iPOS4808 VX-CAN / CAT

T E C H N O S O F T

Intelligent Servo Drive for Step, DC, Brushless DC and AC Motors

Intelligent Servo Drives

Technical Reference

© Technosoft 2024

P091.028.iPOS4808.VX.CAN.CAT.UM.0124

Ta	able o	of contents	3
R	ead T	his First	5
	Abou	t This Manual	5
	Notat	ional Conventions	5
	Trade	emarks	5
		ed Documentation	
		ı Need Assistance	
1	Saf	ety information	
	1.1	Warnings	7
	1.2	Cautions	8
	1.3	Quality system, conformance and certifications	8
2	Dro	oduct Overview	0
	2.1	Introduction	
	2.2	Product Features	
	2.3	Identification Labels	
	2.4	Supported Motor-Sensor Configurations	12
	2.5	iPOS4808 VX I/O Evaluation board	
	2.5.	1Starter Kit ordering information	12
3	Hai	rdware Installation	13
	3.1	iPOS4808 VX-CAN/CAT Board Dimensions	13
	3.2	ECAT-VX EtherCAT adapter dimensions	13
	3.3	Mechanical Mounting	
		1Vertical Mounting	
	3.3.	2 Horizontal Mounting	15
	3.4	Motherboard PCB Design	17
	3.5	EMC recommendations	18
	3.6	Connectors and Pinouts	19
		1Pinouts for iPOS4808 VX	
		2 Mating Connectors for iPOS4808 VX	
		3ECAT-VX EtherCAT adapter pinouts	
		4 Mating Connectors for ECAT-VX adapter	
		5EtherCAT VX adapter to iPOS4808 VX interconnections	
	3.6.0	6ECAT-VX adapter to RS45 interface connection diagram	
	3.7	Connection diagrams	
		1iPOS4808 VX-CAN connection diagram	
		2iPOS4808 VX-CAT connection diagram	
		324V Digital I/O Connection	
		45V Digital I/O Connection	
	37	5Analog Inputs Connection	25

3.7.5.1	0-5V Input Range	
3.7.5.2	+/-10V to 0-5V Input Range Adapter	
3.7.5.3	Recommendation for wiring	
	tor connections	
3.7.6.1 3.7.6.2	Brushless Motor connection	
3.7.6.3	3-Phase Step Motor connection	
3.7.6.4	DC Motor connection	
3.7.6.5	Recommendations for motor wiring	
3.7.7Fe	edback connections	28
3.7.7.1	Single-ended Incremental Encoder Connection	28
3.7.7.2	Differential Incremental Encoder Connection	
3.7.7.3	Digital Hall Connection for direct motor control without an encoder	
3.7.7.4 3.7.7.5	Digital Hall Connection for Motor + Halls + Encoder control	
3.7.7.6	Sin-Cosine Analog Encoder Connection	
3.7.7.7	Recommendations for wiring	
3.7.8Po	wer Supply Connection	
3.7.8.1	Supply Connection	
3.7.8.2	Recommendations for Supply Wiring	
3.7.8.3	Recommendations to limit over-voltage during energy regeneration	
3.7.9Se	ial RS-232 connection	34
3.7.9.1	Serial RS-232 connection	
3.7.9.2	Recommendation for wiring	
	N-bus connection (for CAN drives only)	
3.7.10.1		
3.7.10.2	Recommendation for wiring	
	able of Autorun Mode (for CAN) / Disable Setup (for CAT)	
3.7.11.1	For CAN drives	
3.7.11.2	For EtherCAT drives	
3.8 Operat	ion Mode and Axis ID Selection for CAT drives	36
	ion Mode and Axis ID Selection for CAT drivesion Mode and Axis ID Selection for CAN drives	
3.9 Operat		37
3.9 Opera 3.9.1Axi	ion Mode and Axis ID Selection for CAN drives	37
3.9.1Axi 3.9.2Axi	cion Mode and Axis ID Selection for CAN drivess ID Settings for CAN drives and CANopen modes ID Settings for CAN drives and TMLCAN mode	
3.9 Operation 3.9.1Axi 3.9.2Axi Elec	s ID Settings for CAN drives and CANopen modes ID Settings for CAN drives and TMLCAN modes ID Settings for CAN drives and TMLCAN mode	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elec 3.10.1Op	ion Mode and Axis ID Selection for CAN drives s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elec 3.10.1Op 3.10.2Sto	ion Mode and Axis ID Selection for CAN drives s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions rage Conditions	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Electric 3.10.1Op 3.10.2Std 3.10.3Me	cion Mode and Axis ID Selection for CAN drives s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions rage Conditions chanical Mounting	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elect 3.10.1Op 3.10.2Std 3.10.3Me 3.10.4En	cion Mode and Axis ID Selection for CAN drives s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions rage Conditions chanical Mounting	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elec 3.10.1Op 3.10.2Sto 3.10.3Me 3.10.4En 3.10.5Log	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode IT IS ID Settings for CAN drives and TMLCAN mode It Is	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elect 3.10.1Op 3.10.2Std 3.10.3Me 3.10.4Ent 3.10.5Log 3.10.6Mo	s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions chanical Mounting vironmental Characteristics gic Supply Input (+V _{LOG}) tor Supply Input (+V _{MOT})	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elect 3.10.1Op 3.10.2Std 3.10.3Med 3.10.4End 3.10.5Log 3.10.6Mod 3.10.7Mod	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode IT IS ID Settings for CAN drives and TMLCAN mode It Is IS ID Settings for CAN drives and TMLCAN mode It Is	
3.9 Operation 3.9.1Axi 3.9.2Axi 3.10 Elect 3.10.1Op 3.10.2Sto 3.10.3Me 3.10.4En 3.10.5Log 3.10.6Mo 3.10.7Mo 3.10.8Dig	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode IT IS ID Settings for CAN drives and TMLCAN mode It Is IS ID Settings for CAN drives and TMLCAN mode It Is	
3.9 Operation 3.9.1Axion 3.9.2Axion 3.10.1Operation 3.10.1Operation 3.10.2Store 3.10.3Median. 3.10.4Environment 3.10.5Logis 3.10.6Modian. 3.10.7Modian. 3.10.8Digis 3.10.9Digis 3.10.9	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode ID Settings for CAN drives and TMLCAN mode Itrical Specifications In age Conditions In ag	
3.9 Operation 3.9.1	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode IT IS ID Settings for CAN drives and TMLCAN mode It Is IS ID Settings for CAN drives and TMLCAN mode It Is	
3.9 Operations 3.9.1	s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions chanical Mounting vironmental Characteristics gic Supply Input (+V _{LOG}) tor Supply Input (+V _{MOT}) tor Outputs (A/A+, B/A-, C/B+, BR/B-) ital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4/Enable, IN5, IN6, IN7) ital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT5) ital Hall Inputs (Hall1, Hall2, Hall3)	
3.9 Operation 3.9.1	s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions chanical Mounting vironmental Characteristics gic Supply Input (+V _{LOG}) tor Supply Input (+V _{MOT}) tor Outputs (A/A+, B/A-, C/B+, BR/B-) ital Inputs (INO, IN1, IN2/LSP, IN3/LSN, IN4/Enable, IN5, IN6, IN7) ital Outputs (OUTO, OUT1, OUT2/Error, OUT3/ Ready, OUT5) ital Hall Inputs (Hall1, Hall2, Hall3) ear Hall Inputs (LH1, LH2, LH3) -Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)	
3.9 Operations 3.9.1	s ID Settings for CAN drives and CANopen mode s ID Settings for CAN drives and TMLCAN mode trical Specifications erating Conditions chanical Mounting vironmental Characteristics gic Supply Input (+V _{LOG}) tor Supply Input (+V _{MOT}) tor Outputs (A/A+, B/A-, C/B+, BR/B-) ital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4/Enable, IN5, IN6, IN7) ital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT5) ital Hall Inputs (Hall1, Hall2, Hall3) ear Hall Inputs (LH1, LH2, LH3)Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-) alog 0.5V (REF/FDBK)	
3.9 Operations 3.9.1	tion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode IT IS ID Settings for CAN drives and TMLCAN mode It Is In Specifications It Is Is Is It Is Is Is It Is Is It Is It Is Is Is It Is It Is It Is It Is It Is Is Is It Is Is Is Is It Is	
3.9 Operations 3.9.1	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode IS ID Settings for CAN drives and TMLCAN mode Itrical Specifications Itrical Specifications Itrical Mounting Itrical Mou	
3.9 Operations 3.9.1	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode ID Settings for CAN drives and TMLCAN mode Irical Specifications Perating Conditions Perating Conditions Prage Conditions Priconmental Characteristics Pricongic Supply Input (+V _{LOG}) Pricongular (+V _{LOG}) Proposition Supply Input (+V _{MOT}) Proposition Coutputs (A/A+, B/A-, C/B+, BR/B-) Proposition Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4/Enable, IN5, IN6, IN7) Proposition Inputs (OUTO, OUT1, OUT2/Error, OUT3/ Ready, OUT5) Proposition Inputs (Hall1, Hall2, Hall3) Pear Hall Inputs (Hall1, Hall2, Hall3) Pear Hall Inputs (LH1, LH2, LH3) Proposition Inputs (Sin+, Sin-, Cos+, Cos-) Proposition Inputs (A/A+, A-, B/B+, B-, Z/Z+, Z-) Proposition Inputs (A/A+, A-, B/B+, B-, Z/Z+, Z-) Proposition Inputs (AxisID 0, AxisID 1, Axis ID 2)	
3.9 Operations 3.9.1 Axions 3.9.2 Axions 3.10.1 Operations 3.10.2 Strain 3.10.3 Medical 3.10.5 Logical 3.10.5 Logical 3.10.6 Modical 3.10.7 Modical 3.10.9 Digical 3.10.10 Digical 3.10.11 Linux 3.10.12 Sinux 3.10.13 And 3.10.14 Endical 3.10.15 Axions 3.10.16 RSical 3.10.17 CA	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode ID Settings for CAN drives and TMLCAN mode Itrical Specifications Identifications	
3.9 Operations 3.9.1	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode ID Settings for CAN drives and TMLCAN mode Inical Specifications In Serating Conditions In Italian (In Italian In Italian Italian In Italian Italian In Italian	
3.9 Operations 3.9.1	ion Mode and Axis ID Selection for CAN drives ID Settings for CAN drives and CANopen mode ID Settings for CAN drives and TMLCAN mode Itrical Specifications Identifications	

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information-retrieval system without permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

About This Manual

This book is a technical reference manual for:

Product Name	Part Number	Firmware	Description	
iPOS4808 VX-CAN	P027.014.E001	F510I+	Standard version, CAN	
iPOS4808 VX-CAT	P027.014.E201	F508M+	Standard version, CAT	

In order to operate the **iPOS48008** drives, you need to pass through 3 steps:

- ☐ Step 1 Hardware installation
- ☐ Step 2 Drive setup using Technosoft EasySetUp software for drive commissioning
- □ Step 3 Motion programming using one of the options:
 - ☐ A CANopen master¹ or an EtherCAT® master²
 - ☐ The drives **built-in motion controller** executing a Technosoft Motion Language (**TML**) program developed using Technosoft **EasyMotion Studio** software
 - ☐ A TML_LIB motion library for PCs (Windows or Linux) 3
 - ☐ A TML LIB motion library for PLCs ³
 - A **distributed control** approach which combines the above options, like for example a host calling motion functions programmed on the drives in TML

This manual covers **Step 1** in detail. It describes the **iPOS4808** hardware including the technical data, the connectors and the wiring diagrams needed for installation.

For **Step 2 and 3**, please consult the document **EasyMotion Studio – Quick Setup and Programming Guide.** For detailed information regarding the next steps, refer to the related documentation.

Notational Conventions

This document uses the following conventions:

- iPOS4808– all products described in this manual
- IU units Internal units of the drive
- SI units International standard units (meter for length, seconds for time, etc.)
- STO Safe Torque Off
- TML Technosoft Motion Language
- CANopen Standard communication protocol that uses 11-bit message identifiers over CAN-bus
- TMLCAN Technosoft communication protocol for exchanging TML commands via CAN-bus, using 29bit message identifiers
- CoE CAN application protocol over EtherCAT®

Trademarks

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

¹ when the iPOS4808 VX-CAN is set in CANopen mode

² when using and iPOS4808 VX-CAT

³ available only for CAN version

iPOS4808 VX-CAN Datasheet (P028.001.E001.DSH) iPOS4808 VX-CAT Datasheet (P028.001.E021.DSH)

- describes the hardware connections of the iPOS4808 VX EtherCAT® family of intelligent servo drives including the technical data and connectors.
- EasyMotion Studio Quick Setup and Programming Guide (P091.034.ESM-Quick.Setup.and.Programming.Guide.UM.xxxx) describes the compatible software installation, drive software setup commissioning, introduction to TML motion programming and motion evaluation tools
- Help of the EasySetUp software describes how to use EasySetUp to quickly setup any Technosoft drive for your application using only 2 dialogues. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp can be downloaded free of charge from Technosoft web page
- iPOS CANopen Programming (part no. P091.063.iPOS.UM.xxxx) explains how to program the iPOS family of intelligent drives using CANopen protocol and describes the associated object dictionary for CiA 301 v.4.2 application layer and communication profile and CiA DSP 402 v3.0 device profile for drives and motion control now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards
- **CoE Programming** (part no. P091.064.UM.xxxx) explains how to program the Technosoft intelligent drives using CAN application protocol over EtherCAT® and describes the associated object dictionary.
- Motion Programming using EasyMotion Studio (part no. P091.034.ESM.UM.xxxx) describes how to use the EasyMotion Studio to create motion programs using in Technosoft Motion Language (TML). EasyMotion Studio platform includes EasySetUp for the drive/motor setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can fully benefit from a key advantage of Technosoft drives their capability to execute complex motions without requiring an external motion controller, thanks to their built-in motion controller. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from the Technosoft web page
- TML_LIB v2.0 (part no. P091.040.v20.UM.xxxx) explains how to program in C, C++,C#, Visual Basic or Delphi Pascal a motion application for the Technosoft intelligent drives using TML_LIB v2.0 motion control library for PCs. The TML_lib includes ready-to-run examples that can be executed on Windows or Linux (x86 and x64).
- TML_LIB_LabVIEW v2.0 (part no. P091.040.LABVIEW.v20.UM.xxxx) explains how to program in LabVIEW a motion application for the Technosoft intelligent drives using TML_LIB_Labview v2.0 motion control library for PCs. The TML Lib LabVIEW includes over 40 ready-to-run examples.
- TML_LIB_S7 (part no. P091.040.S7.UM.xxxx) explains how to program in a PLC Siemens series S7-300 or S7-400 a motion application for the Technosoft intelligent drives using TML_LIB_S7 motion control library. The TML LIB S7 library is IEC61131-3 compatible.
- TML_LIB_CJ1 (part no. P091.040.CJ1.UM.xxxx) explains how to program in a PLC Omron series CJ1 a motion application for the Technosoft intelligent drives using TML_LIB_CJ1 motion control library for PLCs. The TML_LIB_CJ1 library is IEC61131-3 compatible.
- TML_LIB_X20 (part no. P091.040.X20.UM.xxxx) explains how to program in a PLC B&R series X20 a motion application for the Technosoft intelligent drives using TML_LIB_X20 motion control library for PLCs. The TML LIB X20 library is IEC61131-3 compatible.
- **TechnoCAN** (part no. P091.063.TechnoCAN.UM.xxxx) presents TechnoCAN protocol an extension of the CANopen communication profile used for TML commands
- IO-iPOS4808VX (part no. P091.084.IO-iPOS4808.UM.xxxx) describes the IO iPOS4808 I/O extension board included in the iPOS4808 Starter Kits.

