# iPOS4808 BX-CAN / BX-CAN-STO

Intelligent Servo Drive for Step, DC, Brushless DC and AC Motors



# **Intelligent Servo Drives**





P091.027.iPOS4808.BX.CAN.CAN-STO.UM.0523

© Technosoft 2023

# Table of contents

| Та               | Table of contents   2 |                                                |          |  |  |  |
|------------------|-----------------------|------------------------------------------------|----------|--|--|--|
| Read This First4 |                       |                                                |          |  |  |  |
|                  | Abou                  | it This Manual                                 | 4        |  |  |  |
| ،<br>ا           | Notal                 | tional Conventions                             | л        |  |  |  |
|                  |                       |                                                | -        |  |  |  |
|                  | Relat                 | ed Documentation                               | 5        |  |  |  |
|                  | f yoı                 | I Need Assistance                              | 5        |  |  |  |
| 1                | Sa                    | fety information                               | 6        |  |  |  |
|                  | 1.1                   | Warnings                                       | 6        |  |  |  |
|                  | 1 2                   | Cautions                                       | 6        |  |  |  |
|                  | 1.2                   |                                                | -        |  |  |  |
| •                | 1.3                   | Quality system, conformance and certifications | 1        |  |  |  |
| 2                | Pro                   | oduct Overview                                 | 8        |  |  |  |
|                  | 2.1                   | Introduction                                   | 8        |  |  |  |
|                  | 2.2                   | Product Features1                              | 0        |  |  |  |
|                  | 2.3                   | Identification Labels                          | 1        |  |  |  |
|                  | e<br>7 /              | Supported Motor Sonsor Configurations          | י<br>י   |  |  |  |
| 4                | <b>2.4</b><br>24      | 1 Single loop configurations                   | ∠<br>2   |  |  |  |
|                  | 2.4.                  | 2Dual loop configurations                      | 2        |  |  |  |
| -                |                       |                                                | _        |  |  |  |
| 3                | На                    | rdware Installation1                           | 3        |  |  |  |
|                  | 3.1                   | iPOS4808 BX-CAN / -STO Board Dimensions 1      | 3        |  |  |  |
|                  | 3.2                   | Mechanical Mounting1                           | 4        |  |  |  |
| 4                | 3.3                   | Connectors and Pinouts 1                       | 5        |  |  |  |
|                  | 3.3.                  | 1 Pinouts for iPOS4808 BX-CAN-STO 1            | 5        |  |  |  |
|                  | 3.3.                  | 2 Pinouts for iPOS4808 BX-CAN 1                | 6        |  |  |  |
|                  | 3.3.                  | 3 Mating Connectors 1                          | 7        |  |  |  |
|                  | 3.4                   | Connection diagrams1                           | 8        |  |  |  |
|                  | 3.4.                  | 1iPOS4808 BX-CAN-STO connection diagram1       | 8        |  |  |  |
|                  | 3.4.<br>3.4           | 2IPOS4808 BX-CAN connection diagram            | 9        |  |  |  |
|                  | 3.4.                  | 4.3.1 PNP inputs                               | 20       |  |  |  |
|                  | 3                     | .4.3.2 NPN inputs                              | 20       |  |  |  |
|                  | 3                     | .4.3.3 NPN outputs                             | 21       |  |  |  |
|                  | 3.4.                  | 45V Digital I/O Connection                     | 21       |  |  |  |
|                  | 3.4.                  | 5Analog Inputs Connection                      | 22       |  |  |  |
|                  | 3                     | .4.5.1 0-5V Input Range                        | 22<br>22 |  |  |  |
|                  | 3                     | .4.5.3 Recommendation for wiring               | 22       |  |  |  |
|                  | 3.4.                  | 6 Motor connections                            | 23       |  |  |  |
|                  | 3                     | .4.6.1 Brushless Motor connection              | 23       |  |  |  |
|                  | 3                     | .4.6.2 2-phase Step Motor connection           | 23<br>>∕ |  |  |  |
|                  | 3                     | .4.6.4 DC Motor connection                     | .+<br>24 |  |  |  |
|                  | 3                     | .4.6.5 Recommendations for motor wiring        | 24       |  |  |  |

|   | 3.4.7Fe             | edback connections                                                  |    |
|---|---------------------|---------------------------------------------------------------------|----|
|   | 3.4.7.1             | Differential Incremental Encoder #1 Connection                      |    |
|   | 3473                | Pulse&Direction Encoder #1 Connection                               |    |
|   | 3.4.7.4             | Differential Incremental Encoder #2 Connection                      |    |
|   | 3.4.7.5             | SSI / EnDAT Encoder #2 Connection                                   | 27 |
|   | 3.4.7.6             | BiSS Encoder #2 Connection                                          | 27 |
|   | 3.4.7.7             | Digital Hall Connection for Motor + Hall + Incremental Encoder      |    |
|   | 3.4.7.8             | Digital Hall Connection for direct motor control without an encoder |    |
|   | 3.4.7.9<br>3 4 7 10 | Linear Hall Connection                                              |    |
|   | 34711               | Recommendations for wiring                                          |    |
|   | 3.4.8Po             | wer Supply                                                          |    |
|   | 3.4.8.1             | Supply Connection and STO connection for iPOS4808 BX-CAN-STO        |    |
|   | 3.4.8.2             | Supply Connection for iPOS4808 BX-CAN                               |    |
|   | 3.4.8.3             | Recommendations for Supply Wiring                                   | 31 |
|   | 3.4.8.4             | Recommendations to limit over-voltage during energy regeneration    | 31 |
|   | 3.4.9Se             | rial RS-232 connection                                              | 33 |
|   | 3.4.9.1             | Serial RS-232 connection                                            | 33 |
|   | 3.4.9.2             | Recommendation for wiring                                           |    |
|   | 3.4.10CA            | N-bus connection                                                    |    |
|   | 3.4.10.1            | CAN connection                                                      |    |
|   | 3.4.10.2            | Recommendation for wiring                                           |    |
|   | 3.4.11DIS           | sadiing Autorun                                                     |    |
| 3 | 5.5 CAN C           | Operation Mode and Axis ID Selection                                | 35 |
|   | 3.5.1Se             | lection of the Operation Mode                                       | 35 |
|   | 3.5.2Se             | lection of the Axis ID                                              | 36 |
|   | 3.5.3LE             | D indicators                                                        |    |
| 3 | .6 Electri          | cal Specifications                                                  | 37 |
|   | 3.6.1Op             | erating Conditions                                                  | 37 |
|   | 3.6.2Sto            | prage Conditions                                                    | 37 |
|   | 3.6.3Me             | chanical Mounting                                                   | 37 |
|   | 3.6.4En             | vironmental Characteristics                                         | 37 |
|   | 3.6.5Log            | gic Supply Input (+V <sub>LOG</sub> )                               | 37 |
|   | 3.6.6Mo             | otor Supply Input (+V <sub>MOT</sub> )                              | 37 |
|   | 3.6.7Mo             | otor Outputs (A/A+, B/A-, C/B+, CR/B-)                              | 38 |
|   | 3.6.8Dig            | jital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN5, IN6)                 | 38 |
|   | 3.6.9Dig            | jital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4)           | 38 |
|   | 3.6.10Dig           | jital Hall Inputs (Hall1, Hall2, Hall3)                             | 39 |
|   | 3.6.11En            | coder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,)                     | 39 |
|   | 3.6.12En            | coder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-)                      | 39 |
|   | 3.6.13Lin           | ear Hall Inputs (LH1, LH2, LH3)                                     | 39 |
|   | 3.6.14Sir           | n-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)                       | 39 |
|   | 3.6.15CA            | N-BUS                                                               | 40 |
|   | 3.6.16SS            | I / EnDAT encoder interface                                         | 40 |
|   | 3.6.17BiS           | SS Encoder Interface                                                | 40 |
|   | 3.6.18An            | alog 0…5V Inputs (REF, FDBK)                                        | 41 |
|   | 3.6.19RS            | -232                                                                | 41 |
|   | 3.6.21Sa            | fe Torque OFF (STO1+; STO1-; STO2+; STO2-)                          | 41 |
|   | 3.6.22 Er           | nable circuit (ENA1, ENA2)                                          | 41 |
|   | 3.6.23iPC           | DS4808 BX-CAN / -STO Derating curves                                | 42 |
| Δ | Momory              | Man                                                                 | 10 |
| - |                     |                                                                     |    |

