLogBufferAddr, WORD* arrayValues,
WORD& countValues) ;

telse

BOOL TML EXPORT TS UploadLoggerResults (WORD wLogBufferAddr, WORD* arrayValues,
WORD* countValues) ;

#endif
/***

Function: Upload logged data from the drive (destination must be a single axis).

Input arguments:
wLogBufferAddr: address of logger buffer (previously set by TS SetupLogger)

© Technosoft 2021 185 TML_Lib — User Manual

arrayValues: Pointer to the array where the uploaded data 1is stored on the
PC

countValues: The size of arrayValues
Output arguments:
arrayValues: uploaded logger data

countValues: The size of actualized data (lower or equal with countValues
input value)

return: TRUE if no error,; FALSE if error

***/

void TML_ EXPORT
TS_RegisterHandlerForUnrequestedDriveMessages (pfnCallbackRecvDriveMsg handler) ;
/***
Function: Register application's handler for unrequested drive messages.

Input arguments:

pfnCallbackRecvDriveMsg: pointer to handler

Output arguments:

***/

BOOL TML EXPORT TS_CheckForUnrequestedDriveMessages (void) ;

/***
Function: Check 1f there are new unrequested drive messages and call handler for
every message received.

Input arguments:

Output arguments:

return: TRUE if no error; FALSE 1if error

***/

BOOL TML EXPORT TS _DriveInitialisation (void);

/***
Function: Execute ENDINIT command and verify if the setup table is valid. This
function

must be called only after TS LoadSetup & TS SetupAxis &
TS SelectAxis are called.

Input arguments:
Output arguments:
return: TRUE if no error,; FALSE if error
***/
#ifdef cplusplus

}
#endif

#endif // TML LIB H

© Technosoft 2021 186 TML_Lib — User Manual

© Technosoft 2021 187 TML_Lib — User Manual

®

TECHNOSOTFT

	Read This First
	About This Manual
	Scope of This manual
	Notational Conventions
	Related Documentation
	Contact information
	Table of contents
	1. Introduction
	2. Getting started
	2.1. Hardware installation
	2.2. Software installation on Microsoft Windows platforms
	2.2.1. Installing EasySetUp
	2.2.2. Installing TML_Lib library

	2.3. Software installation on Linux platforms
	2.3.1. Installing Microsoft Windows emulator
	2.3.2. Installing EasySetUp
	2.3.3. Installing TML_Lib library

	2.4. Build the host application with TML_Lib
	2.4.1. Drive/motor setup
	2.4.2. Build you application with TML_Lib

	3. TML description
	3.1. Basic concept
	3.2. Internal units and scaling factors
	3.3. Axis Identification
	3.4. Multithread and multiprocess applications with TML_Lib
	3.5. Description of functions
	3.5.1. Communication setup
	3.
	3.1.
	3.2.
	3.3.
	3.4.
	3.5.
	3.5.1.
	3.5.1.1. TS_OpenChannel
	3.5.1.2. TS_SelectChannel
	3.5.1.3. TS_CloseChannel

	3.5.2. Drive setup
	3.5.2.1. TS_LoadSetup
	3.5.2.2. TS_SetupAxis
	3.5.2.3. TS_SetupGroup
	3.5.2.4. TS_SetupBroadcast
	3.5.2.5. TS_DriveInitialisation
	3.5.2.6. TS_Save
	3.5.2.7. TS_GetMotorPositionScalingFactor
	3.5.2.8. TS_GetLoadPositionScalingFactor
	3.5.2.9. TS_GetCurrentScalingFactor
	3.5.2.10. TS_GetTimeScalingFactor

	3.5.3. Drive administration
	3.5.3.1. TS_SelectAxis
	3.5.3.2. TS_SelectGroup
	3.5.3.3. TS_SelectBroadcast

	3.5.4. Drive/motor monitoring
	3.5.4.1. TS_ReadStatus
	3.5.4.2. TS_GetFirmwareVersion
	3.5.4.3. TS_GetApplicationInfo
	3.5.4.4. TS_GetLibraryVersion
	3.5.4.5. TS_SendDataToHost
	3.5.4.6. TS_CheckForUnrequestedDriveMessages
	3.5.4.7. TS_RegisterHandlerForUnrequestedDriveMessages
	3.5.4.8. TS_OnlineChecksum