If you want to	Contact Technosoft at
Visit Technosoft online	World Wide Web: http://www.technosoftmotion.com/
Receive general information or assistance (see Note)	World Wide Web: http://www.technosoftmotion.com/ Email: sales@technosoftmotion.com
Ask questions about product operation or report suspected problems (see Note)	Tel: +41 (0)32 732 5500 Email: support@technosoftmotion.com
Make suggestions about, or report errors in documentation.	Mail: Technosoft SA Avenue des Alpes 20 CH-2000 Neuchatel, NE Switzerland

1 Safety information

Read carefully the information presented in this chapter before carrying out the drive installation and setup! It is imperative to implement the safety instructions listed hereunder.

This information is intended to protect you, the drive and the accompanying equipment during the product operation. Incorrect handling of the drive can lead to personal injury or material damage.

The following safety symbols are used in this manual:

WARNING	WARNING!	SIGNALS A DANGER TO THE OPERATOR WHICH MIGHT CAUSE BODILY
	WARNING	INJURY. MAY INCLUDE INSTRUCTIONS TO PREVENT THIS SITUATION

	SIGNALS A	DANGER FOR	THE D	RIVE WHIC	CH MIGHT DAM	AGE T	HE PRO	DUCT
CAUTION!	OR OTHER	EQUIPMENT.	MAY	INCLUDE	INSTRUCTION	s TO	AVOID	THIS
	SITUATION							

CAUTION! Indicates areas SENSITIVE TO electrostatic discharges (ESD) WHICH REQUIRE HANDLING IN AN ESD PROTECTED ENVIRONMENT

1.1 Warnings

WARNING!	THE VOLTAGE USED IN THE DRIVE MIGHT CAUSE ELECTRICAL SHOCKS. DO
WARNING:	NOT TOUCH LIVE PARTS WHILE THE POWER SUPPLIES ARE ON

WARNING!						HAZARDS,			
WARNING	" DIS	CONNEC	T WIRES FRO	OM THE DR	RIVE WI	HILE THE PO	WER SUP	PLIES ARE C)N

WARNING! THE DRIVE MAY HAVE HOT SURFACES DURING OPERATION.

WARNING! DURING DRIVE OPERATION, THE CONTROLLED MOTOR WILL MOVE. KEEP AWAY FROM ALL MOVING PARTS TO AVOID INJURY

CAUTION! THE POWER SUPPLIES CONNECTED TO THE DRIVE MUST COMPLY WITH THE PARAMETERS SPECIFIED IN THIS DOCUMENT

CAUTION! TROUBLESHOOTING AND SERVICING ARE PERMITTED ONLY FOR PERSONNEL AUTHORISED BY TECHNOSOFT

THE DRIVE CONTAINS ELECTROSTATICALLY SENSITIVE COMPONENTS
WHICH MAY BE DAMAGED BY INCORRECT HANDLING. THEREFORE THE DRIVE
SHALL BE REMOVED FROM ITS ORIGINAL PACKAGE ONLY IN AN ESD
PROTECTED ENVIRONMENT

To prevent electrostatic damage, avoid contact with insulating materials, such as synthetic fabrics or plastic surfaces. In order to discharge static electricity build-up, place the drive on a grounded conductive surface and also ground yourself.

1.3 Quality system, conformance and certifications

IQNet and **Quality Austria** certification about the implementation and maintenance of the Quality Management System which fulfills the requirements of Standard **ISO 9001:2015**. **Quality Austria Certificate** about the application and further development of an effective **Quality Management System** complying with the requirements of Standard **ISO 9001:2015**

REACH Compliance - TECHNOSOFT hereby confirms that this product comply with the legal obligations regarding Article 33 of the European REACH Regulation 1907/2006 (Registration, Evaluation, Authorization and Restriction of Chemicals), which came into force on 01.06.2007.

RoHS Compliance - Technosoft SA here with declares that this product is manufactured in compliance with the RoHS directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)

Technosoft SA hereby declares that this product conforms to the following European applicable directives:

2014/30/EU Electromagnetic Compatibility (EMC) Directive

2014/35/EU Low Voltage Directive (LVD)

2014/35/EO Low Voltage Directive (L 93/68/EEC CE Marking Directive

Conflict minerals statement - Technosoft declares that the company does not purchase 3T&G (tin, tantalum, tungsten & gold) directly from mines or smelters...

We have no indication that Technosoft products contain minerals from conflict mines or smelters in and around the DRC.

2 Product Overview

2.1 Introduction

The **iPOS4808** is a family of fully digital intelligent servo drives, based on the latest DSP technology and they offer unprecedented drive performance combined with an embedded motion controller.

Suitable for control of brushless DC, brushless AC (vector control), DC brushed motors and step motors, the iPOS4808 drives accept as position feedback quadrature incremental encoders and digital Hall signals.

All drives perform position, speed or torque control and work in single, multi-axis or stand-alone configurations. Thanks to the embedded motion controller, the iPOS4808 drives combine controller, drive and PLC functionality in a single compact unit and are capable to execute complex motions without requiring intervention of an external motion controller. Using the high-level Technosoft Motion Language (TML) the following operations can be executed directly at drive level:

☐ Setting various motion modes (profiles, PVT, PT, electronic gearing¹ or camming¹, etc.)

Changing the motion modes and/or the motion parameters
Executing homing sequences
Controlling the program flow through:
 Conditional jumps and calls of TML functions
 TML interrupts generated on pre-defined or programmable conditions (protections triggered, transitions on limit switch or capture inputs, etc.)
 Waits for programmed events to occur
Handling of digital I/O and analogue input signals
Executing arithmetic and logic operations
Performing data transfers between axes
Controlling motion of an axis from another one via motion commands sent between axes ²
Sending commands to a group of axes (multicast). This includes the possibility to start simultaneously motion sequences on all the axes from the group ²
Synchronizing all the axis in a network

By implementing motion sequences directly at drive level you can really distribute the intelligence between the master and the drives in complex multi-axis applications, reducing both the development time and the overall communication requirements. For example, instead of trying to command each movement of an axis, you can program the drives using TML to execute complex motion tasks and inform the master when these tasks are done. Thus, for each axis control the master job may be reduced at: calling TML functions stored in the drive EEPROM and waiting for a message, which confirms the TML functions execution completion.

All iPOS4808 VX- CAN drives are equipped with a serial RS232 and a CAN 2.0B interface that can be set by hardware pins to operate in 2 communication protocol modes:

CANoper
TMLCAN

When **CANopen** mode is selected, the iPOS4808 conforms to **CiA 301 v4.2** application layer communication profile and **CiA DSP 402 v3.0** device profile for drives and motion control, now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards. In this mode, the iPOS4808 may be controlled via a CANopen master. The iPOS drive offers the possibility for a CANopen master to call motion sequences/ functions, written in TML and stored in the drive EEPROM, using manufacturer specific objects. Also, the drives can communicate separately between each other by using non reserved 11 bit identifiers.

When **TMLCAN** mode is selected, the iPOS4808 behaves as standard Technosoft intelligent drive and conforms to Technosoft protocol for exchanging TML commands via CAN-bus. When TMLCAN protocol is used, it is not mandatory to have a master. Any iPOS4808 can be set to operate standalone, and may play the role of a master to coordinate both the network communication/synchronization and the motion application via TML commands sent directly to the other drives.

When higher level coordination is needed, apart from a CANopen master, the iPOS4808 drives can also be controlled via a PC or a PLC using one of the **TML_LIB** motion libraries.

For iPOS4808 commissioning EasySetUp or EasyMotion Studio PC applications may be used.

© Technosoft 2024

¹ Available if the master axis sends its position via a communication channel, or by using the secondary encoder input

² Available only for CAN drives

EasySetUp is a subset of EasyMotion Studio, including only the drive setup part. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp shall be used for drive setup in all cases where the motion commands are sent exclusively from a master. Hence neither the iPOS4808 TML programming capability nor the drive camming mode are used. **EasySetUp can be downloaded free of charge from Technosoft web page.**

EasyMotion Studio platform includes EasySetUp for the drive setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can execute complex motions, thanks to their built-in motion controllers. EasyMotion Studio, may be used to program motion sequences in TML. This is the iPOS4808 typical CAN operation mode when TMLCAN protocol is selected. EasyMotion Studio can also be used with the CANopen protocol, if the user wants to call TML functions stored in the drive EEPROM or to use the camming mode. With camming mode, EasyMotion Studio offers the possibility to quickly download and test a cam profile and also to create a .sw file with the cam data. The .sw file can be afterwards stored in a master and downloaded to the drive, wherever needed. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from Technosoft web page.

2.2 Product Features

- · Fully digital servo drive suitable for the control of rotary or linear brushless, DC brush, and step motors
- · Very compact design
- Standard PCIe 8x mating connector
- Sinusoidal (FOC) or trapezoidal (Hall-based) control of brushless motors
- Open or closed-loop control of 2 and 3-phase steppers
- Various modes of operation, including: torque, speed or position control; position or speed profiles, Cyclic Synchronous Position (CSP) for CANopen mode, external reference mode (analogue or encoder feedback) or sent via a communication bus
- · Technosoft Motion Language (TML) instruction set for the definition and execution of motion sequences
- Standalone operation with stored motion sequences
- Motor supply: 11-48V
- Logic supply: 9-36V
- Output current:
 - iPOS4808 VX: 8A¹ continuous; 20A peak
- PWM switching frequency up to 100kHz
- Communication:
 - RS-232 serial up to 115kbits/s
 - CAN-bus 2.0B up to 1Mbit/s (for CAN drives)
 - Dual 100Mbps EtherCAT® interfaces, for use in daisy-chaining topologies (for CAT drives)
- Digital and analog I/Os:
 - 8 digital inputs: 5-36V, NPN: Enable, Limit switch +, Limit switch -, 5 general-purpose
 - 5 digital outputs: 5-36V, 0.5A, NPN open-collector: Ready, Error, 3 general-purpose
 - 2 analogue inputs: 12-bit, 0-5V (Reference, Feedback) or general-purpose
- Electro-Mechanical brake support: software configurable digital output to control motor brake
- · Feedback devices:
 - · Incremental encoder interface (single ended or differential)
 - Digital Hall sensor interface (single-ended and open collector)
 - Linear Hall sensor interface
 - Analogue Sin/Cos encoder interface (differential 1V_{pp})
- Various motion programming modes:
 - Position profiles with trapezoidal or S-curve speed shape
 - Position, Velocity, Time (PVT) 3rd order interpolation
 - Position, Time (PT) 1st order interpolation
 - Cyclic Synchronous Position (CSP) for CANopen mode and EtherCAT® drives.
 - Cyclic Synchronous Velocity (CSV) only for EtherCAT® drives.
 - Cyclic Synchronous Torque (CST) only for EtherCAT® drives.
 - Electronic gearing and camming

¹ 8A cont. with DC, step and BLDC motors (trapezoidal)

- 35 Homing modes
- Software CAN selectable addresses
- Two CAN operation modes selectable by HW pin (only for CAN drives):
 - CANopen conforming with CiA 301 v4.2 and CiA DSP 402 v3.0
 - TMLCAN intelligent drive conforming with Technosoft protocol for exchanging TML commands via CAN-bus
- EtherCAT® with CAN application protocol over EtherCAT (CoE) for CAT drives
- 2K × 16 internal SRAM memory for data acquisition
- 4K x 16 E²ROM to store TML motion programs, cam tables and other user data
- Operating ambient temperature:
 - 0-40°C iPOS4808 VX
- Protections:
 - Short-circuit between motor phases
 - Short-circuit from motor phases to ground
 - Over-voltage
 - Under-voltage
 - Over-current
 - Communication error
 - Control error
 - Over-temperature
- Firmware on drive:
 - F508M+ for iPOS4808 VX-CAN
 - F510I+ for iPOS4808 VX-CAT

2.3 Identification Labels

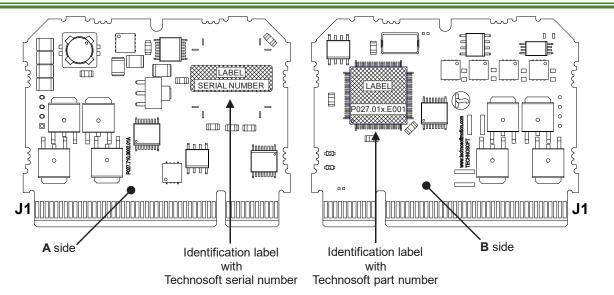


Figure 2.3.1. iPOS4808 VX identification labels

The iPO4808 VX can has the following part number and name on the identification label:

Product Name	Part Number	Firmware	Description
iPOS4808 VX-CAN	P027.014.E001	F510I+	Standard version, CAN
iPOS4808 VX-CAN	P027.014.E201	F508M+	Standard version, CAT

2.4 Supported Motor-Sensor Configurations

The position and/or speed are controlled using one feedback sensor.