# **Read This First**

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information-retrieval system without permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

## About This Manual

| This book is a technical reference manual for: |               |                                                                                         |  |
|------------------------------------------------|---------------|-----------------------------------------------------------------------------------------|--|
| Product Name                                   | Part Number   | Description                                                                             |  |
| iPOS4808 BX-CAN-STO                            | P027.314.E201 | Standard version that can support a differential encoder on Feedback #1, CAN, STO input |  |
|                                                | P027.314.E701 | Can support linear halls on Feedback #1, CAN, STO input                                 |  |
| iPOS4808 BX-CAN                                | P027.214.E201 | Standard version that can support a differential encoder on Feedback #1, CAN            |  |

- In order to operate the **iPOS4808** drives, you need to pass through 3 steps:
  - Step 1 Hardware installation
  - □ Step 2 Drive setup using Technosoft EasySetUp software for drive commissioning
  - **Step 3 Motion programming** using one of the options:
    - □ A CANopen master<sup>1</sup>
    - □ The drive's **built-in motion controller** executing a Technosoft Motion Language (**TML**) program developed using Technosoft **EasyMotion Studio** software
    - A TML\_LIB motion library for PCs (Windows or Linux)
    - □ A TML\_LIB motion library for PLCs
    - □ A **distributed control** approach which combines the above options, like for example a host calling motion functions programmed on the drives in TML

This manual covers **Step 1** in detail. It describes the **iPOS4808** hardware including the technical data, the connectors and the wiring diagrams needed for installation.

For Step 2 and 3, please consult the document iPOS Dual Loop drives Software reference

(091.027.DL.Software.xxxx). It also includes the scaling factors between the real SI units and the drive internal units. For detailed information regarding the next steps, refer to the related documentation.

## Notational Conventions

This document uses the following conventions:

- iPOS4808 / iPOS4808 BX all products described in this manual
- IU units Internal units of the drive
- SI units International standard units (meter for length, seconds for time, etc.)
- **STO** Safe Torque Off
- TML Technosoft Motion Language

<sup>&</sup>lt;sup>1</sup> when iPOS4808 is set in CANopen mode

#### iPOS4808 BX-CAN-STO Datasheet ( P027.314.E201.DSH)

- describes the hardware connections of the iPOS4808 BX-CAN-STO intelligent servo drive including the technical data and connectors.

#### iPOS family Safe Torque Off (STO) Operating instructions ( 091.099.STO.Operating.Instructions.xxxx)

– describes the principles of STO function, the applied standards, the safety-related data and the electrical data. It presents the requested information for installation and commissioning of STO function

#### iPOS Dual Loop drives Software reference (091.027.DL.Software.xxxx)

- describes the compatible software installation, drive software setup commissioning, introduction to TML motion programming, includes the scaling factors between the real SI units and the drive internal units.

- Help of the EasySetUp software describes how to use EasySetUp to quickly setup any Technosoft drive for your application using only 2 dialogues. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp can be downloaded free of charge from Technosoft web page
- iPOS CANopen Programming (part no. P091.063.iPOS.UM.xxxx) explains how to program the iPOS family of intelligent drives using CANopen protocol and describes the associated object dictionary for CiA 301 v.4.2 application layer and communication profile, CiA WD 305 v.2.2.13 layer settings services and protocols and CiA DSP 402 v3.0 device profile for drives and motion control now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards
- Motion Programming using EasyMotion Studio (part no. P091.034.ESM.UM.xxxx) describes how to use the EasyMotion Studio to create motion programs using in Technosoft Motion Language (TML). EasyMotion Studio platform includes EasySetUp for the drive/motor setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can fully benefit from a key advantage of Technosoft drives – their capability to execute complex motions without requiring an external motion controller, thanks to their built-in motion controller. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from the Technosoft web page

| If you want to                                                                      | Contact Technosoft at                                                                               |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Visit Technosoft online                                                             | World Wide Web: http://www.technosoftmotion.com/                                                    |  |  |
| Receive general information<br>or assistance (see Note)                             | World Wide Web: <u>http://www.technosoftmotion.com/</u><br>Email: <u>sales@technosoftmotion.com</u> |  |  |
| Ask questions about product operation<br>or report suspected problems (see<br>Note) | Tel: +41 (0)32 732 5500<br>Email: <u>support@technosoftmotion.com</u>                               |  |  |
| Make suggestions about,<br>or report errors in documentation.                       | Mail: Technosoft SA<br>Avenue des Alpes 20<br>CH-2000 Neuchatel, NE<br>Switzerland                  |  |  |

### If you Need Assistance ...

# Read carefully the information presented in this chapter before carrying out the drive installation and setup! It is imperative to implement the safety instructions listed hereunder.

This information is intended to protect you, the drive and the accompanying equipment during the product operation. Incorrect handling of the drive can lead to personal injury or material damage.

The following safety symbols are used in this manual:



SIGNALS A DANGER TO THE OPERATOR WHICH MIGHT CAUSE WARNING! BODILY INJURY. MAY INCLUDE INSTRUCTIONS TO PREVENT THIS SITUATION



SIGNALS A DANGER FOR THE DRIVE WHICH MIGHT DAMAGE THE CAUTION! PRODUCT OR OTHER EQUIPMENT. MAY INCLUDE INSTRUCTIONS TO AVOID THIS SITUATION

# 1.1 Warnings

| Â           | WARNING! | THE VOLTAGE USED IN THE DRIVE MIGHT CAUSE ELECTRICAL<br>SHOCKS. DO NOT TOUCH LIVE PARTS WHILE THE POWER SUPPLIES<br>ARE ON  |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------|
|             |          |                                                                                                                             |
| <u>/</u>    | WARNING! | TO AVOID ELECTRIC ARCING AND HAZARDS, NEVER CONNECT /<br>DISCONNECT WIRES FROM THE DRIVE WHILE THE POWER SUPPLIES<br>ARE ON |
|             |          |                                                                                                                             |
| <u>/</u>    | WARNING! | THE DRIVE MAY HAVE HOT SURFACES DURING OPERATION.                                                                           |
|             |          |                                                                                                                             |
| <u>/</u>    | WARNING! | DURING DRIVE OPERATION, THE CONTROLLED MOTOR WILL MOVE.<br>KEEP AWAY FROM ALL MOVING PARTS TO AVOID INJURY                  |
| 1.2 Cauti   | ons      |                                                                                                                             |
|             |          |                                                                                                                             |
| <u>_!</u>   | CAUTION! | THE POWER SUPPLIES CONNECTED TO THE DRIVE MUST COMPLY<br>WITH THE PARAMETERS SPECIFIED IN THIS DOCUMENT                     |
|             |          |                                                                                                                             |
| $\bigwedge$ | CAUTION! | TROUBLESHOOTING AND SERVICING ARE PERMITTED ONLY FOR<br>PERSONNEL AUTHORISED BY TECHNOSOFT                                  |

To prevent electrostatic damage, avoid contact with insulating materials, such as synthetic fabrics or plastic surfaces. In order to discharge static electricity build-up, place the drive on a grounded conductive surface and also ground yourself.