	3.5.5. Error handling
	3.5.5.1. TS_ResetFault
	3.5.5.2. TS_Reset
	3.5.5.3. TS_GetLastErrorText

	3.5.6. Motion programming
	3.5.6.1. TS_MoveAbsolute
	3.5.6.2. TS_MoveRelative
	3.5.6.3. TS_MoveSCurveAbsolute
	3.5.6.4. TS_MoveSCurveRelative
	3.5.6.5. TS_MoveVelocity
	3.5.6.6. TS_SetAnalogueMoveExternal
	3.5.6.7. TS_SetDigitalMoveExternal
	3.5.6.8. TS_SetOnlineMoveExternal
	3.5.6.9. TS_VoltageTestMode
	3.5.6.10. TS_TorqueTestMode
	3.5.6.11. TS_PVTSetup
	3.5.6.12. TS_SendPVTFirstPoint
	3.5.6.13. TS_SendPVTPoint
	3.5.6.14. TS_PTSetup
	3.5.6.15. TS_SendPTFirstPoint
	3.5.6.16. TS_SendPTPoint
	3.5.6.17. TS_SetGearingMaster
	3.5.6.18. TS_SetGearingSlave
	3.5.6.19. TS_MotionSuperposition
	3.5.6.20. TS_SetCammingMaster
	3.5.6.21. TS_SetCammingSlaveRelative
	3.5.6.22. TS_SetCammingSlaveAbsolute
	3.5.6.23. TS_CamDownload
	3.5.6.24. TS_CamInitialization
	3.5.6.25. TS_SetMasterResolution
	3.5.6.26. TS_SendSynchronization

	3.5.7. Motor commands
	3.5.7.1. TS_Power
	3.5.7.2. TS_UpdateImmediate
	3.5.7.3. TS_UpdateOnEvent
	3.5.7.4. TS_Stop
	3.5.7.5. TS_SetPosition
	3.5.7.6. TS_SetTargetPositionToActual
	3.5.7.7. TS_SetCurrent
	3.5.7.8. TS_QuickStopDecelerationRate

	3.5.8. Events
	3.5.8.1. TS_CheckEvent
	3.5.8.2. TS_SetEventOnMotionComplete
	3.5.8.3. TS_SetEventOnMotorPosition
	3.5.8.4. TS_SetEventOnLoadPosition
	3.5.8.5. TS_SetEventOnMotorSpeed
	3.5.8.6. TS_SetEventOnLoadSpeed
	3.5.8.7. TS_SetEventOnTime
	3.5.8.8. TS_SetEventOnPositionRef
	3.5.8.9. TS_SetEventOnSpeedRef
	3.5.8.10. TS_SetEventOnTorqueRef
	3.5.8.11. TS_SetEventOnEncoderIndex
	3.5.8.12. TS_SetEventOnLimitSwitch
	3.5.8.13. TS_SetEventOnDigitalInput
	3.5.8.14. TS_SetEventOnHomeInput

	3.5.9. TML jumps and function calls
	3.5.9.1. TS_GOTO
	3.5.9.2. TS_GOTO_Label
	3.5.9.3. TS_CALL
	3.5.9.4. TS_CALL_Label
	3.5.9.5. TS_CancelableCALL
	3.5.9.6. TS_CancelableCALL_Label
	3.5.9.7. TS_Homing
	3.5.9.8. TS_ABORT
	3.5.9.9. TS_DownloadProgram
	3.5.9.10. TS_DownloadSwFile

	3.5.10. IO handling
	3.5.10.1. TS_SetupInput
	3.5.10.2. TS_GetInput
	3.5.10.3. TS_SetupOutput
	3.5.10.4. TS_SetOutput
	3.5.10.5. TS_GetHomeInput
	3.5.10.6. TS_GetMultipleInputs
	3.5.10.7. TS_SetMultipleOutputs2

	3.5.11. Data transfer
	3.5.11.1. TS_SetIntVariable
	3.5.11.2. TS_GetIntVariable
	3.5.11.3. TS_SetLongVariable
	3.5.11.4. TS_GetLongVariable
	3.5.11.5. TS_SetFixedVariable
	3.5.11.6. TS_GetFixedVariable
	3.5.11.7. TS_GetVariableAddress
	3.5.11.8. TS_SetBuffer
	3.5.11.9. TS_GetBuffer

	3.5.12. Miscellaneous
	3.5.12.1. TS_Execute
	3.5.12.2. TS_ExecuteScript
	3.5.12.3. TS_GetOutputOfExecute

	3.5.13. Data logger
	3.5.13.1. TS_SetupLogger
	3.5.13.2. TS_StartLogger
	3.5.13.3. TS_CheckLoggerStatus
	3.5.13.4. TS_ UploadLoggerResults

	1. Examples
	4.1. Start Up
	4.2. Drive status
	4.3. Error handling
	4.4. Basic move
	4.5. Homing
	4.6. External reference
	4.7. Multi-axis
	4.8. PVT - multithreading
	4.9. Logger
	4.10. Event handling
	4.11. I/O handling
	4.12. Distributed tasks
	Appendix A – CAM files format
	Appendix B – Package contents of TML_LIB for Microsoft Windows
	Appendix C – Package contents of TML_LIB for Linux
	Appendix D – TML_Lib.h file