Motor Sensor type	Brushless PMSM	Brushless BLDC	DC Brush	Stepper 2 phase	Stepper 3 phase
Incr. encoder	Yes	-	Yes	Yes	-
Incr. encoder + Digital Hall	Yes	Yes	-	-	-
Sin-Cos encoder	Yes	-	-		-
Digital halls only	Yes	-	-	-	-
Linear Halls	Yes	-	-	-	
Tacho	-	-	Yes	-	-
Open-loop (no sensor)	-	-	-	Yes	Yes
Open-loop (with step loss detection using incr. Encoder)	-	-	-	Yes	Yes
Open-loop with incr. encoder on load	-	-	-	Yes	Yes

2.5 iPOS4808 VX I/O Evaluation board

A circuit board designed to assess the iPOS4808 VX CAN or CAT is accessible, equipped with various connectors that facilitate convenient access to the features of iPOS.

2.5.1 Starter Kit ordering information

Part number	Description
P091.084.IO-iPOS4808.UM.xxxx	Evaluation board User Manual (available for download on our website)
P027.014.E801	iPOS4808 VX-CAN starter kit with brushless motor
P027.014.E811	iPOS4808 VX-CAT starter kit EtherCAT with brushless motor
P027.014.E800	iPOS4808 VX-CAN starter kit without motor
P027.014.E810	iPOS4808 VX-CAT starter kit EtherCAT without motor
P027.014.E880	iPOS480x VX-CAN I/O board
P027.014.E890	iPOS4808 VX-CAT I/O board EtherCAT compatible
P038.022.E022	ECAT-VX EtherCAT Interface

3.1 iPOS4808 VX-CAN/CAT Board Dimensions

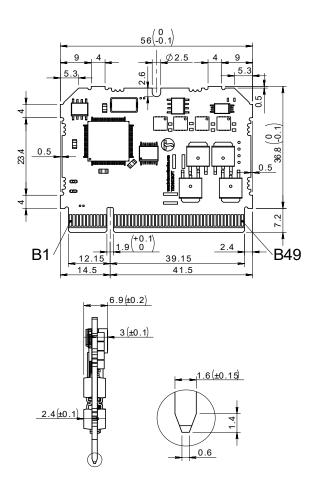


Figure 3.1.1. iPOS4808 VX-CAN/-CAT drive dimensions

All dimensions are in mm. The drawings are not to scale.

3.2 ECAT-VX EtherCAT adapter dimensions

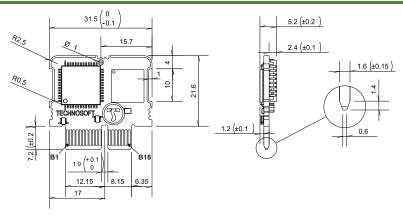


Figure 3.2.1. ECAT-VX adapter dimensions

All dimensions are in mm. The drawings are not to scale.

To enable the EtherCAT communication functionality, the connections between the EtherCAT signals, specifically J1 pins A21-24, and J2 pins B23, B26 to **P038.022.E022** - ECAT–VX EtherCAT Interface must be done according to the guidelines provided in the 'EtherCAT VX adapter to iPOS4808 VX interconnections' chapter.

3.3 Mechanical Mounting

The iPOS4808 drive is intended to be mounted vertically or horizontally on a motherboard equipped with the recommended mating connectors, as specified in chapter'Mating Connectors'. Several iPOS4808 drives can be hosted by a single motherboard.

3.3.1 Vertical Mounting

When iPOS4808 is mounted vertically, its overall envelope (size) including the recommended mating connector is shown in Figure 3.3.1. The use of a fixing case holding the drive is strongly recommended, to avoid vibration and shock problems.

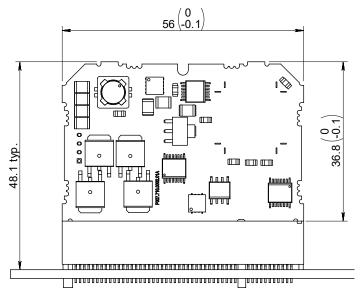


Figure 3.3.1. Overall dimensions using recommended mating connector

The ensemble motherboard + iPOS4808 drive(s) can be cooled by natural convection. The motherboard can be mounted horizontally or vertically. In both cases, the air temperature must not exceed the limits indicated.

Figure 3.3.2. shows the recommended spacing to assure proper airflow by natural convection, in the worst case – closed box done from a plastic (non-metallic) material with no ventilation openings.

Whenever possible, ventilation openings shall be foreseen on the top side wall or the box and at the bottom of the lateral walls. When using a horizontal motherboard considerably larger than the size of the hosted iPOS4808 drives, it is recommended to provide ventilation holes also in the motherboard PCB.

Remark: In case of using a metallic box, with ventilation openings, all spacing values may be reduced substantially. With proper ventilation, keeping the air surrounding the iPOS4808 inside the limits indicated. The spacing values may be reduced down to the mechanical tolerance limits of Figure 3.3.1.

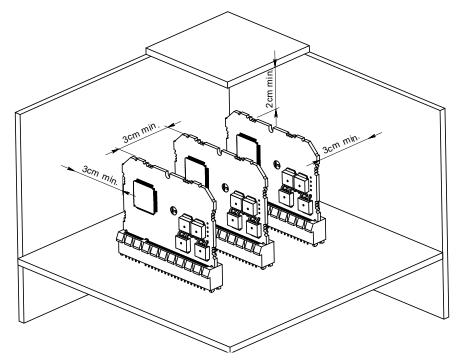


Figure 3.3.2 Recommended spacing for vertical mounting, worst case: non-metallic, closed box

For ventilation holes / slots that pierce a metallic wall also used for EMI shielding, the maximum slot length d should be less than $\lambda/16$, where λ is the wavelength corresponding to maximum filtered frequency (f_f):

$$d < \frac{\lambda}{16} = \frac{3 \cdot 10^8}{16 \cdot f_f}$$

If ventilation driven by natural convection is not enough to maintain the temperature surrounding the iPOS4808 drive(s) inside the limits indicated, then alternate forced cooling methods must be applied.

For thermal calculations, each iPOS4808 drive can be assumed to generate 1.5 Watt (= 5 BTU/hour) at idle.

3.3.2 Horizontal Mounting

When iPOS4808 is mounted horizontally, its overall envelope (size) including the recommended mating connector is shown in Figure 3.3.3. The iPOS4808 has 6 fixing tabs and one groove that may be used to secure the drive. *Figure 3.3.4*. details the fixing tabs and groove position shown with red arrows.

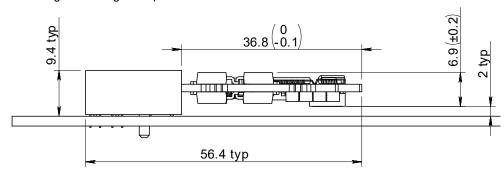


Figure 3.3.3 Overall dimensions for horizontal mounting

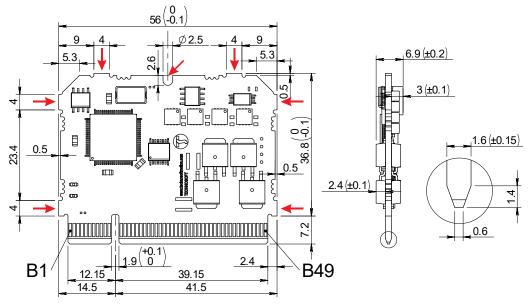


Figure 3.3.4 Fixing tabs and groove position

Figure 3.3.5 shows the recommended spacing to assure proper airflow by natural convection, <u>in the worst case</u> – closed box done from a plastic (non-metallic) material with no ventilation openings.

Whenever possible, ventilation openings shall be foreseen. Recommendations for their size and position are presented in par. 3.3.2.

Remark: In case of using a metallic box, with ventilation openings, all spacing values may be reduced substantially. With proper ventilation, keep the air surrounding the iPOS4808 inside the limits indicated. The spacing values may be reduced down to the mechanical tolerance limits of Figure 3.3.1.

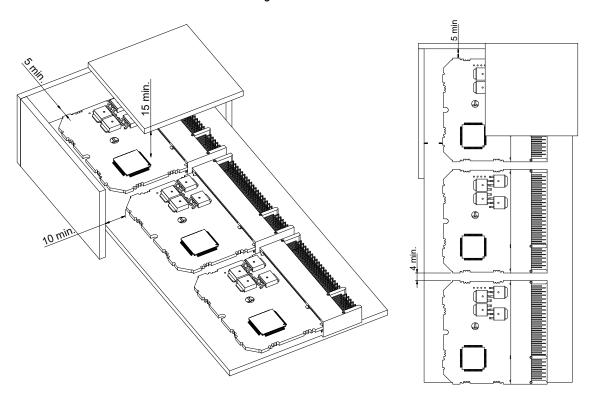


Figure 3.3.5 Spacing to assure proper airflow by natural convection (worst case scenario)

The iPOS4808 drive, when plugged vertically into the recommended mating connector, has the following PCB footprint:

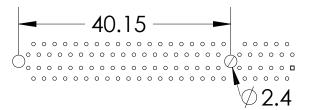


Figure 3.6 PCB footprint of mating connector

It is recommended to use a multi-layer PCB for the motherboard, in order to have enough room for routing all the 98 pins of the iPOS4808. Using a 2-layer PCB is possible when some of the iPOS4808 pins remain un-connected.

Below is a list of recommendations for the PCB design of the motherboard:

- Motor supply and motor outputs: use islands / areas of copper to escape connector area; this will maximize current capability. When using simple tracks, use at least 200mil cross section (150mil track width for 1oz/ft² copper thickness) – for iPOS4808.
- Motor supply and ground return tracks between iPOS4808 and the nearby V_{MOT} decoupling capacitor are to be considered as EMI sources, and kept to a minimum length.
- Place the decoupling capacitors on V_{MOT} and V_{LOG} (see also c). Power Supply Connection) as close as
 physically possible to the iPOS4808, to minimize EM radiated emissions. For un-shielded applications (no
 metallic box) and typical EMC regulations, the spacing between iPOS4808 and capacitors must be less than
 3 centimeters.
- In multi-axis applications (multiple iPOS4808 drives on the same motherboard), it is preferable to have a separate decoupling capacitor for each drive's V_{MOT}. For V_{LOG} it is acceptable to share one decoupling capacitor for two drives.
- For stringent EMI requirements, it may be necessary to add common-mode filtering on the motor and/or logic supply inputs. Be sure to use 3-phase EMC filters, not 2-phase filters, in order to fulfill the basic requirement of zero common-mode current through the filter. This is necessary because the ground negative return is shared between V_{MOT} and V_{LOG}.
- Motor outputs shall be routed with parallel traces, and minimizing the loop area between these tracks. Avoid
 placing components above or below the motor output tracks, as these components may become effective
 antennas radiating EMI. If possible, route all 4 motor outputs in strip-line configuration (above or below a ground
 plane).
- For stringent EMI requirements, it may be necessary to add common-mode inductors on the motor outputs.
 Place these filters near the iPOS4808, not near the external connector, to reduce radiation from the PCB tracks.
- Motor outputs must be separated from any nearby track (on the same layer) by a guard ring / track / area connected to ground. It is recommended to use the same guarding precaution also for tracks on nearby layers, i.e. use intermediate guard layer(s) connected to ground. The motor outputs must be treated as first source of noise on the motherboard. Second source of noise is the current flow between each iPOS4808 and it's decoupling V_{MOT} capacitor.
- For best EMC performance, it is strongly recommended to provide an un-interrupted ground plane on one of the inner layers.
- All GND pins of the iPOS4808 are galvanically connected together on-board the iPOS4808. If the motherboard provides an uninterrupted ground plane, it is recommended to connect all GND pins to the ground plane, and use the ground plane to distribute GND wherever needed. If the motherboard does not provide an uninterrupted ground plane, it is best to use each GND pin for it's intended purpose. This will create local "star point" ground connection on-board each iPOS4808. For a multi-axis motherboard with one common power supply for all motors, each motor power supply return track shall be routed separately for each iPOS4808, and star-point connected at the power supply terminal.
- The following signal pairs must be routed differentially, i.e. using parallel tracks with minimal loop area: A+/Sin+, A-/Sin-; B+/Cos+, B-/Cos-; Z+, Z-; CAN-Hi, CAN-Lo.
- CAN-Bus tracks must be routed with a bus topology, without branches / bifurcations, in a daisy-chain fashion. The bus ends must be at the termination resistor(s) and/or external connectors.
- When using +5V_{OUT} as supply for external devices (like encoders, Hall sensors, etc.) provide extra filtering and protection: use series resettable (PTC) fuses to add short-circuit protection; use transient absorbers to protect against ESD and over-voltage; add high-frequency filtering to protect against external noise injected on +5V_{OUT}.

The outer box / case / cabinet must be connected to the motherboard ground either galvanically (directly) or through high-frequency decoupling capacitors, rated at an appropriate voltage.

CAUTION!