# 1.3 Quality system, conformance and certifications

| qualityaustria                                                                                                                                                                                                                                                | <b>IQNet</b> and <b>Quality Austria</b> certification about the implementation and maintenance of the Quality Management System which fulfills the requirements of Standard <b>ISO 9001:2015</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| THE REFERENCE CONFORMATION                                                                                                                                                                                                                                    | Quality Austria Certificate about the application and further development of an effective Quality Management System complying with the requirements of Standard ISO 9001:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <b>REACH Compliance</b> - TECHNOSOFT hereby confirms that this pro-<br>with the legal obligations regarding Article 33 of the European REACI<br>1907/2006 (Registration, Evaluation, Authorization and Restriction of<br>which came into force on 01.06.2007. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ROHS                                                                                                                                                                                                                                                          | <b>RoHS Compliance</b> - Technosoft SA here with declares that this product is manufactured in compliance with the RoHS directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CE                                                                                                                                                                                                                                                            | Technosoft SA hereby declares that this product conforms to the following European applicable directives:         2014/30/EU       Electromagnetic Compatibility (EMC) Directive 2014/35/EU         2014/35/EU       Low Voltage Directive (LVD) 93/68/EEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                               | <b>Conflict minerals statement</b> - Technosoft declares that the company does not purchase 3T&G (tin, tantalum, tungsten & gold) directly from mines or smelters We have no indication that Technosoft products contain minerals from conflict mines or smelters in and around the DRC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                               | <b>STO compliance</b> – TUV SUD certifies that this product is SIL 3 / Cat 3 / PL e compatible and is in conformity with the following safety – related directives:<br>EN ISO 13849-1:2015 Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design<br>EN 61800-5-1:2007 Adjustable speed electrical power drive systems – Safety requirements – Electrical, thermal and energy<br>EN 61800-5-2:2007 Adjustable speed electrical power drive systems - Safety requirements – Functional<br>EN 61800-5-2:2007 Adjustable speed electrical/electronic/programmable electronic safety-related systems<br>EN 61508:2010 Functional safety of machinery - Safety-related parts of control systems<br>EN 613049-1:2008 Safety of machinery - Safety-related parts of control systems<br>EN 61326-3-1:2008 - General industrial applications - EMC - Immunity requirements for functional safety |  |

For other certifications visit: https://technosoftmotion.com/en/quality/

# 2 Product Overview

# 2.1 Introduction

The **iPOS4808** is a family of fully digital intelligent servo drives, based on the latest DSP technology and they offer unprecedented drive performance combined with an embedded motion controller.

Suitable for control of brushless DC, brushless AC (vector control), DC brushed motors and step motors, the iPOS4808 drives accept as position feedback incremental encoders (quadrature or sine/cosine), absolute encoders (SSI, BiSS-C and EnDAT2.2<sup>1</sup>) and linear Hall signals<sup>2</sup>.

All drives perform position, speed or torque control and work in single, multi-axis or stand-alone configurations. Thanks to the embedded motion controller, the iPOS4808 drives combine controller, drive and PLC functionality in a single compact unit and are capable to execute complex motions without requiring intervention of an external motion controller. Using the high-level Technosoft Motion Language (**TML**) the following operations can be executed directly at drive level:

- Setting various motion modes (profiles, PVT, PT, electronic gearing<sup>1</sup> or camming<sup>3</sup>, etc.)
- Changing the motion modes and/or the motion parameters
- Executing homing sequences
- Controlling the program flow through:
  - Conditional jumps and calls of TML functions
  - TML interrupts generated on pre-defined or programmable conditions (protections triggered, transitions on limit switch or capture inputs, etc.)
  - Waits for programmed events to occur
- Handling of digital I/O and analogue input signals
- Executing arithmetic and logic operations
- Performing data transfers between axes
- Controlling motion of an axis from another one via motion commands sent between axes<sup>4</sup>
- □ Sending commands to a group of axes (multicast). This includes the possibility to start simultaneously motion sequences on all the axes from the group<sup>2</sup>

By implementing motion sequences directly at drive level you can really distribute the intelligence between the master and the drives in complex multi-axis applications, reducing both the development time and the overall communication requirements. For example, instead of trying to command each movement of an axis, you can program the drives using TML to execute complex motion tasks and inform the master when these tasks are done. Thus, for each axis control the master job may be reduced at: calling TML functions stored in the drive EEPROM and waiting for a message, which confirms the TML functions execution completion.

All iPOS4808 BX drives are equipped with a serial RS232 and a CAN 2.0B interface that can be set by hardware pins to operate in 2 communication protocol modes:

- □ CANopen

When **CANopen** mode is selected, the iPOS4808 conforms to **CiA 301 v4.2** application layer communication profile, the **CiA WD 305 v2.2.13** and **CiA DSP 402 v3.0** device profile for drives and motion control, now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards. In this mode, the iPOS4808 may be controlled via a CANopen master. The iPOS drive offers the possibility for a CANopen master to call motion sequences/ functions, written in TML and stored in the drive EEPROM, using manufacturer specific objects. Also, the drives can communicate separately between each other by using non reserved 11 bit identifiers.

When **TMLCAN** mode is selected, the iPOS4808 behaves as standard Technosoft intelligent drive and conforms to Technosoft protocol for exchanging TML commands via CAN-bus. When TMLCAN protocol is used, it is not mandatory to have a master. Any iPOS4808 can be set to operate standalone, and may play

<sup>&</sup>lt;sup>1</sup> Availabile starting with F514K firmware version

<sup>&</sup>lt;sup>2</sup> Available only with P027.314.E701

<sup>&</sup>lt;sup>3</sup> Available if the master axis sends its position via a communication channel, or by using the secondary encoder input

<sup>&</sup>lt;sup>4</sup> Available only for CAN drives

<sup>©</sup> Technosoft 2023

the role of a master to coordinate both the network communication/synchronization and the motion application via TML commands sent directly to the other drives.

When higher level coordination is needed, apart from a CANopen master, the iPOS4808 drives can also be controlled via a PC or a PLC using one of the **TML\_LIB** motion libraries.

For iPOS4808 commissioning EasySetUp or EasyMotion Studio PC applications may be used.

**EasySetUp** is a subset of EasyMotion Studio, including only the drive setup part. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp shall be used for drive setup in all cases where the motion commands are sent exclusively from a master. Hence neither the iPOS4808 TML programming capability nor the drive camming mode are used. **EasySetUp can be downloaded free of charge from Technosoft web page.** 

**EasyMotion Studio** platform includes EasySetUp for the drive setup, and a **Motion Wizard** for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. *With EasyMotion Studio you can execute complex motions, thanks to their built-in motion controllers*. EasyMotion Studio, may be used to program motion sequences in TML. This is the iPOS4808 typical CAN operation mode when TMLCAN protocol is selected. EasyMotion Studio can also be used with the CANopen protocol, if the user wants to call TML functions stored in the drive EEPROM or to use the camming mode. With camming mode, EasyMotion Studio offers the possibility to quickly download and test a cam profile and also to create a **.sw** file with the cam data. The .sw file can be afterwards stored in a master and downloaded to the drive, wherever needed. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from Technosoft web page.

- Fully digital servo drive suitable for the control of rotary or linear brushless, DC brush, and step motors
- Very compact design
- Sinusoidal (FOC) or trapezoidal (Hall-based) control of brushless motors
- Open or closed-loop control of 2 and 3-phase steppers
- <sup>1</sup>STO: 2 safe torque-off inputs, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1;-2/ EN61508-3;-4/ EN ISO 13849-1. When left not connected will disable the motor outputs. This provides a dual redundant hardware protection that cannot be overdriven by the software or other hardware components.
- <sup>2</sup>Separate ENABLE circuit: connect both ENA1 and ENA2 inputs to +24V, to allow motor PWM output operation
- Various modes of operation, including: cyclic synchronous position; torque, speed or position control; position or speed profiles, external analogue reference or sent via a communication bus
- Technosoft Motion Language (TML) instruction set for the definition and execution of motion sequences
- Standalone operation with stored motion sequences
- Communication:
  - RS-232 serial up to 115kbits/s
    - CAN-Bus up to 1Mbit/s
- Digital and analog I/Os:
  - 6 digital inputs: 12-36 V, programmable polarity: sourcing/NPN or sinking/PNP: 2 Limit switches and 4 general-purpose
  - 5 digital outputs: 5-36 V, with 0.5 A, sinking/NPN open-collector (Ready, Error and 3 general-purpose)
  - 2 analogue inputs: 12 bit, 0-5V: Reference and Feedback or general purpose
  - NTC/PTC analogue Motor Temperature sensor input
- Feedback devices (dual-loop support):

Feedback #1 devices supported:

- Incremental encoder interface (single ended or differential<sup>3</sup>)
- Pulse & direction interface (single-ended) for external (master) digital reference
- Analog sin/cos encoder interface (differential 1VPP)
- Digital Hall sensor interface (single-ended and open collector)
- Linear Hall sensors interface<sup>4</sup>

Feedback #2 devices supported:

- Incremental encoder interface (differential)
- Pulse & direction interface (differential) for external (master) digital reference
- BiSS / SSI / EnDAT<sup>5</sup> encoder interface
- Various motion programming modes:
  - Position profiles with trapezoidal or S-curve speed shape
  - Position, Velocity, Time (PVT) 3<sup>rd</sup> order interpolation
  - Position, Time (PT) 1<sup>st</sup> order interpolation
  - Electronic gearing and camming
  - 35 Homing modes
- 16 h/w selectable addresses selectable by h/w rotary switch
- Two operation modes selectable by DIP switch:
  - CANopen conforming with CiA 301 v4.2, CiA WD 305 v2.2.13 and CiA DSP 402 v3.0
  - TMLCAN intelligent drive conforming with Technosoft protocol for exchanging TML commands via CAN-bus
- 16K × 16 internal SRAM memory for data acquisition
- 16K × 16 E<sup>2</sup>ROM to store TML programs and data
- PWM switching frequency up to 100kHz
- Motor supply: 12-50V
- Logic supply: 9-36V.Separate supply is optional

<sup>&</sup>lt;sup>1</sup> Availabile only for iPOS4808 BX-CAN-STO executions (p/n: P027.314.Exxx)

<sup>&</sup>lt;sup>2</sup> Available only for iPOS4808 BX-CAN (p/n: P027.214.E201)

<sup>&</sup>lt;sup>3</sup> Differential Feedback #1 is not available with the p/n P027.314.E701 <sup>4</sup> Only available with the p/n P027.314.E701

<sup>&</sup>lt;sup>5</sup> Available starting with F514K firmware version

- Output current: iPOS4808 BX-CAN: 8A<sup>1</sup> continuous; 20A peak
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- Protections:
  - Short-circuit between motor phases
  - Short-circuit from motor phases to ground
  - Over-voltage
  - Under-voltage
  - Over-current
  - Over-temperature
  - Communication error
  - Control error

## 2.3 Identification Labels



Figure 2.3.1. iPOS4808 BX-CAN-STO identification labels

The iPOS4808 BX can have the following part numbers and names on the identification label:

- p.n. P027.314.E201 name iPOS4808 BX-CAN-STO standard CAN execution with STO
- p.n. P027.314.E701 name iPOS4808 BX-CAN-STO Linear Hall CAN execution with STO
- p.n. P027.214.E201 name iPOS4808 BX-CAN- standard CAN execution without STO

<sup>&</sup>lt;sup>1</sup> 8A cont. with DC, step and BLDC motors (trapezoidal), 8A amplitude (5.66A<sub>RMS</sub>) for PMSM (sinusoidal)

### 2.4.1 Single loop configurations

The position and/or speed are controlled using one feedback sensor. The other available feedback sensor input can be used for External reference Position or Velocity, Pulse and Direction, Electronic Gearing or Camming.

| Sensor                                                                                      | Brushless<br>PMSM                  | Brushless<br>BLDC | DC Brush | Stepper<br>2 phase | Stepper<br>3 phase |     |     |
|---------------------------------------------------------------------------------------------|------------------------------------|-------------------|----------|--------------------|--------------------|-----|-----|
| Sensor type                                                                                 | Sensor location                    |                   | -        |                    |                    |     |     |
|                                                                                             | FDBK #1 (single ended or diff.)    |                   |          |                    |                    |     |     |
| Incr. encoder                                                                               | FDBK #2 (diff.)                    |                   | Yes      | -                  | Yes                | Yes | -   |
| Incr. encoder +<br>Digital Hall     FDBK #1     Digital       FDBK #2 (diff.)     interface |                                    | Yes               | Yes      | -                  | -                  | -   |     |
| Digital halls only                                                                          | Digital halls interface            |                   | Yes      | -                  | -                  | -   | -   |
| Linear halls <sup>2</sup> (analogue)                                                        | Linear halls interface             |                   | Yes      | -                  | -                  | -   | -   |
| SSI                                                                                         | FDBK #2 (diff.)                    |                   | Yes      | -                  | Yes                | Yes | -   |
| BiSS-C                                                                                      | FDBK #2 (diff.)                    |                   | Yes      | -                  | Yes                | Yes | -   |
| EnDAT <sup>3</sup>                                                                          | EnDAT <sup>3</sup> FDBK #2 (diff.) |                   | Yes      | -                  | Yes                | Yes | -   |
| Analogue Sin/Cos                                                                            | FDBK #1 (diff.)                    |                   | Yes      | -                  | Yes                | Yes | -   |
| Tacho Analogue input: Feedback                                                              |                                    | k                 | -        | -                  | Yes                | -   | -   |
| Open-loop (no sensor)                                                                       |                                    |                   | -        | -                  | -                  | Yes | Yes |
| Open-loop (with step loss                                                                   | FDBK #1 (single ended or diff.)    |                   |          |                    |                    |     |     |
| SinCos/ SSI/ BiSS/ EnDAT)                                                                   | FDBK #2 (diff.)                    |                   | -        | -                  | -                  | Yes | Yes |

### 2.4.2 Dual loop configurations

The motor speed control loop is closed on one feedback connected on the motor while the motor position control loop is closed on the other available feedback which is placed on the load. There is usually a transmission between the load and the motor.

| Motor type     | Feedback #1                                                                                                                                                                | Feedback #2                                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| PMSM           | <ul> <li>Incremental encoder (single-ended or<br/>differential<sup>1</sup>)</li> <li>Analogue Sin/Cos encoder</li> <li>Linear Halls<sup>2</sup> (only on motor)</li> </ul> | <ul> <li>Incremental encoder (differential)</li> <li>SSI/BiSS C/EnDAT<sup>1</sup> encoder</li> </ul>                                |
| BLDC           | <ul> <li>Incremental encoder (single-ended or<br/>differential) + Digital halls</li> </ul>                                                                                 | <ul> <li>Incremental encoder (differential) + Digital Halls</li> <li>SSI/BiSS C/EnDAT<sup>1</sup> encoder (only on load)</li> </ul> |
| Stepper<br>2ph | <ul> <li>Incremental encoder (single-ended or<br/>differential)</li> <li>Analogue Sin/Cos encoder</li> </ul>                                                               | <ul> <li>Incremental encoder (differential)</li> <li>SSI/BiSS C/EnDAT<sup>1</sup> encoder</li> </ul>                                |
| DC Brush       | <ul> <li>Incremental encoder (single-ended or<br/>differential)</li> <li>Analogue Sin/Cos encoder</li> <li>Analogue Tacho (only on motor)</li> </ul>                       | <ul> <li>Incremental encoder (differential)</li> <li>SSI/BiSS C/EnDAT<sup>1</sup> encoder</li> </ul>                                |

Each defined motor type can have any combination of the supported feedbacks either on motor or on load.