WHEN IPOS4808 IS SET IN TMLCAN MODE, IT STARTS TO EXECUTE AUTOMATICALLY AT POWER ON THE TML APPLICATION FROM ITS EEPROM. ADD ON THE MOTHERBOARD THE POSSIBILITY TO DISABLE THIS FEATURE AS SHOWN PAR. 3.7.11. THIS MIGHT BE NEEDED DURING DEVELOPMENT PHASE IN CASE THE EEPROM CONTENT IS ACCIDENTALLY CORRUPTED.

CAUTION!

THE IPOS4808 IS AN ELECTROSTATICALLY SENSITIVE DEVICE, WHICH WILL BE DAMAGED BY INCORRECT HANDLING. THEREFORE THE DRIVE SHALL BE REMOVED FROM ITS ORIGINAL PACKAGE ONLY IN AN ESD PROTECTED ENVIRONMENT!

3.5 EMC recommendations

The drive is compliant to the requirements of the following European directives, when installed as described in this User Manual:

- 93/68/EEC CE Marking Directive
- 2014/30/EU Electromagnetic Compatibility (EMC) Directive
- EN 61800-3:2012 Adjustable speed electrical power drive systems, Part3: EMC
- product standard

The drive shall be installed as shown in the Figure below, in order to meet the above EMC requirements:

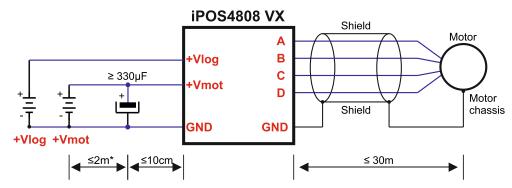
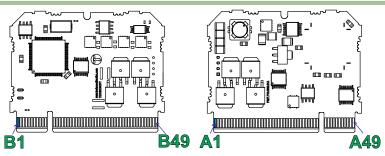
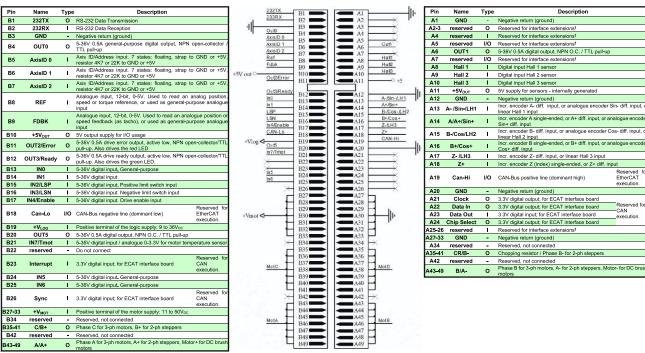
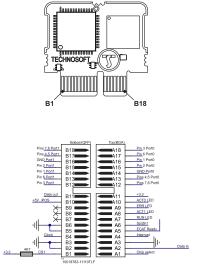




Figure 3.7 EMC recommended connections

- * if +Vmot to capacitor wire length ≥ 2m, use twisted wires for the supply and ground return (Vmot and GND)
- * if +Vmot to capacitor wire length ≥ 20m, the capacitor value must be ≥ 2200 µF.

3.6.1 Pinouts for iPOS4808 VX


3.6.2 Mating Connectors for iPOS4808 VX

Producer	Part Number	Description	Images
Tyco	3-1775801-4	PCIe 8x vertical card edge connector,1.0mm	
Samtec	PCIE-098-02-F-D-TH	pitch, 2x49 contacts	Talling .
Tyco	1761465-3		
Samtec	PCIE-098-02-F-D-RA	PCIe 8x horizontal card edge connector,1.0 mm pitch, 2x49 contacts	all lake

3.6.3 ECAT-VX EtherCAT adapter pinouts

The ECAT-VX adapter is used to connect an iPOS Intelligent drive to the EtherCAT network.

Pin	Name	Description
A18	Pin3 Port0	Connect to pin 3 of EtherCAT IN port
A17	Pin6 Port0	Connect to pin 6 of EtherCAT IN port
A16	Pin1 Port0	Connect to pin 1 of EtherCAT IN port
A15	Pin2 Port0	Connect to pin 2 of EtherCAT IN port
A14	GND Port0	Local ground for EtherCAT IN port
A13	Pins 4,5 Port0	Connect to pins 4,5 of EtherCAT IN port
A12	Pins 7,8 Port0	Connect to pins 7,8 of EtherCAT IN port
A11	+3.3V	+3.3V for LEDs output
A10	ACT0 LED	Link/Activity LED of EtherCAT IN port
A9	ERR LED	EtherCAT error LED
A8	ACT1 LED	Link/Activity LED of EtherCAT OUT port
A 7	RUN LED	EtherCAT Run LED
A6	Sync	Sync0 signal
A5	ECAT Ready	EtherCAT Ready LED
A4	Interrupt	Communication interrupt
А3	GND	Ground
A2	Data In	Data In
A1	Chip Select	Chip Select

Pin	Name	Description
B18	Pins 7,8 Port1	Connect to pins 7,8 of EtherCAT OUT port
B17	Pins 4,5 Port1	Connect to pins 4,5 of EtherCAT OUT port
B16	GND Port1	Local ground for EtherCAT OUT port
B15	Pin 2 Port1	Connect to pin 2 of EtherCAT OUT port
B14	Pin 1 Port1	Connect to pin 1 of EtherCAT OUT port
B13	Pin 6 Port1	Connect to pin 6 of EtherCAT OUT port
B12	Pin 3 Port1	Connect to pin 3 of EtherCAT OUT port
B11	Data Out	Data Out
B10	+5V IN	+5V input
В9	N.C.	Not Connected
B8	Reserved	Reserved. Do not connect
В7	Reserved	Reserved. Do not connect
В6	GND	Ground
B5	GND	Ground
B4	Clock	Clock signal input
В3	GND	Ground
B2	GND	Ground
B1	CS1	Connect to +3.3V

3.6.4 Mating Connectors for ECAT-VX adapter

Producer	Part Number	Description	Images
Tyco	1-1775801-4		
FCI	10018784-11100TLF	PCIe 1x vertical card edge connector,1.0mm pitch, 2x18 contacts	
Tyco	1761465-1		
Samtec	PCIE-036-02-F-D-RA	PCle 1x horizontal card edge connector,1.0mm pitch, 2x18 contacts	

3.6.5 EtherCAT VX adapter to iPOS4808 VX interconnections

ECAT VX pin	Signal Name	Direction	iPO4808 VX pin
A2	Data In	←	A22
B11	Data Out	\rightarrow	A23
B4	Clock	←	A2
A1	Chip Select	←	A21
A4	Interrupt	\rightarrow	B23
A6	Sync	\rightarrow	B26
A5	ECAT Ready	\rightarrow	A21 (add 2.2KΩ resistor)
B10	+5V In	←	A11
B2	GND	←	A12

3.6.6 ECAT-VX adapter to RS45 interface connection diagram

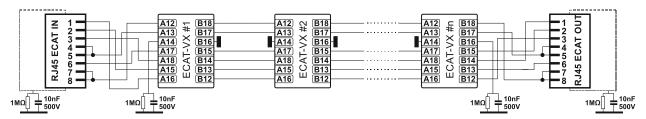


Figure 3.8 ECAT-VX to RS45 interface connection diagram

3.7 Connection diagrams

3.7.1 iPOS4808 VX-CAN connection diagram

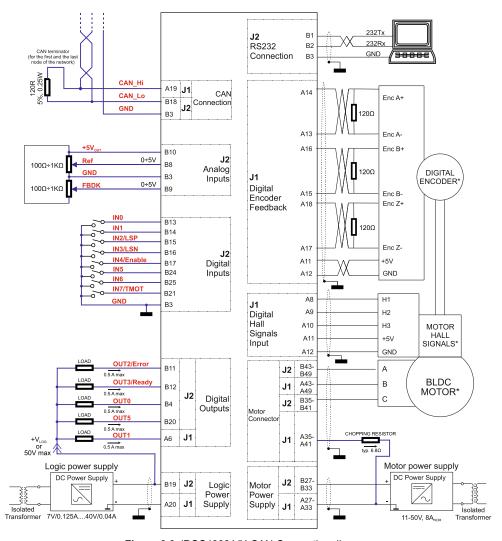


Figure 3.9. iPOS4808 VX-CAN Connection diagram

^{*} For other available feedback / motor options, check the detailed connection diagrams below



Figure 3.10. iPOS4808 VX-CAT Connection diagram

^{*} For other available feedback / motor options, check the detailed connection diagrams below

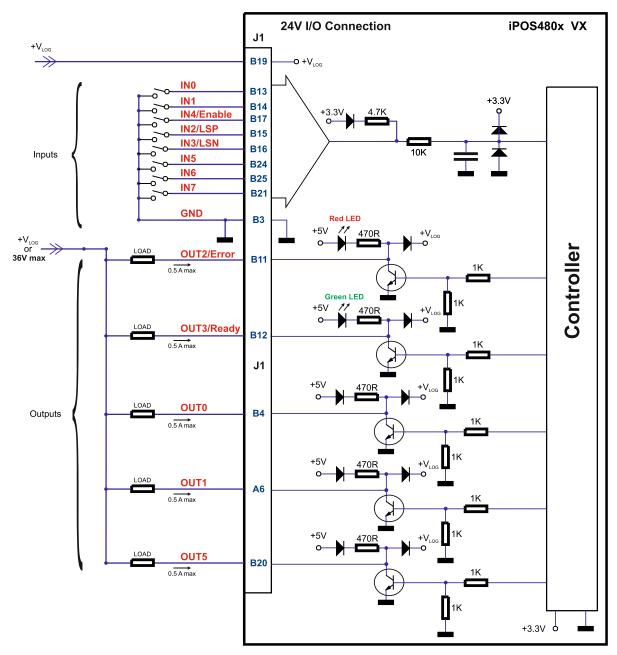


Figure 3.11. 24V Digital NPN Inputs connection

Remarks:

- 1. The inputs are compatible with NPN type outputs (input must be pulled to GND to change its default state)
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.
- 3. The outputs are compatible with NPN type inputs (load is tied to common +V_{LOG}, output pulls to GND when active and is floating when inactive)
- 4. The maximum sink current is 0.5A continuous, up to 1A pulsed for less than 5 seconds

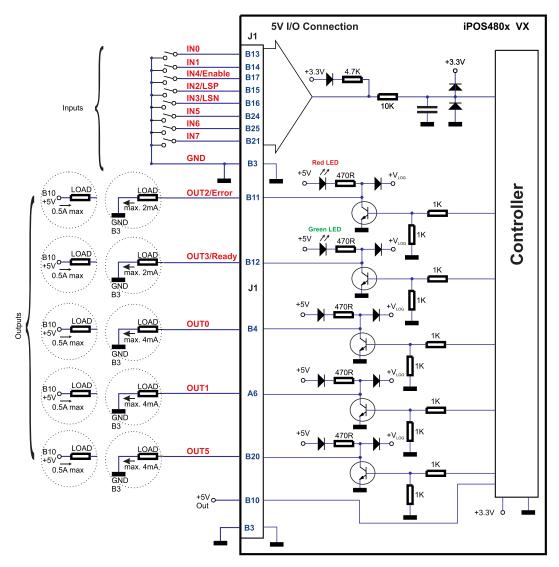


Figure 3.12. 5V Digital I/O connection

Remarks:

- 1. The inputs are compatible with TTL(5V), LVTTL(3.3V), CMOS and open collector outputs
- 2. The outputs are compatible with TTL (5V) inputs
- 3. The output loads can be individually and independently connected to +5V or to GND.
- 4. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.
- 5. It is recommended to connect the negative motor supply return (GND) to the Earth protection near the external motor power supply terminals, i.e. between EARTH and minus of V_{MOT} external power supply.

3.7.5.1 0-5V Input Range

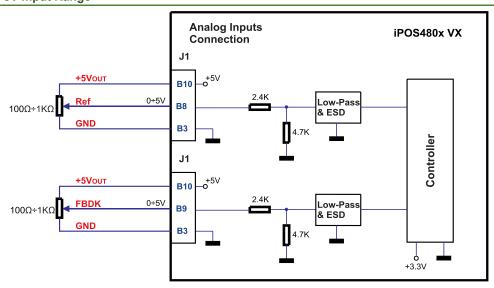


Figure 3.13. 0-5V Analog inputs connection

Remarks:

- 1. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.
- Default input range for analog inputs is 0÷5 V for REF and FBDK. For a +/-10 V range, see Figure 3.14.

3.7.5.2 +/-10V to 0-5V Input Range Adapter

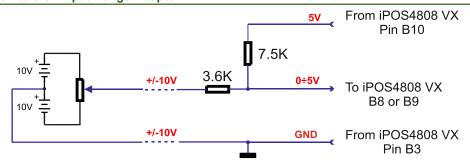


Figure 3.14. +/-10V to 0-5V adapter

3.7.5.3 Recommendation for wiring

- a) If the analogue signal source is single-ended, use a 2-wire twisted shielded cable as follows: 1st wire connects the live signal to the drive input; 2nd wire connects the source ground to the drive ground; shield will be connected to the drive ground terminal.
- b) If the analogue signal source is differential and the signal source ground is isolated from the drive GND, use a 2-wire twisted shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source minus (negative, out-of-phase) to the drive ground (GND). Shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.
- c) If the analogue signal source is differential and the signal source ground is common with the drive GND, use a 2-wire shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source ground to the drive ground (GND); shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side. The source minus (negative, out-of-phase) output remains unconnected.