Examples: -PMSM motor with Incremental encoder (from feedback #1) on motor and Incremental encoder (from feedback#2) on load; -DC brush motor with SSI encoder (from feedback #2) on motor and Sin/Cos encoder (from feedback #1) on load.

<sup>&</sup>lt;sup>1</sup> A differential encoder on Feedback #1 is available only with P027.314.E201 and P027.214.E201

<sup>&</sup>lt;sup>2</sup> Linear hall sensors are compatible only with P027.314.E701

<sup>&</sup>lt;sup>3</sup> Available starting with firmware version F514K

# 3.1 iPOS4808 BX-CAN / -STO Board Dimensions



Figure 3.1.1. iPOS4808 BX-CAN / -STO drive dimensions

All dimensions are in mm. The drawings are not to scale.

## 3.2 Mechanical Mounting

The iPOS4808 drive is intended to be mounted vertically or horizontally on a on a metallic support using the provided mounting holes and the recommended mating connectors, as specified in chapter "**Mating connectors**".

For thermal calculations, each iPOS4808 BX drive can be assumed to generate 1 Watt at idle, and up to 5 Watts (= 17 BTU/hour) worst case while driving a motor and using all digital outputs.

When the iPOS4808 BX is mounted vertically, its overall envelope (size) including the recommended mating connectors is shown in Figure 3.1. Fixing the iPOS4808 BX onto a support using the provided mounting holes is strongly recommended to avoid vibration and shock problems.



Figure 3.2.1. iPOS4808 BXO dimensions with mating connectors

The iPOS4808 BX-CAN drive(s) can be cooled by natural convection. The support shall be thermally conductive (metallic), and can be mounted vertically or horizontally.



Figure 3.2.2. Recommended spacing go vertical and horizontal mounting, worst case: non-metallic, closed box

The figures above shows the minimum spacing to assure proper airflow by natural convection. If closed completely in a box, ventilation openings shall be foreseen on the top and bottom sides. If ventilation driven by natural convection is not enough to maintain the temperature surrounding the iPOS4808 BX drive(s), then alternate forced cooling methods must be applied.

**Remark:** In case of using a metallic box, with ventilation openings, all spacing values may be reduced substantially. With proper ventilation, keeping the air surrounding the iPOS4808 BX inside the limits indicated, the spacing values may be reduced down to zero.

## 3.3 Connectors and Pinouts

#### 3.3.1 Pinouts for iPOS4808 BX-CAN-STO



+5Vout 5V output supply for sensors usage

10



© Technosoft 2023

10

+5Vout 5V output supply for sensors usage

| 3.3.3 | Mating | Connectors |
|-------|--------|------------|
|-------|--------|------------|

| Image                 | Connector             | Description                                                                                                 | Manufacturer | Part Number | Image          |
|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|--------------|-------------|----------------|
| -                     | J1                    | MINIFIT JR. receptacle housing, 2x2 way                                                                     | MOLEX        | 39-03-9042  |                |
|                       | J2                    | MINIFIT JR. receptacle housing, 2x5 way                                                                     | MOLEX        | 39-03-9102  | and the second |
|                       | J1,J2                 | CRIMP PIN, MINIFIT JR., 13A                                                                                 | MOLEX        | 45750-1111  |                |
| dr.                   | 10 14                 | C-Grid III™ Crimp Housing Dual Row, 10 Circuits, with<br>ention                                             | MOLEY        | 90142-0010  | - 16-4         |
|                       | J3, J4                | C-Grid III™ Crimp Housing Dual Row, 10 Circuits, without<br>ention                                          | MOLEX        | 90143-0010  |                |
|                       | J3, J4                | C-Grid III™ Crimp Terminal                                                                                  | MOLEX        | 90119-0109  |                |
| E HE A                | J7                    | MICROFIT RECEPTACLE HOUSING, 2x9 WAY                                                                        | MOLEX        | 43025-1800  |                |
|                       | J5, J6,<br>J8, J9     | MICROFIT RECEPTACLE HOUSING, 2x2 WAY                                                                        | MOLEX        | 43025-0400  | 1 al al        |
|                       | J5, J6, J7, J8,<br>J9 | CRIMP PIN, MICROFIT, 5A                                                                                     | MOLEX        | 43030-0007  | E              |
|                       | J1, J2                | Hand Crimp Tool for Mini-Fit Jr. Male and Female<br>Terminals, 18-24 AWG                                    | MOLEX        | 63819-0901  |                |
|                       | J3, J4                | Hand Crimp Tool For C-Grid III Female Crimp<br>Terminals, 22-24 AWG                                         | MOLEX        | 63825-8100  |                |
|                       | J5, J6, J7, J8,<br>J9 | Hand Crimp Tool for Micro-Fit 3.0 Terminals, 20-30<br>AWG                                                   | MOLEX        | 63819-0000  |                |
|                       | J1, J2                | Pre-Crimped Lead Mini-Fit Female-to-Mini-Fit Female,<br>Tin (Sn) Plating, 300.00mm Length, 18 AWG           | MOLEX        | 79758-0009  |                |
| and the second second | J3, J4                | Pre-Crimped Lead C-Grid III Female-to-C-Grid III<br>Female, Tin (Sn) Plating, 300.00mm Length, 22 AWG       | MOLEX        | 79758-2023  |                |
|                       | J5, J6, J7, J8,<br>J9 | Pre-Crimped Lead Micro-Fit 3.0 Female-to-Micro-Fit 3.0<br>Female, Tin (Sn) Plating, 300.00mm Length, 20 AWG | MOLEX        | 79758-0010  |                |



## 3.4.1 iPOS4808 BX-CAN-STO connection diagram

Figure 3.3. iPOS4808 BX-CAN-STO Connection diagram

\* For other available feedback / motor options, check the detailed connection diagrams below



Figure 3.4. iPOS4808 BX-CAN Connection diagram

\* For other available feedback / motor options, check the detailed connection diagrams below

#### 3.4.3.1 PNP inputs



Figure 3.5. 24V Digital PNP Inputs connection

#### Remarks:

- 1. The inputs are selectable as PNP/ NPN by software.
- 2. The inputs are compatible with PNP type outputs (input must receive a positive voltage value (5-36V) to change its default state)
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surge in industrial environment.

### 3.4.3.2 NPN inputs



Figure 3.6. 24V Digital NPN Inputs connection

- 1. The inputs are selectable as PNP/ NPN by software.
- 2. The inputs are compatible with NPN type outputs (input must be pulled to GND to change its default state)
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.



Figure 3.7. 24V Digital NPN Outputs connection

#### Remark:

The outputs are compatible with NPN type inputs (load is tied to common  $+V_{LOG}$ , output pulls to GND when active and is floating when inactive)

#### 3.4.4 5V Digital I/O Connection



Figure 3.8. 5V Digital I/O connection

#### Remarks:

- 1. The inputs are selectable as PNP/ NPN by software. For the 5V connection they are selected as PNP. NPN is not compatible on a 5V connection.
- 2. The inputs are compatible with TTL(5V), LVTTL(3.3V), CMOS (3.3V-24V) outputs
- 3. The outputs are compatible with TTL (5V) and CMOS (5V) inputs
- 4. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

The output loads can be individually and independently connected to +5V or to GND.

#### 3.4.5.1 0-5V Input Range



Figure 3.9. 0-5V Analog inputs connection

#### Remarks:

- 1. Default input range for analog inputs is 0÷5 V for REF and FBDK. For a +/-10 V range, see Figure 3.10.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.





Figure 3.10. +/-10V to 0-5V adapter

Remark: The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

### 3.4.5.3 Recommendation for wiring

- a) If the analogue signal source is single-ended, use a 2-wire twisted shielded cable as follows: 1<sup>st</sup> wire connects the live signal to the drive input; 2<sup>nd</sup> wire connects the source ground to the drive ground; shield will be connected to the drive ground terminal.
- b) If the analogue signal source is differential and the signal source ground is isolated from the drive GND, use a 2-wire twisted shielded cable as follows: 1<sup>st</sup> wire connects the source plus (positive, in-phase) to the drive analogue input; 2<sup>nd</sup> wire connects the source minus (negative, out-of-phase) to the drive ground (GND). Shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.
- c) If the analogue signal source is differential and the signal source ground is common with the drive GND, use a 2-wire shielded cable as follows: 1<sup>st</sup> wire connects the source plus (positive, in-phase) to the drive analogue input; 2<sup>nd</sup> wire connects the source ground to the drive ground (GND); shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side. The source minus (negative, out-of-phase) output remains unconnected.









Figure 3.12. 2-phase step motor connection, one coil per phase



Figure 3.13. 2-phase step motor connection, two coils per phase



Figure 3.14. 3-phase step motor connection





Figure 3.15. DC Motor connection

#### 3.4.6.5 Recommendations for motor wiring

- a) Avoid running the motor wires in parallel with other wires for a distance longer than 2 meters. If this situation cannot be avoided, use a shielded cable for the motor wires. Connect the cable shield to the iPOS4808 GND pin. Leave the other end disconnected.
- b) The parasitic capacitance between the motor wires must not bypass 10nF. If very long cables (tens of meters) are used, this condition may not be met. In this case, add series inductors between the iPOS4808 outputs and the cable. The inductors must be magnetically shielded (toroidal, for example), and must be rated for the motor surge current. Typically the necessary values are around 100 μH.

A good shielding can be obtained if the motor wires are running inside a metallic cable guide.



#### 3.4.7.1 Single-ended Incremental Encoder #1 Connection





CAUTION! DO NOT CONNECT UNTERMINATED WIRES. THEY MIGHT PICK UP UNWANTED NOISE AND GIVE FALSE ENCODER READINGS.





Figure 3.17. Differential incremental encoder #1 connection

Remark: The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.



<u>\_!</u>

CAUTION! DO NOT CONNECT UNTERMINATED WIRES. THEY MIGHT PICK UP UNWANTED NOISE AND GIVE FALSE ENCODER READINGS.

### 3.4.7.4 Differential Incremental Encoder #2 Connection



Figure 3.19. Differential incremental encoder #2 connection

- 1. The encoder #2 input has internal terminators, equivalent to  $120\Omega$  (0.25W), present in the drive.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.



Figure 3.20. SSI/ EnDAT<sup>1</sup> encoder #2 connection

#### 3.4.7.6 BiSS Encoder #2 Connection



Figure 3.21. BiSS-C encoder #2 connection

- 1. The encoder #2 input has internal terminators, equivalent to  $120\Omega$  (0.25W), present in the drive.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

<sup>&</sup>lt;sup>1</sup> EnDAT2.2 protocol is available starting with F514K firmware version



Figure 3.22. Digital Hall connection

#### Remarks:

- 1. This connection is required when using Hall start method BLDC or PMSM and also for the Trapezoidal commutation method. The digital halls are not used in this case as a feedback measurement device. The actual motor control is done with an incremental encoder.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

#### 3.4.7.8 Digital Hall Connection for direct motor control without an encoder



#### Figure 3.23. Digital Hall connection

- 1. This connection is required when using only Digital hall signals as the main feedback device for motor control. In this case, no incremental encoder is needed.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.



Figure 3.24. Sine-Cosine analogue encoder connection







#### 3.4.7.11 Recommendations for wiring

- a) Always connect both positive and negative signals when the position sensor is differential and provides them. Use one twisted pair for each differential group of signals as follows: A+/Sin+ with A-/Sin-, B+/Cos+ with B-/Cos-, Z+ with Z-. Use another twisted pair for the 5V supply and GND.
- b) Always use shielded cables to avoid capacitive-coupled noise when using single-ended encoders or Hall sensors with cable lengths over 1 meter. Connect the cable shield to the GND, at only one end. This point

<sup>&</sup>lt;sup>1</sup> A linear hall connection is possible only with the drive Product ID: P027.314.E701

could be either the iPOS4808 (using the GND pin) or the encoder / motor. Do not connect the shield at both ends.

c) If the iPOS4808 5V supply output is used by another device (like for example an encoder) and the connection cable is longer than 5 meters, add a decoupling capacitor near the supplied device, between the +5V and GND lines. The capacitor value can be 1...10 μF, rated at 6.3V.

#### 3.4.8 Power Supply

#### 3.4.8.1 Supply Connection and STO connection for iPOS4808 BX-CAN-STO



Figure 3.26. Supply connection

\* The STO and +Vlog inputs can be supplied from the same power source as long as its output voltage is 18 to 36V DC from a SELV/ PELV power supply.



\* The ENA and +Vlog inputs can be supplied from the same power source as long as its output voltage is 18 to 36V DC from a power supply.

#### 3.4.8.3 Recommendations for Supply Wiring

Always provide a nearby capacitor on the motor supply lines. The capacitor should be located within 10cm of the iPOS4808 connector, max. 20cm. The minimum recommended capacitance is 330µF for iPOS4808, always rated at the appropriate voltage.

Use short, thick wires between the iPOS4808 and the motor power supply. Connect power supply wires to all the indicated pins. If the wires are longer than 2 meters, use twisted wires for the supply and ground return. For wires longer than 20 meters, add a capacitor of at least  $2,200\mu$ F (rated at an appropriate voltage) right on the terminals of the iPOS4808.

#### 3.4.8.4 Recommendations to limit over-voltage during energy regeneration

During abrupt motion brakes or reversals the regenerative energy is injected into the motor power supply. This may cause an increase of the motor supply voltage (depending on the power supply characteristics). If the voltage bypasses 53V, the drive over-voltage protection is triggered and the drive power stage is disabled. In order to avoid this situation you have 2 options:

**Option 1.** Add a capacitor on the motor supply big enough to absorb the overall energy flowing back to the supply. The capacitor must be rated to a voltage equal or bigger than the maximum expected over-voltage and can be sized with the formula:

$$C \ge \frac{2 \times E_M}{U_{MAX}^2 - U_{NOM}^2}$$

where:

 $U_{MAX}$  = 53V is the over-voltage protection limit  $U_{NOM}$  is the nominal motor supply voltage

 $E_M$  = the overall energy flowing back to the supply in Joules. In case of a rotary motor and load,  $E_M$  can be computed with the formula:

$$E_{M} = \frac{1}{2} (J_{M} + J_{L}) \overline{\sigma}_{M}^{2} + (m_{M} + m_{L}) g(h_{initial} - h_{final}) - 3I_{M}^{2} R_{Ph} t_{d} - \frac{t_{d} \overline{\sigma}_{M}}{2} T_{F}$$