3.7.6.1 Brushless Motor connection

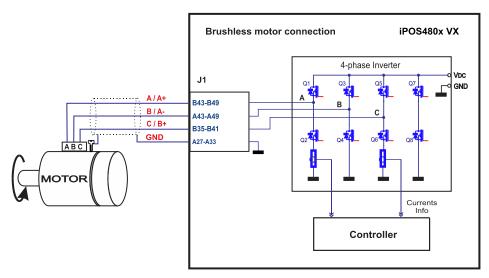


Figure 3.15. Brushless motor connection

3.7.6.2 2-phase Step Motor connection

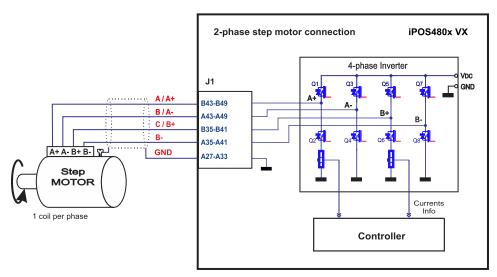


Figure 3.16. 2-phase step motor connection, one coil per phase

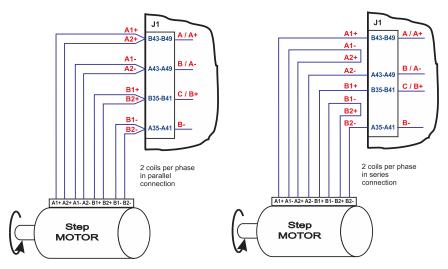


Figure 3.17. 2-phase step motor connection, two coils per phase

Figure 3.18. 3-phase step motor connection

3.7.6.4 DC Motor connection

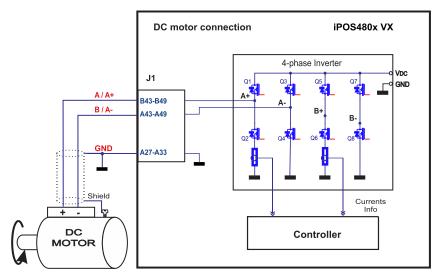


Figure 3.19. DC Motor connection

3.7.6.5 Recommendations for motor wiring

- a) Avoid running the motor wires in parallel with other wires for a distance longer than 2 meters. If this situation cannot be avoided, use a shielded cable for the motor wires. Connect the cable shield to the iPOS4808 GND pin. Leave the other end disconnected.
- b) The parasitic capacitance between the motor wires must not bypass 10nF. If very long cables (tens of meters) are used, this condition may not be met. In this case, add series inductors between the iPOS4808 outputs and the cable. The inductors must be magnetically shielded (toroidal, for example), and must be rated for the motor surge current. Typically the necessary values are around 100 µH.
- c) A good shielding can be obtained if the motor wires are running inside a metallic cable guide.

3.7.7.1 Single-ended Incremental Encoder Connection

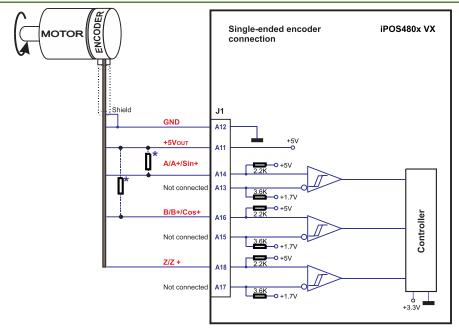


Figure 3.20. Single-ended incremental encoder connection

^{*}Optional resistors: value should match the current capability of the actual encoder outputs (please also consider the on-board existing 2K2). Lower resistance increases EMC immunity and robustness against electrical noise. Too low resistance can damage the encoder, and alter the logic-low voltage level.

CAUTION!

DO NOT CONNECT UNTERMINATED WIRES. THEY MIGHT PICK UP UNWANTED NOISE AND GIVE FALSE ENCODER READINGS.

3.7.7.2 Differential Incremental Encoder Connection

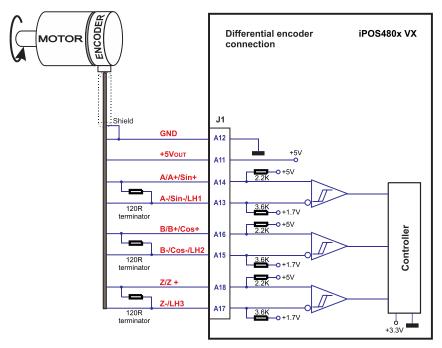


Figure 3.21. Differential incremental encoder connection

Remarks:

- 1. For the encoder differential connection, external 120 Ω (0.25W) terminators are required for long encoder cables, or noisy environments.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

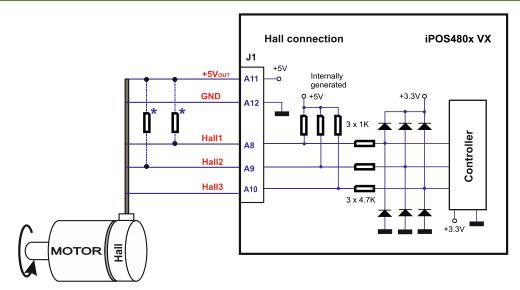


Figure 3.22. Digital Hall connection

Remarks:

- This connection is required when using only Digital hall signals as the main feedback device for motor control. In this case, no incremental encoder is needed.
- 2. This control method requires a special firmware F523x.
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

3.7.7.4 Digital Hall Connection for Motor + Halls + Encoder control

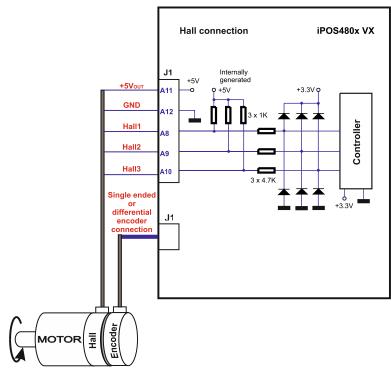


Figure 3.23. Digital Hall connection

Remarks:

- This connection is required when using Hall start method BLDC or PMSM and also for the Trapezoidal commutation method. The digital halls are not used in this case as a feedback measurement device. The actual motor control is done with an incremental encoder.
- 2. Do not connect unterminated wires. They might pick up unwanted noise and give false encoder readings.
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

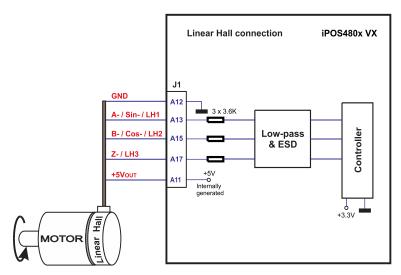


Figure 3.24. Linear Hall connection

Remarks:

- This connection is required when using only Linear hall signals as the main feedback device for motor control. In this case, no incremental encoder is needed.
- 2. This control method requires a special firmware F523x.
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

3.7.7.6 Sin-Cosine Analog Encoder Connection

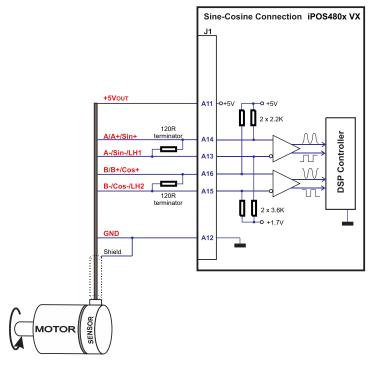


Figure 3.25. Digital Hall connection

3.7.7.7 Recommendations for wiring

- a) Always connect both positive and negative signals when the position sensor is differential and provides them. Use one twisted pair for each differential group of signals as follows: A+/Sin+ with A-/Sin-/LH1, B+/Cos+ with B-/Cos-/LH2, Z+ with Z-/LH3. Use another twisted pair for the 5V supply and GND.
- b) Always use shielded cables to avoid capacitive-coupled noise when using single-ended encoders or Hall sensors with cable lengths over 1 meter. Connect the cable shield to the GND, at only one end. This point could be either the iPOS4808 (using the GND pin) or the encoder / motor. Do not connect the shield at both ends.
- c) If the iPOS4808 5V supply output is used by another device (like for example an encoder) and the connection cable is longer than 5 meters, add a decoupling capacitor near the supplied device, between the +5V and GND lines. The capacitor value can be 1...10 μF, rated at 6.3V

3.7.8.1 Supply Connection

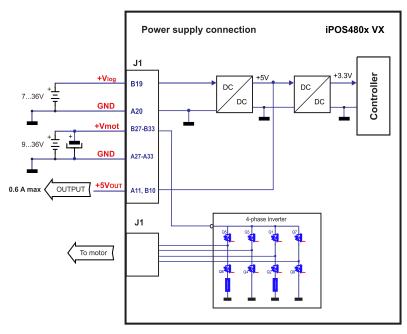


Figure 3.26. Supply connection

3.7.8.2 Recommendations for Supply Wiring

Always provide a nearby capacitor on the motor supply lines. The capacitor should be located within 10cm of the iPOS4808 edge connector, max. 20cm. The minimum recommended capacitance is 330µF for iPOS4808always rated at the appropriate voltage.

Use short, thick wires between the iPOS4808 and the motor power supply. Connect power supply wires to all the indicated pins. If the wires are longer than 2 meters, use twisted wires for the supply and ground return. For wires longer than 20 meters, add a capacitor of at least 2,200µF (rated at an appropriate voltage) right on the terminals of the iPOS4808.

3.7.8.3 Recommendations to limit over-voltage during energy regeneration

During abrupt motion decelerations or reversals the regenerative energy is injected into the motor power supply. This may cause an increase of the motor supply voltage (depending on the power supply characteristics). If the voltage bypasses 53V, the drive over-voltage protection is triggered and the drive power stage is disabled. In order to avoid this situation you have 2 options:

Option 1. Add a capacitor on the motor supply big enough to absorb the overall energy flowing back to the supply. The capacitor must be rated to a voltage equal or bigger than the maximum expected over-voltage and can be sized with the formula:

$$C \ge \frac{2 \times E_M}{U_{MAX}^2 - U_{NOM}^2}$$

where:

 U_{MAX} = 53V is the over-voltage protection limit

U_{NOM} is the nominal motor supply voltage

 E_{M} = the overall energy flowing back to the supply in Joules. In case of a rotary motor and load, E_{M} can be computed with the formula:

$$E_{M} = \frac{1}{2} (J_{M} + J_{L}) \overline{\omega}_{M}^{2} + (m_{M} + m_{L}) g(h_{initial} - h_{final}) - 3I_{M}^{2} R_{Ph} t_{d} - \frac{t_{d} \overline{\omega}_{M}}{2} T_{F}$$
Kinetic energy
Potential energy
Copper losses
Friction losses

where:

J_M – total rotor inertia [kgm²]

J_L – total load inertia as seen at motor shaft after transmission [kgm²]

 $\overline{\omega}_{M}$ – motor angular speed before deceleration [rad/s]

M_M – motor mass [kg] – when motor is moving in a non-horizontal plane

M_L − load mass [kg] − when load is moving in a non-horizontal plane

g – gravitational acceleration i.e. 9.8 [m/s²]

hinitial - initial system altitude [m]

h_{final} - final system altitude [m]

I_M - motor current during deceleration [A_{RMS}/phase]

 R_{Ph} – motor phase resistance $[\Omega]$

td - time to decelerate [s]

T_F – total friction torque as seen at motor shaft [Nm] – includes load and transmission

In case of a linear motor and load, the motor inertia J_M and the load inertia J_L will be replaced by the motor mass and the load mass measured in [kg], the angular speed $\overline{\omega}_M$ will become linear speed measured in [m/s] and the friction torque T_F will become friction force measured in [N].

Option 2. Connect a chopping resistor R_{CR} between phase CR/B- and ground, and activate the software option of dynamic braking (see below).

This option is not available when the drive is used with a step motor.

The chopping resistor option can be found in the Drive Setup dialogue within EasyMotion / EasySetup.

The chopping will occur when DC bus voltage increases over U_{CHOP}. This parameter (U_{CHOP}) should be adjusted depending on the nominal motor supply. Optimally (from a braking point of view), U_{CHOP} should be a few volts above the maximum nominal supply voltage. This setting will activate the chopping resistor earlier, before reaching dangerous voltages – when the over-voltage protection will stop the drive. Of course, U_{CHOP} must always be less than U_{MAX} – the over-voltage protection threshold.

Remark: This option can be combined with an external capacitor whose value is not enough to absorb the entire regenerative energy E_M but can help reducing the chopping resistor size.

Chopping resistor selection

The chopping resistor value must be chosen to respect the following conditions:

1. to limit the maximum current below the drive peak current I_{PEAK} = 10A

$$R_{CR} > \frac{U_{MAX}}{I_{PEAK}}$$

2. to sustain the required braking power:

$$P_{CR} = \frac{E_M - \frac{1}{2}C(U_{MAX}^2 - U_{CHOP}^2)}{t_d}$$

where C is the capacitance on the motor supply (external), i.e:

$$R_{CR} < \frac{U_{CHOP}^2}{2 \times P_{CR}}$$

3. to limit the average current below the drive nominal current I_{NOM} =0.9A

$$R_{CR} > \frac{P_{CR} \times t_d}{t_{CYCLE} \times I_{NOM}^2}$$

where tcycle is the time interval between 2 voltage increase cycles in case of repetitive moves.

4. to be rated for an average power $P_{\scriptscriptstyle AV} = \frac{P_{\scriptscriptstyle CR} \times t_d}{t_{\scriptscriptstyle CYCLE}}$ and a peak power $P_{\scriptscriptstyle PEAK} = \frac{U_{\scriptscriptstyle MAX}^2}{R_{\scriptscriptstyle CR}}$

Remarks:

1. If $\frac{U_{MAX}}{I_{PEAK}} > \frac{U_{CHOP}^2}{2 \times P_{CR}}$ the braking power P_{CR} must be reduced by increasing either t_d – the time to decelerate or C – the external capacitor on the motor supply

2. If $\frac{P_{CR} \times t_d}{t_{CYCLE} \times I_{NOM}^2} > \frac{U_{CHOP}^2}{2 \times P_{CR}}$ either the braking power must be reduced (see Remark 1) or t_{CYCLE} – the time

interval between braking cycles must be increased

WARNING!

THE CHOPPING RESISTOR MAY HAVE HOT SURFACES DURING OPERATION.