Kinetic energy

where:

Potential energy

Copper losses Friction losses

J<sub>M</sub> – total rotor inertia [kgm<sup>2</sup>]

J<sub>L</sub> – total load inertia as seen at motor shaft after transmission [kgm<sup>2</sup>]

 $\overline{\omega}_{M}$  – motor angular speed before deceleration [rad/s]

 $M_M$  – motor mass [kg] – when motor is moving in a non-horizontal plane

**M**<sub>L</sub> – load mass [kg] – when load is moving in a non-horizontal plane

g – gravitational acceleration i.e. 9.8 [m/s<sup>2</sup>]

hinitial - initial system altitude [m]

hfinal - final system altitude [m]

 $I_M$  – motor current during deceleration [A<sub>RMS</sub>/phase]

 $R_{Ph}$  – motor phase resistance [ $\Omega$ ]

t<sub>d</sub> - time to decelerate [s]

T<sub>F</sub> – total friction torque as seen at motor shaft [Nm] – includes load and transmission

In case of a linear motor and load, the motor inertia  $J_M$  and the load inertia  $J_L$  will be replaced by the motor mass and

the load mass measured in [kg], the angular speed  $\overline{\omega}_M$  will become linear speed measured in [m/s] and the friction torque T<sub>F</sub> will become friction force measured in [N].

**Option 2.** Connect a chopping resistor R<sub>CR</sub> between phase CR/B- and ground, and activate the software option of dynamic braking (see below).

This option is not available when the drive is used with a step motor.

The chopping resistor option can be found in the Drive Setup dialogue within EasyMotion / EasySetup.

External chopping resistor

 Image: Connected
 Activate if power supply > 50
 V
 Image: Connected

The chopping will occur when DC bus voltage increases over  $U_{CHOP}$ . This parameter ( $U_{CHOP}$ ) should be adjusted depending on the nominal motor supply. Optimally (from a braking point of view),  $U_{CHOP}$  should be a few volts above the maximum nominal supply voltage. This setting will activate the chopping resistor earlier, before reaching dangerous voltages – when the over-voltage protection will stop the drive. Of course,  $U_{CHOP}$  must always be less than  $U_{MAX}$  – the over-voltage protection threshold.

**Remark:** This option can be combined with an external capacitor whose value is not enough to absorb the entire regenerative energy  $E_M$  but can help reducing the chopping resistor size.

#### Chopping resistor selection

The chopping resistor value must be chosen to respect the following conditions:

1. to limit the maximum current below the drive peak current  $I_{PEAK} = 0.9A$ 

$$R_{CR} > \frac{U_{MAX}}{I_{PEAK}}$$

2. to sustain the required *braking power*:

$$P_{CR} = \frac{E_M - \frac{1}{2}C(U_{MAX}^2 - U_{CHOP}^2)}{t_d}$$

where C is the capacitance on the motor supply (external), i.e:

$$R_{CR} < \frac{U_{CHOP}^2}{2 \times P_{CR}}$$

3. to limit the average current below the drive nominal current  $I_{NOM}$ =0.9A

$$R_{CR} > \frac{P_{CR} \times t_d}{t_{CYCLE} \times I_{NOM}^2}$$

where t<sub>CYCLE</sub> is the time interval between 2 voltage increase cycles in case of repetitive moves.

4. to be rated for an average power 
$$P_{AV} = \frac{P_{CR} \times t_d}{t_{CYCLE}}$$
 and a peak power  $P_{PEAK} = \frac{U_{MAX}^2}{R_{CR}}$ 

Remarks:

1. If  $\frac{U_{MAX}}{I_{PEAK}} > \frac{U_{CHOP}^2}{2 \times P_{CR}}$  the braking power  $P_{CR}$  must be reduced by increasing either  $t_d$  – the time to decelerate

or C – the external capacitor on the motor supply

2. If  $\frac{P_{CR} \times t_d}{t_{CYCLE} \times I_{NOM}^2} > \frac{U_{CHOP}^2}{2 \times P_{CR}}$  either the braking power must be reduced (see Remark 1) or  $t_{CYCLE}$  – the time

interval between chopping cycles must be increased



#### 3.4.9 Serial RS-232 connection

#### 3.4.9.1 Serial RS-232 connection





#### 3.4.9.2 Recommendation for wiring

- a) If you build the serial cable, you can use a 3-wire shielded cable with shield connected to BOTH ends. Do not use the shield as GND. The ground wire must be included inside the shield, like the 232Rx and 232Tx signals
- b) Always power-off all the iPOS4808 supplies before inserting/removing the RS-232 serial connector
- c) Do not rely on an earthed PC to provide the iPOS4808 GND connection! The drive must be earthed through a separate circuit. Most communication problems are caused by the lack of such connection

#### 3.4.10.1 CAN connection



Figure 3.28. CAN connection

#### Remarks:

- 1. The CAN network requires a 120-Ohm terminator. This is not included on the board. *Figure 3.29* shows how to connect it on your network
- 2. CAN signals are not insulated from other iPOS4808 circuits.

3.4.10.2 Recommendation for wiring

- a) Build CAN network using cables with twisted wires (2 wires/pair), with CAN-Hi twisted together with CAN-Lo. It is recommended but not mandatory to use a shielded cable. If so, connect the shield to GND. The cable impedance must be 105 ... 135 ohms (120 ohms typical) and a capacitance below 30pF/meter.
- b) The  $120\Omega$  termination resistors must be rated at 0.2W minimum. Do not use winded resistors, which are inductive.



© Technosoft 2023

When an iPOS4808 BX-CAN is set in TMLCAN operation mode, by default after power-on it enters automatically in *Autorun* mode. In this mode, if the drive has in its local EEPROM a valid TML application (motion program), this is automatically executed as soon as the motor supply V<sub>MOT</sub> is turned on.

In order to disable Autorun mode, there are 2 methods:

- a) Software by writing value 0x0001 in first EEPROM location at address 0x4000
- b) Hardware1 set the drive temporarily in CANopen mode. While in CANopen state, no motion will autorun. Set SW1 pin1 in down position.
- c) Hardware2 by temporary connecting all digital Hall inputs to GND, during the power-on for about 1 second, until the green LED is turned on, as shown in *Figure 3.30*. This option is particularly useful when it is not possible to communicate with the drive.

After the drive is set in *non-Autorun/slave* mode using 2<sup>nd</sup> method, the 1<sup>st</sup> method may be used to invalidate the TML application from the EEPROM. On next power on, in absence of a valid TML application, the drive enters in the *non-Autorun/slave* mode independently of the digital Hall inputs status.



Figure 3.30. Temporary connection during power-on to remove the drive from Autorun mode

## 3.5 CAN Operation Mode and Axis ID Selection



### 3.5.1 Selection of the Operation Mode

On iPOS4808 BX-CAN, the selection of the operation mode CANopen or TMLCAN is done by setting the SW2 position 6 switch:

- CANopen mode, SW2 pin6 = ON (down position)
- TMLCAN mode, SW2 pin6 = OFF (up position)

### 3.5.2 Selection of the Axis ID

The Hardware Axis ID selection is done through the hex switch SW1. It contains numbers from 0x0 to 0xF. Depending on SW1 position, the axis ID will be:

| SW1<br>position | AxisID in<br>TMLCAN<br>mode | AxisID in<br>CANopen<br>mode    |
|-----------------|-----------------------------|---------------------------------|
| 0x0             | 255                         | LSS non-<br>configured<br>state |
| 0x1             | 1                           | 1                               |
| 0x2             | 2                           | 2                               |
| 0x3             | 3                           | 3                               |
| 0x4             | 4                           | 4                               |
| 0x5             | 5                           | 5                               |
| 0x6             | 6                           | 6                               |
| 0x7             | 7                           | 7                               |
| 0x8             | 8                           | 8                               |
| 0x9             | 9                           | 9                               |
| 0xA             | 10                          | 10                              |
| 0xB             | 11                          | 11                              |
| 0xC             | 12                          | 12                              |
| 0xD             | 13                          | 13                              |
| 0xE             | 14                          | 14                              |
| 0xF             | 15                          | 15                              |

**Note:** LSS "non-configured" state, is a state in which the drive does not have assigned an active Axis ID while connected to the CAN network. In this mode the Axis ID for RS232 communication is 255. The Axis ID can be configured via a LSS master using CiA-305 protocol, which can set and save a new unique value. While the drive has a non-configured Axis ID, it cannot communicate with other drives in the network.