3.7.9 Serial RS-232 connection

3.7.9.1 Serial RS-232 connection

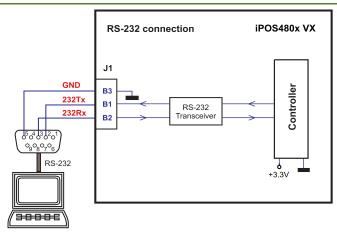


Figure 3.27. Serial RS-232 connection

3.7.9.2 Recommendation for wiring

- a) If you build the serial cable, you can use a 3-wire shielded cable with shield connected to BOTH ends. Do not use the shield as GND. The ground wire must be included inside the shield, like the 232Rx and 232Tx signals
- b) Always power-off all the iPOS4808 supplies before inserting/removing the RS-232 serial connector
- c) Do not rely on an earthed PC to provide the iPOS4808 GND connection! The drive must be earthed through a separate circuit. Most communication problems are caused by the lack of such connection

3.7.10.1 CAN connection

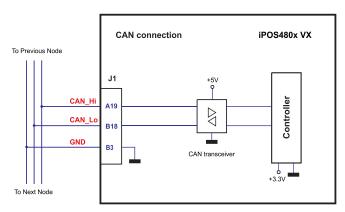


Figure 3.28. CAN connection

Remarks:

- The CAN network requires a 120-Ohm terminator. This is not included on the board. Figure 3.29 shows how to connect it on your network
- 2. CAN signals can sustain up to +/-58V without damage.
- 3. CAN signals are not insulated from other iPOS4808 circuits

3.7.10.2 Recommendation for wiring

- a) Build CAN network using cables with twisted wires (2 wires/pair), with CAN-Hi twisted together with CAN-Lo. It is recommended but not mandatory to use a shielded cable. If so, connect the shield to GND. The cable impedance must be 105 ... 135 ohms (120 ohms typical) and a capacitance below 30pF/meter.
- b) When using a printed circuit board (PCB) motherboard based on FR-4 material, build the CAN network using a pair of 12mil (0.012") tracks, spaced 8 to 10mils (0.008"...0.010") apart, placed over a local ground plane (microstrip) which extends at least 1mm left and right to the tracks.
- Whenever possible, use daisy-chain links between the CAN nodes. Avoid using stubs. A stub is a "T" connection, where a derivation is taken from the main bus. When stubs can't be avoided keep them as short as possible. For 1 Mbit/s (worst case), the maximum stub length must be below 0.3 meters.
- d) The 120Ω termination resistors must be rated at 0.2W minimum. Do not use winded resistors, which are inductive

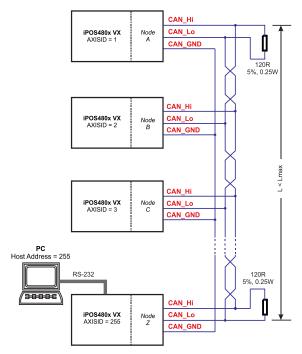


Figure 3.29. Multiple-Axis CAN network

3.7.11 Disable of Autorun Mode (for CAN) / Disable Setup (for CAT)

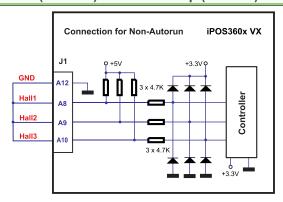


Figure 3.30. Temporary connection during power-on to disable the drive from Autorun mode

3.7.11.1 For CAN drives

When the iPOS4808 is configured for TMLCAN communication protocol, the default operation mode is *Autorun*. If a TML program is present in the EEPROM of the drive, the iPOS4808 will start its execution.

In case the TML program becomes corrupted, i.e. due to strong electromagnetic fields, the *Autorun* mode can be disabled by:

a) Software: writing the value **1** in the first EEPROM location (address 0x4000). You can use the *Command Interpreter* from EasySetUp / EasyMotion Studio to execute the following instructions:

$$var_i1 = 0x4000; (var_i1), spi = 1;$$

b) Hardware: connecting all digital Hall inputs to GND, as shown in *Figure 3.30*. This option is particularly useful when you are unable to establish communication with the drive.

After the drive is set in *slave / non-Autorun* mode using the second method, the first one may be used to disable the TML application from the EEPROM. On next power on the drive will enter in the *slave / non-Autorun* mode independently of the digital Hall inputs status

3.7.11.2 For EtherCAT drives

In some very rare cases, the setup table might be corrupted, leading to a loop where the drive resets continuously. This behavior can be noticed by seeing both the Ready and Error LED blinking for short periods of time continuously. To recover from this behavior, the setup table can be invalidated by connecting all digital Hall inputs to GND, as shown in *Figure 3.30*.

On the next power on, the drive will load setup default settings and the Motion Error Register (MER) bit 2 will be 1. After a new valid setup table is loaded onto the drive, disconnect the hall sensors from GND and execute a new power off/power on cycle.

3.8 Operation Mode and Axis ID Selection for CAT drives

For EtherCAT (CAT) drives, the Operation mode is always CoE protocol and cannot be changed.

The Axis ID selection can only be done by software setting, with Easy Motion Studio or Easy Setup.

The iPOS4808 VX-CAT drives support all EtherCAT standard addressing modes. In case of device addressing mode based on node address, the iPOS drive sets the configured station alias address with its Axis ID value. The drive Axis ID value is set after power on only by software when setting via EasySetUp a specific Axis ID value in the range 1-255.

The hardware Axis ID pins from the CAN version are used to communicate with the ECAT-VX adapter.

The default Axis ID will be 255.

If the axis ID is selected as H/W in Setup, the axis ID will be 255.

If the Axis ID is 255, then the ECAT "configured station alias" will be 0. This setting allows certain EtherCAT masters to have multiple drives in a network having the same station alias (0).

If the Axis ID is set between 1 and 254, the "configured station alias" will be set accordingly.

Remark: Some EtherCAT masters consider having the same station alias (with non-zero values) on multiple drives as an Error.

It is recommended to use separate setup files on each drive with individual Axis IDs, to quickly determine the identity and location of each drive in the network.

3.9 Operation Mode and Axis ID Selection for CAN drives

The iPOS4808 allows users to choose between CANopen or TMLCAN operation modes and set the axis ID number by adjusting voltage levels on AxisID inputs. These inputs, namely AxisID 0 (pin B5), AxisID 1 (pin B6), and AxisID 2 (pin B7), offer seven selectable levels for configuration.

Level	Connection needed
L0	Connect input directly to ground (for example pin B3)
L1	Connect input through a 4.7kΩ resistor to ground
L2	Connected input through a 22kΩ resistor to ground
L3	Nothing connected – leave input open
L4	Connect input through a 22kΩ resistor to +5Vdc (for example pin B10)
L5	Connect input through a 4.7Kohm resistor to +5Vdc
L6	Connect input directly to +5V

The operation mode selection is done via AxisID 2:

- CANopen mode, if the input levels are: L0, L1 or L2
- TMLCAN mode, if the input levels are L3, L4, L5, L6

Figure 3.31. Axis ID Setting Examples. CANopen mode shows how to set the 7 levels on the AxisID 0 input and the resulting axis ID values when AxisID 2 input level is set for **CANopen** operation. Chapter 3.9.1 shows how to set all possible values for axis ID in this mode of operation.

Remarks:

- 1. AxisID value is computed with formula: 49 x AxisID2 + 7 x AxisID1 + AxisID0, where each AxisID can have one of the integer values: 0 to 6 (0 for L0, 1 for L1, 2 for L2, etc.)
- If the resulting AxisID value is 0 (all 3 inputs are connected to GND), the axis ID will be set to 127. If the resulting AxisID is greater than 127, the axis ID will be set to 255.

Figure 3.32. Axis ID Setting Examples. TMLCAN mode shows how to set the seven levels on the AxisID 0 input and the resulting axis ID values when AxisID 2 input level is set for **TMLCAN** operation. <u>Chapter 3.9.2</u> shows how to set all possible values for axis ID in this mode of operation.

Remarks:

- 1. AxisID is computed with formula: 49 x (AxisID2 3) + 7 x AxisID1 + AxisID0, where each AxisID can have one of the integer values: 0 to 6 (0 for L0, 1 for L1, 2 for L2, etc.)
- 2. If the resulting AxisID value is 0, the axis ID will be set to 255

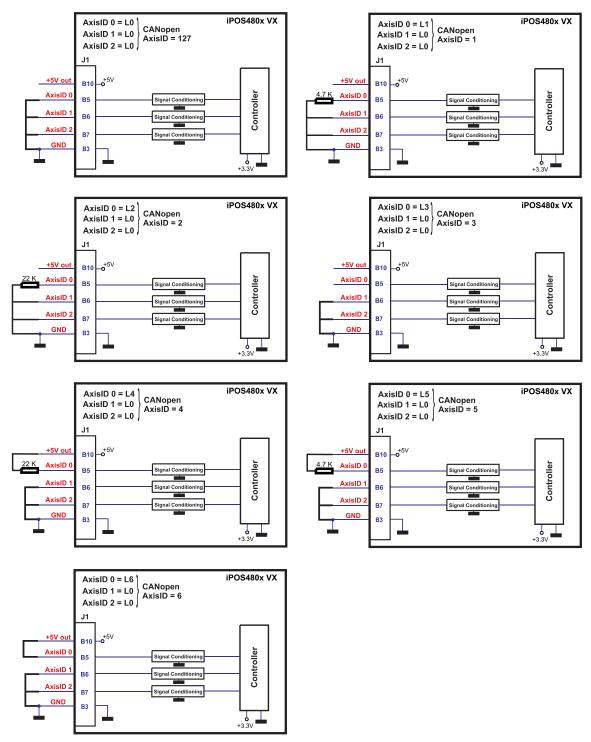
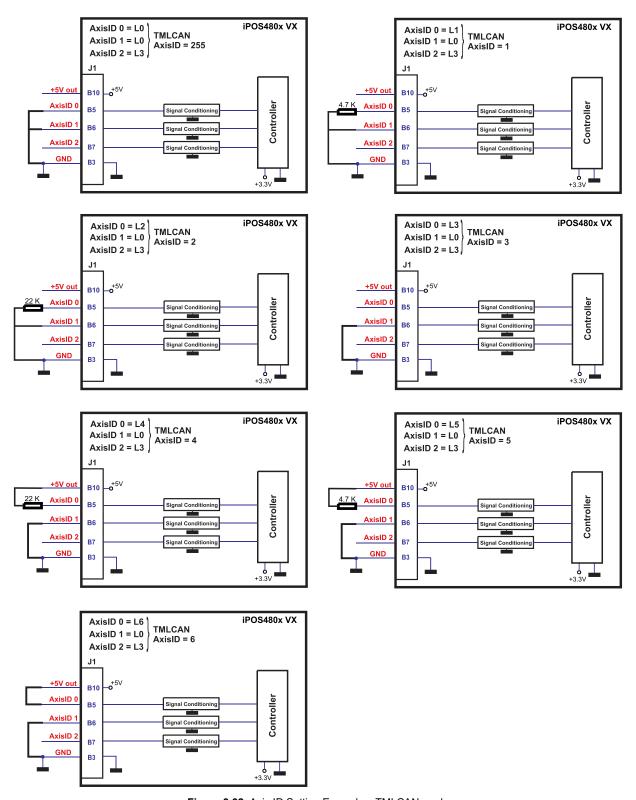



Figure 3.31. Axis ID Setting Examples. CANopen mode

 $\textbf{Figure 3.32.} \ \textbf{Axis ID Setting Examples.} \ \textbf{TMLCAN mode}$

Axis ID 2	Axis ID 1	Axis ID 0	ID CANopen
LO	LO	LO	127
L0	L0	L1	1
L0	L0	L2	2
L0	L0	L3	3
L0	L0	L4 L5	4
L0 L0	L0 L0	L6	<u>5</u>
LO	L1	L0	7
LO	L1	L1	8
L0	L1	L2	9
L0	L1	L3	10
L0	L1	L4	11
L0	L1	L5	12
L0 L0	L1 L2	L6 L0	13 14
LO	L2	L1	15
LO	L2	L2	16
L0	L2	L3	17
L0	L2	L4	18
L0	L2	L5	19
LO	L2	L6	20
L0	L3	L0	21
L0 L0	L3 L3	L1 L2	22 23
LO	L3	L3	24
LO	L3	L4	25
LO	L3	L5	26
L0	L3	L6	27
L0	L4	LO	28
L0	L4	L1	29
L0 L0	L4 L4	L2 L3	30 31
LO	L4 L4	L4	32
LO	L4	L5	33
LO	L4	L6	34
L0	L5	L0	35
L0	L5	L1	36
L0	L5	L2	37
L0	L5	L3	38 39
L0 L0	L5 L5	L4 L5	40
LO	L5	L6	41
LO	L6	LO	42
L0	L6	L1	43
L0	L6	L2	44
L0	L6	L3	45
L0	L6	L4	46
L0 L0	L6 L6	L5 L6	47 48
L1	L0	L0	49
L1	LO	L1	50
L1	LO	L2	51
L1	L0	L3	52
L1	L0	L4	53
L1	L0	L5	54
<u>L1</u>	L0	L6 L0	55 56
L1	L1 L1	L0 L1	56 57
L1	L1	L2	58
L1	L1	L3	59
L1	L1	L4	60
L1	L1	L5	61
L1	L1	L6	62
L1	L2	L0	63
L1 L1	L2	L1 L2	64 65
L1	L2 L2	L2 L3	66
L1	L2	L3 L4	67
L1	L2 L2	L5	68
L1	L2	L6	69
L1	L3	L0	70
L1	L3	L1	71
L1	L3	L2	72
L1	L3	L3	73

Axis ID 2	Axis ID 1	Axis ID 0	ID CANopen
<u>L1</u>	L3	L4	74
L1	L3	L5	75
L1 L1	L3 L4	L6 L0	76 77
L1	L4	L1	78
L1	L4	L2	79
L1	L4	L3	80
L1	L4	L4	81
L1	L4	L5	82
L1	L4	L6	83
L1	L5	L0	84
L1	L5	L1	85
L1	L5	L2	86
L1 L1	L5 L5	L3 L4	87 88
L1	L5	L5	89
L1	L5	L6	90
L1	L6	L0	91
L1	L6	L1	92
L1	L6	L2 L3	93
L1	L6	L3	94
L1	L6	L4 L5	95
L1	L6	L5	96
L1 L2	L6 L0	L6 L0	97 98
L2 1.2	L0 L0	LU I 1	98
L2 L2	L0	L1 L2	100
L2	LO	L3	101
L2 L2	LO	L4	102
L2 L2	L0	L5	103
L2	L0	L6	104
L2 L2	L1	L0	105
L2	L1	L1	106
L2 L2	L1	L2	107
L2	L1	L3	108
L2 L2	L1 L1	L4 L5	109 110
L2 L2	L1	L6	111
L2	L2	LO	112
L2	L2	L1	113
L2	L2	L2	114
L2	L2	L3	115
L2 L2	L2 L2	L4	116
L2	L2	L5	117
L2 L2	L2 L3	L6 L0	118 119
L2 L2	L3	L1	120
12	13	12	121
	L3	L3	122
L2 L2	L3	L4	123
L2	L3	L5	124
L2	L3	L6	125
L2	L4	L0	126
L2	L4	L1	255
L2	L4	L2	255
L2 L2 L2 L2	L4 L4	L3	255 255
1 2	L4 L4	L4 L5	255
L2 L2	L4 L4	L6	255
L2	L5	LO	255
L2	L5	L1	255
L2	L5	L2	255
L2	L5	L3	255
L2	L5	L4	255
L2	L5	L5	255
L2 L2	L5	L6	255 255
L2 1 2	L6 L6	L0 L1	255 255
L2 L2	L6	L1	255
L2	L6	L3	255
L2	L6	L4	255
L2	L6	L5	255
L2	L6	L6	255

3.9.2	Axis	ID Se	ttings for
Axis	Axis	Axis	ID
ID 2	ID 1	ID 0	CANopen
L3 L3	L0 L0	L0 L1	255 1
L3	LO	L2	2
L3	LO	L3	3
L3	L0	L4	4
L3	L0	L5	5
L3	L0	L6	6
L3 L3	L1 L1	L0 L1	7 8
L3	L1	L2	9
L3	L1	L3	10
L3	L1	L4	11
L3	L1 L1	L5	12
L3 L3	L2	L6 L0	13 14
L3	L2	L1	15
L3	L2	L2	16
L3	L2	L3	17
L3	L2	L4	18
L3	L2	L5 L6	19 20
L3 L3	L2 L3	L0	21
L3	L3	L1	22
L3	L3	L2	23
L3	L3	L3	24
L3	L3	L4	25
L3 L3	L3 L3	L5 L6	26 27
L3	L4	LO	28
L3	L4	L1	29
L3	L4	L2	30
L3	L4	L3	31
L3	L4 L4	L4	32
L3 L3	L4 L4	L5 L6	33 34
L3	L5	LO	35
L3	L5	L1	36
L3	L5	L2	37
L3	L5	L3	38
L3 L3	L5 L5	L4 L5	39 40
L3	L5	L6	41
L3	L6	LO	42
L3	L6	L1	43
L3	L6	L2	44
L3	L6	L3 L4	45
L3	L6 L6	L5	46 47
L3	L6	L6	48
L4	LO	LO	49
L4	L0	L1	50
L4	L0	L2	51
<u>L4</u> L4	L0 L0	L3 L4	52 53
L4 L4	L0	L5	54
L4	LO	L6	55
L4	L1	L0	56
L4	L1	L1	57
L4 L4	L1	L2	58
<u>L4</u>	L1 L1	L3 L4	59 60
L4	L1	L5	61
L4	L1	L6	62
L4	L2	L0	63
L4	L2	L1	64
L4 L4	L2	L2 L3	65 66
<u>L4</u> L4	L2 L2	L3 L4	67
L4	L2	L5	68
L4	L2	L6	69
L4	L3	L0	70
L4	L3	L1	71
<u>L4</u> L4	L3 L3	L2 L3	72 73
L4 L4	L3	L3	74
L4	L3	L5	75
-			

Axis ID 2	Axis ID 1	Axis ID 0	ID CANopen
L4	L3	L6	76
L4	L4	L0	77
L4	L4	L1	78
L4	L4	L2	79
L4	L4	L3	80
L4	L4	L4	81
L4	L4	L5	82
L4	L4	L6	83
L4	L5	L0	84
L4 L4	L5	L1	85
L4 L4	L5 L5	L2 L3	86 87
L4	L5	L4	88
L4	L5	L5	89
L4	L5	L6	90
L4	L6	LO	91
L4	L6	L1	92
L4	L6	L2	93
L4	L6	L3	94
L4	L6	L4	95
L4	L6	L5	96
L4	L6	L6	97
L5	L0	L0	98
L5	L0	L1	99
L5	L0	L2	100
L5	L0	L3	101
L5	L0	L4	102
L5	L0 L0	L5 L6	103 104
L5 L5	L1	L0	104
L5	L1	L1	106
L5	L1	L2	107
L5	L1	L3	108
L5	L1	L4	109
L5		L5	110
L5	L1	L6	111
L5	L2	L0	112
L5	L2	L1	113
L5	L2	L2	114
L5	L2	L3	115
L5	L2	L4	116
L5	L2	L5	117
L5	L2	L6	118
L5	L3	L0	119
L5	L3 L3	L1 L2	120 121
L5 L5	L3 L3		121
L5	L3	L3 L4	123
L5	L3	L5	124
L5	L3	L6	125
L5	L4	LO	126
L5	L4	L1	127
L5	L4	L2	128
L5	L4	L3	129
L5	L4	L4	130
L5	L4	L5	131
L5	L4	L6	132
L5	L5	LO	133
L5	L5	L1	134
L5	L5	L2	135
L5	L5	L3	136
L5	L5	L4	137 138
L5 L5	L5 L5	L5 L6	138
L5 L5	L6	L0	140
L5	L6	L1	141
L5	L6	L2	142
L5	L6	L3	143
L5	L6	L4	144
L5	L6	L5	145
L5	L6	L6	146
L6	L0	L0	147
L6	L0	L1	148
L6	L0	L2	149
L6	L0	L3	150
L6	L0	L4	151

L0 L0 L1 L1	L5 L6 L0	152 153
L0 L1	L6	152
L1		153
	LO	100
L1		154
	L1	155
L1	L2	156
L1	L3	157
L1	L4	158
		159
L1		160
12		161
12		162
L2		163
12	1.3	164
12		165
12		166
12		167
13		168
I 3		169
L3		170
L3		171
L3	1.4	172
LO		173 174
L3		
L4		175 176
	L2	177
		178
	L4	179
L4		180
		181
		182
		183
L5		184
L5		185
		186
		187
		188
L6	L0	189
L6	L1	190
L6	L2	191
L6	L3	192
L6	L4	193
L6	L5	194
L6	L6	195
	L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2 L3 L3 L3 L3 L3 L3 L4 L4 L4 L4 L4 L5 L5 L5 L5 L5 L5 L5 L6 L6 L6 L6 L6 L6 L6 L6	L1 L5 L1 L6 L2 L0 L2 L1 L2 L2 L2 L2 L3 L2 L4 L2 L5 L2 L6 L3 L0 L3 L1 L3 L2 L3 L3 L3 L4 L3 L5 L4 L0 L4 L1 L4 L2 L4 L4 L4 L5 L4 L4 L4 L5 L4 L5 L5 L0 L5 L1 L5 L2 L5 L1 L5 L2 L5 L1 L5 L2 L5 L3 L5 L4 L6 L5 L0 L6 L1 L6 L0 L6 L1 L6 L2 L6 L3 L6 L4 L6 L5

3.10 Electrical Specifications

All parameters measured under the following conditions (unless otherwise specified):

 T_{amb} = 0...70°C, V_{LOG} = 24 V_{DC} ; V_{MOT} = 24 V_{DC} ; Supplies start-up / shutdown sequence: -<u>any-</u>Load current (sinusoidal amplitude / continuous BLDC,DC,stepper) = 8A iPOS4808

3.10.1 Operating Conditions

		Min.	Тур.	Max.	Units
Ambient temperature ¹		0		+40	
Ambient humidity	Non-condensing	0		90	%Rh
Altitude / pressure?	Altitude (referenced to sea level)	-0.1	0 ÷ 2.5	1	Km
Altitude / pressure ²	Ambient Pressure	0 1	0.75 ÷ 1	10.0	atm

3.10.2 Storage Conditions

		Min.	Тур.	Max.	Units
Ambient temperature		-40		TBD	°C
Ambient humidity	Non-condensing	0		100	%Rh
Ambient Pressure		0		10.0	atm
CCD conchility / Luman hady model	Not powered; applies to any accessible part			±0.5	kV
ESD capability (Human body model)	Original packaging			±15	kV

3.10.3 Mechanical Mounting

		Min.	Тур.	Max.	Units
Airflow		natu	natural convection, closed box		
	Between adjacent drives	30			mm
Spacing required for vertical mounting	Between drives and nearby walls	30			mm
	Between drives and roof-top	20			mm
	Between adjacent drives	4			mm
Spacing required for horizontal mounting	Between drives and nearby walls	5			mm
Spacing required for nonzonial mounting	Space needed for drive removal	10			mm
	Between drives and roof-top	15			mm
Insertion force	Using recommended mating connectors; without		31	55	N
Extraction force	retainer	8	16		N

3.10.4 Environmental Characteristics

		Min.	Тур.	Max.	Units	
	Without mating connector / retainer		mm			
iPOS4808 VX-CAN / -CAT	Without mating connector / Tetainer	~2	inch			
Size (Length x Width x Height)	With recommended mating vertical connector and retainer. Height	5	6 x 48.1 x	8.9	mm	
Size (Lerigiti X Widiti X Fleight)	above PCB surface.	~2	.2 x 1.89 x	0.35	inch	
	With recommended mating horizontal connector. Height above PCB	5	6 x 56.4 x	9.4	mm	
	surface.	~2	.2 x 2.22 x	0.37	inch	
	Without motion connector	31	.5 x 28.8 x	5.2	mm	
FOATAN, I. I	Without mating connector		~1.24 x 1.13 x 0.2			
ECAT-VX adapter Size (Length x Width x Height)	With recommended mating vertical connector. Height above PCB surface.		31.5 x 32.6 x 8.8			
Size (Lerigiti X Widiti X Fleight)			~1.24 x 1.28 x 0.35			
	With recommended mating horizontal connector. Height above PCB	31.5 x 41.2 x 9.4			mm	
	surface.	~1.	24 x 1.62 x	0.37	inch	
Weight	iPOS4808 VX-CAN / -CAT		16		g	
Weight	ECAT-VX adapter		5		g	
Power dissipation	Idle (no load)		1.7		w	
rowei dissipation	Operating		4.3		VV	
Cleaning agents	Dry cleaning is recommended	Only	Water- or	Alcohol- ba	ased	
Protection degree	According to IEC60529, UL508	IP00			_	

3.10.5 Logic Supply Input (+V_{LOG})

		Min.	Тур.	Max.	Units
	Nominal values	9		36	V_{DC}
Supply voltage	Absolute maximum values, drive operating but outside guaranteed parameters	8		40	V _{DC}
	Absolute maximum values, surge (duration ≤ 10ms) [†]	-0.6		42	V
	+V _{LOG} = 7V		125	320	
Supply current	+V _{LOG} = 12V		85	220	mA
Зарру сипен	+V _{LOG} = 24V		50	145	IIIA
	+V _{LOG} = 40V		40	120	

¹ Operating temperature at higher temperatures is possible with reduced current and power ratings

 $^{^{2}}$ iPOS4808 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

3.10.6 Motor Supply Input (+V_{MOT})

		Min.	Тур.	Max.	Units
	Nominal values	11		50	V_{DC}
Supply	Absolute maximum values, drive operating but outside guaranteed parameters	9		52	V_{DC}
voltage	Absolute maximum values, surge (duration ≤ 10ms) [†]	-0.6		54	V
_	Idle		1	5	mA
Supply	Operating	-20	±8	+20	Α
current	Absolute maximum value, short-circuit condition (duration ≤ 10ms) [†]			26	Α

3.10.7 Motor Outputs (A/A+, B/A-, C/B+, BR/B-)

			Min.	Тур.	Max.	Units
Name and a second	for DC brushed, steppers and BLDC motors with Hall-ba	ased trapezoidal control			8	
Nominal output current, continuous	for PMSM motors with FOC sinusoidal control (sinusoid	lal amplitude value)			8	Α
Continuous	for PMSM motors with FOC sinusoidal control (sinusoid	lal effective value)			5.67	
Motor output current, peak	maximum 2.5s		-20		+20	Α
Short-circuit protection thresh	nold			±26	TBD	Α
Short-circuit protection delay			5	10		μS
On-state voltage drop	Nominal output current; including typical mating connec	tor contact resistance		±0.3	±0.5	V
Off-state leakage current				±0.5	±1	mA
		F _{PWM} = 20 kHz	330			
	Decrees and advision for simple 150/ of accommon to	$F_{PWM} = 40 \text{ kHz}$	150			μН
	range; $+v_{MOT} = 36 \text{ V}$	$F_{PWM} = 80 \text{ kHz}$	120			
		$F_{PWM} = 60 \text{ kHz}$	80			
Motor inductance		F _{PWM} = 100 kHz	60			
(phase-to-phase)		$F_{PWM} = 20 \text{ kHz}$	120			
	About the maintaining colors that the desired by	$F_{PWM} = 40 \text{ kHz}$	40			
	Absolute minimum value, limited by short-circuit protection; +V _{MOT} = 36 V	$F_{PWM} = 60 \text{ kHz}$	30			μΗ
	protection, +v _{MOT} = 30 v	$F_{PWM} = 80 \text{ kHz}$	15			
		$F_{PWM} = 100 \text{ kHz}$	8			
		$F_{PWM} = 20 \text{ kHz}$	250			
Makes ale skrip al kinne	D	F _{PWM} = 40 kHz	125			
Motor electrical time- constant (L/R)	Recommended value, for ±5% current measurement error due to ripple	$F_{PWM} = 60 \text{ kHz}$	100			μs
Constant (L/IX)	error due to rippie	F _{PWM} = 80 kHz	63			'
F _{PWM} = 100 kHz		50				
Current measurement accuracy	FS = Full Scale			±4	±8	%FS

3.10.8 Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4/Enable, IN5, IN6, IN7)

		Min.	Тур.	Max.	Units
Mode compliance	TTL / CMOS / LVTTL (3.3V) / Open-collector / NPN / 2	24V output	s		
Default state	Input floating (wiring disconnected)		Logic HIGH		
	Logic "LOW"		0	8.0	
	Logic "HIGH"	2	5÷24		
Input voltage	Floating voltage (not connected)		3		V
mpat voltage	Absolute maximum, continuous	-10		+30	
	Absolute maximum, surge (duration ≤ 1s) [†]	-20		+40	
	Logic "LOW"; Pulled to GND		0.6	1	
Innut current	Logic "HIGH"; Internal 4.7KΩ pull-up to +3.3	0	0	0	A
Input current	Logic "HIGH"; Pulled to +5V		0.15	0.2	mA
	Logic "HIGH"; Pulled to +24V		2	2.5	
Input frequency		0		150	kHz
Minimum pulse width 3.3			μs		
ESD protection	Human body model	±2		•	kV

3.10.9 Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT5)

				Min.	Ty p.	Max.	Units
Mada samulianas	All outputs (OUT0, OUT1, OUT2/Error, OUT3/Ready, OUT5)			TTL / CMOS	/ Oper	-collector / l	NPN 24V
Mode compliance	Ready, Error			Same as above + LVTTL (3.3V)			3.3V)
	Not supplied (+V _{LOG} floating or to GNI	D)		ŀ	ligh-Z (floating)	
	Improprietable often neuron un	OUT	T0, OUT1, OUT5	Logic "HIGH	,		
Default state	Immediately after power-up	OUT	T2/Error, OUT3/ Ready	Logic "LOW"			
	N 1 "	OUT0, OUT1, OUT2/Error, OUT5		Logic "HIGH"			
	Normal operation	OU	T3/Ready	Logic "LOW"			
	Logic "LOW"; output current = 0.5A				0.2	0.8	
	1: - "1 11 01 1":		OUT2/Error, OUT3/ Ready	2.9	3	3.3	V
	Logic "HIGH"; output current = 0, no le	oad	OUT0, OUT1, OUT5	4	4.5	5	
Output voltage	Logic "HIGH", external load to +V _{LOG}				V_{LO}		
	Logic Thorr, external load to 1 Viog				G		
	Absolute maximum, continuous			-0.5		V _{LOG} +0.5	
	Absolute maximum, surge (duration ≤	1s)†		-1		V _{LOG} +1	

	Logic "LOW", sink current, continuous				0.5	Α
	Logic "LOW", sink current, pulse ≤ 5 sec.				1	Α
Output current	Logic "HIGH", source current; external	OUT2/Error, OUT3/ Ready			2	A
	load to GND; Vout >= 2.0V OUT0, OUT1, OUT5 Logic "HIGH", leakage current; external load to +VLog; Vout = VLog max = 40V				4	mA
				0.1	0.2	mA
Minimum pulse width		TBD			μs	
ESD protection	Human body model		±5			kV

3.10.10 Digital Hall Inputs (Hall1, Hall2, Hall3)

		Min.	Typ.	Max.	Units
Mode compliance		TTL		Open-colle	ector
Default state	Input floating (wiring disconnected)		Logic	HIGH	
	Logic "LOW"		0	0.8	
	Logic "HIGH"	2	5		.,
Input voltage	Floating voltage (not connected)		4.4		V
	Absolute maximum, surge (duration ≤ 1s) [†]	-10		+15	
	Logic "LOW"; Pull to GND			5	
Input current	Logic "HIGH"; Internal 4.7KΩ pull-up to +5	0	0	0	mA
Minimum pulse width		2			μs
ESD protection	Human body model	±5			kV

3.10.11 Linear Hall Inputs (LH1, LH2, LH3)

		Min.	Тур.	Max.	Units
	Operational range	0	0.5÷4.5	4.9	
Input voltage	Absolute maximum values, continuous	-7		+7	V
-	Absolute maximum, surge (duration ≤ 1s)	-11		+14	
Input current	Input voltage 0+5V	-1	±0.9	+1	mA
Interpolation resolution	Depending on software settings			11	bits
Frequency		0		1	kHz
ESD protection	Human body model	±1			kV

3.10.12 Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)

		Min.	Тур.	Max.	Units
Input voltage, differential	Sin+ to Sin-, Cos+ to Cos-		1	1.25	V_{PP}
Input voltage, any pin to GND	Operational range	-1	2.5	4	
	Absolute maximum values, continuous	-7		+7	V
	Absolute maximum, surge (duration ≤ 1s) [†]	-11		+14	
	Differential, Sin+ to Sin-, Cos+ to Cos- 1	4.2	4.7		kΩ
Input impedance	Common-mode, to GND		2.2		kΩ
Interpolation Resolution	Software selectable, for one sine/cosine period	2		10	bits
Frequency	Sin-Cos interpolation	0		450	kHz
	Quadrature, no interpolation	0		10	MHz
ESD protection	Human body model	±1			kV

3.10.13 Analog 0..5V (REF/FDBK)

			Min.	Тур.	Max.	Units
Input voltage	Operational range	05V mode	0		4.95	
	Absolute maximum values, o	continuous	-12		+18	V
	Absolute maximum, surge (d	duration ≤ 1s) [†]			±36	
Input impedance	To GND			7		kΩ
Resolution				12		bits
Integral linearity					±2	bits
Offset error				±2	±10	bits
Gain error				±1%	±3%	% FS ²
Bandwidth (-3dB)	Software selectable		0		8.0	kHz
ESD protection	Human body model		±5			kV

 $^{^{1}}$ For many applications, an 120 Ω termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS-. Please consult the feedback device datasheet for confirmation.

² "FS" stands for "Full Scale"

3.10.14 Encoder Inputs (A/A+, A-, B/B+, B-, Z/Z+, Z-)

		Min.	Тур.	Max.	Units
Single-ended mode compliance	Leave negative inputs disconnected	TTL	/ CMOS / G	Open-colle	ctor
	Logic "LOW"			1.6	
Input voltage, single-ended mode A/A+, B/B+	Logic "HIGH"	1.8			V
A/A+, D/D+	Floating voltage (not connected)		4.5		1
	Logic "LOW"			1.2	
Input voltage, single-ended mode Z/Z+	Logic "HIGH"	1.4			V
	Floating voltage (not connected)		4.7		1
Input current, single-ended mode A/A+,	Logic "LOW"; Pull to GND		2.5	3	_
B/B+, Z/Z+	Logic "HIGH"; Internal 2.2KΩ pull-up to +5	0	0	0	mA
Differential mode compliance	For full RS422 compliance, see ¹	TIA/EIA-422-A			
Input voltage, differential mode	Hysteresis	±0.06	±0.1	±0.2	V
	Common-mode range (A+ to GND, etc.)	-7		+7	7 ∨
Innuit impodence differential	A+ to A-, B+ to B-	4.2	4.7		kΩ
Input impedance, differential	Z+ to Z-	6.1	7.2		K12
	Single-ended mode, Open-collector / NPN	0		500	KHz
Input frequency	Differential mode, or Single-ended driven by push-pull (TTL / CMOS)	0		10	MHz
	Single-ended mode, Open-collector / NPN	1			μs
Minimum pulse width	Differential mode, or Single-ended driven by push-pull (TTL / CMOS)	50			ns
	Absolute maximum values, continuous	-7		+7	V
Input voltage, any pin to GND	Absolute maximum, surge (duration ≤ 1s) [†]	-11		+14	
ESD protection	Human body model	±1			kV

3.10.15 Axis ID Inputs (AxisID 0, AxisID 1, Axis ID 2)

		Min.	Тур.	Max.	Units
	Operational range	0		4.95	
Input voltage	Absolute maximum values, continuous	-12		+18	V
	Absolute maximum, surge (duration ≤ 1s) [†]			±36	
Input impedance	To GND		7		kΩ
Resolution			12		bits
Integral linearity				±2	bits
Offset error			±2	±10	bits
Gain error			±1%	±3%	% FS ²
Bandwidth (-3dB)	Depending on software settings	0		0.8	kHz
ESD protection	Human body model	±5			kV

3.10.16 RS-232

		Min.	Тур.	Max.	Units
Standards compliance			TIA/EIA-232-C		
Bit rate	Depending on software settings	9600		115200	Baud
Short-circuit protection	232TX short to GND		Guaranteed		
ESD protection	Human body model	±2			kV

3.10.17 CAN-Bus (for CAN drives)

		Min.	Тур.	Max.	Units			
Compliance		ISO1	1898, CiA-30)1v4.2, 402v	/3.0			
Bit rate	Software selectable	125		1000	125			
Bus length	1Mbps			40				
	500Kbps			100	m			
	≤ 250Kbps			250				
Resistor	Between CAN-Hi, CAN-Lo		none on	-board				
Nada addressing	Strapping option (AxisID0,1,2)	1 ÷ 127 (CA	1 ÷ 127 (CANopen); 1-195 & 255 (TMLCA					
Node addressing	Software	1 - 127	(CANopen);	pen); 1- 255 (TMLCAN)				
Voltage, CAN-Hi or CAN-Lo to GND		-36		-36	V			
ESD protection	Human body model	±15			kV			

¹ For full RS-422 compliance, 120Ω termination resistors must be connected across the differential pairs, as close as possible to the drive input pins. See *Figure 3.21. Differential incremental encoder connection*

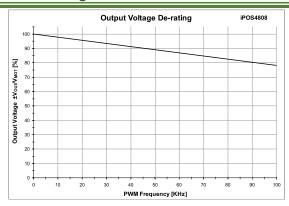
² "FS" stands for "Full Scale"

3.10.18 Supply Output (+5V)

		Min.	Тур.	Max.	Units
+5V output voltage	Current sourced = 350mA	4.8	5	5.2	V
+5V output current		600	650		mA
Short-circuit protection		NOT protected			
Over-voltage protection		NOT protected			
ESD protection	Human body model	±1			kV

3.10.19 Data communication signals between iPOS drive and ECAT-VX adapter

	Min.	Тур.	Max.	Units
Voltage levels	3.	3V low-volta	age TTL	
Noise immunity			0.4	V
Data protocol		4 wire S	PI	
Data Rate	10		15	MHz


3.10.20 LED signals of ECAT-VX adapter (for CAT drives)

	Γ	Min.	Тур.	Max.	Units			
LED connection		Common anode to 3.3V output						
LED connection		Direct, no series resistor						
LED current			8	10	mA			
3.3 output voltage		3.15	3.3	3.45	V			
3.3 output current				60	mA			

3.10.21 Conformity

EU Declaration 2014/30/EU (EMC), 2014/35/EU (LVD), 2011/65/EU (RoHS), 1907/2006/EC (REACH), 93/68/EEC (CE Marking Directive), EC 428/2009 (non dual-use item, output frequency limited to 590Hz)

3.11 De-rating curves

iPOS4808



Figure 3.33. iPOS4808 VX-CAN Output Voltage De-rating with

PWM frequency1

Altitude [Km]

Figure 3.35. iPOS4808 VX-CAN De-rating with altitude

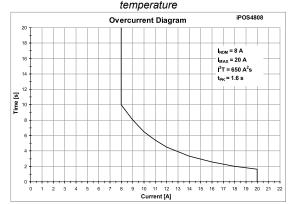


Figure 3.36. iPOS4808 VX-CAN Over-current diagram

CAUTION!

FOR PWM FREQUENCIES LESS THAN 20 KHZ, CORRELATE THE PWM FREQUENCY WITH THE MOTOR PARAMETERS IN ORDER TO AVOID POSSIBLE MOTOR DAMAGE.

[†] Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 $^{^{1}}$ V_{OUT} – the output voltage, V_{MOT} – the motor supply voltage

4 Memory Map

iPOS4808 VX has 2 types of memory available for user applications: 2K×16 SRAM and 4K×16 serial E²ROM.

The SRAM memory is mapped in the address range: 9800h to 9FFFh. It can be used to download and run a TML program, to save real-time data acquisitions and to keep the cam tables during run-time.

The E^2ROM is mapped in the address range: 4000h to 4FFFh. It is used to keep in a non-volatile memory the TML programs, the cam tables and the drive setup information.

Remark: EasyMotion Studio handles automatically the memory allocation for each motion application. The memory map can be accessed and modified from the main folder of each application

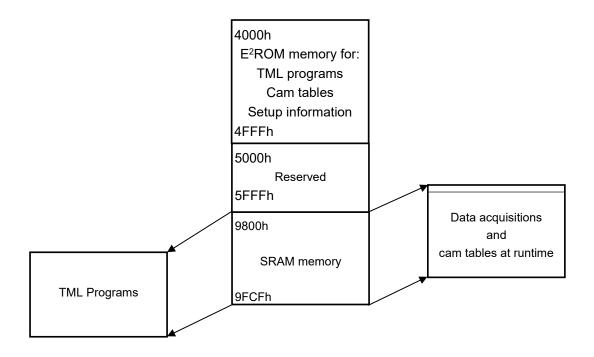


Figure 4.1. iPOS4808 VX Memory Map