#### 3.5.3 LED indicators



Figure 3.31. LED indicators

## Table 3.1 – LED indicators

| LED<br>no. | LED name    | LED color | Function                                                                                                              |
|------------|-------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| 1          | Drive Ready | green     | Lit after power-on when the drive initialization ends. Turned off when an error occurs.                               |
| 2          | Drive Error | red       | Turned on when the drive detects an error condition or when OUT2/Error is set to +Vlog with OUT(2)=0 TML instruction. |

#### **Electrical Specifications** 3.6

All parameters measured under the following conditions (unless otherwise specified):

- T<sub>amb</sub> = 0...40°C, V<sub>LOG</sub> = 24 V<sub>DC</sub>; V<sub>MOT</sub> = 48V<sub>DC</sub>; Supplies start-up / shutdown sequence: -<u>any-</u>
- Load current (sinusoidal amplitude / continuous BLDC,DC,stepper) = 8A •

#### 3.6.1 **Operating Conditions**

|                                  |                                    | Min.           | Тур.     | Max. | Units |
|----------------------------------|------------------------------------|----------------|----------|------|-------|
| Ambient temperature <sup>1</sup> |                                    | 0              |          | +40  | °C    |
| Ambient humidity                 | Non-condensing                     | 0              |          | 90   | %Rh   |
| Altitude / pressure?             | Altitude (referenced to sea level) | -0.1           | 0 ÷ 2.5  | 2    | Km    |
| Allitude / pressure-             | Ambient Pressure                   | 0 <sup>2</sup> | 0.75 ÷ 1 | 10.0 | atm   |
| 3.6.2 Storage Conditions         |                                    |                |          |      |       |

|                                   |                                             | Min. | Тур. | Max. | Units |
|-----------------------------------|---------------------------------------------|------|------|------|-------|
| Ambient temperature               |                                             | -40  |      | 105  | °C    |
| Ambient humidity                  | Non-condensing                              | 0    |      | 100  | %Rh   |
| Ambient Pressure                  |                                             | 0    |      | 10.0 | atm   |
| ESD capability (Human body model) | Not powered; applies to any accessible part |      |      | ±0.5 | kV    |
|                                   | Original packaging                          |      |      | ±15  | kV    |

#### **Mechanical Mounting** 3.6.3

Min. Тур. Max. natural convection<sup>3</sup>, , closed box

Units

#### Airflow 3.6.4 **Environmental Characteristics**

|                   |                                     | Min.                          | Тур.                | Max. | Units |
|-------------------|-------------------------------------|-------------------------------|---------------------|------|-------|
|                   | Without mating connectors           | 88                            | mm                  |      |       |
| Size ( Length x   | Without making connectors           | ~3.4                          | inch                |      |       |
| Width x Height)   | With recommended mating connectors. |                               | 8 x 85 x 19         | 9.5  | mm    |
| NA/ 1 1 1         |                                     |                               | ~3.86 x 3.35 x 0.77 |      |       |
| Weight            | Without mating connectors           |                               | g                   |      |       |
| Dowor dissinction | Idle (no load)                      | 3.4                           |                     |      | W     |
| Fower dissipation | Operating                           |                               | 8.5                 |      | W     |
| Efficiency        |                                     |                               | 98                  |      | %     |
| Cleaning agents   | Dry cleaning is recommended         | Only Water- or Alcohol- based |                     |      |       |
| Protection degree | According to IEC60529, UL508        | IP20                          |                     | -    |       |
|                   |                                     |                               |                     |      |       |

#### Logic Supply Input (+V<sub>LOG</sub>) 3.6.5

|                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       | Min. | Тур. | Max. | Units           |
|----------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|------|------|------|-----------------|
| Supply voltage | Nominal values          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       | 9    |      | 36   | VDC             |
|                | Absolute maximum        | $\begin{array}{c} \mbox{cominal values} \\ \mbox{solute maximum values, drive operating but outside guaranteed parameters} \\ \mbox{solute maximum values, continuous} \\ \mbox{solute maximum values, continuous} \\ \mbox{solute maximum values, explicitly} \\ \mbox{values, explicitly} \\ values$ |         |       | 8    |      | 40   | V <sub>DC</sub> |
| Supply voltage | Absolute maximum        | n values, continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |       | -0.6 |      | 42   | V <sub>DC</sub> |
|                | Absolute                | maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | values, | surge | -1   |      | +45  | V               |
|                | (duration ≤ 10ms)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |      |      |      | v               |
|                | +V <sub>LOG</sub> = 12V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |      | 130  |      |                 |
|                | +V <sub>LOG</sub> = 24V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |      | 90   | 280  | mA              |
|                | +V <sub>LOG</sub> = 40V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |      | 85   |      |                 |

#### 3.6.6 Motor Supply Input (+V<sub>MOT</sub>)

|                                         |                                                                                     |                                                        | Min. | Тур. | Max.                                   | Units           |
|-----------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|------|------|----------------------------------------|-----------------|
|                                         | Nominal values                                                                      |                                                        | 11   |      | 50                                     | VDC             |
| Supply voltage                          | Absolute maximum values, drive operating but outside guaranteed parameters          |                                                        |      |      | 52                                     | V <sub>DC</sub> |
|                                         | Absolute maximum values, continuous                                                 |                                                        | -0.6 |      | 54                                     | V <sub>DC</sub> |
|                                         | Absolute maximum values,                                                            | surge                                                  |      |      |                                        |                 |
|                                         | $(duration \le 10ms)^{\dagger}$                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |      |      |                                        |                 |
|                                         | Idle                                                                                |                                                        |      | 1    | 5                                      | mA              |
| Supply current                          | Operating                                                                           | iPOS4808                                               | -20  | ±8   | +20                                    | Α               |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Absolute maximum value, short-circuit condition (duration $\leq$ 10ms) <sup>†</sup> | iPOS4808                                               |      |      | 50<br>52<br>54<br>57<br>5<br>+20<br>26 | А               |

<sup>&</sup>lt;sup>1</sup> Operating temperature at higher temperatures is possible with reduced current and power ratings

<sup>&</sup>lt;sup>2</sup> iPOS4808 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

<sup>&</sup>lt;sup>3</sup> In case of forced cooling (conduction or ventilation) the spacing requirements may drop down to mechanical tolerances as long as the ambient temperature is kept below the maximum operating limit

#### 3.6.7 Motor Outputs (A/A+, B/A-, C/B+, CR/B-)

|                               |                                                               |                            | Min. | Тур. | Max. | Units |
|-------------------------------|---------------------------------------------------------------|----------------------------|------|------|------|-------|
| Nominal output current        | for DC brushed, steppers and BLDC motors with Hall-based to   | rapezoidal control         |      |      | 8    |       |
| continuous                    | for PMSM motors with FOC sinusoidal control (sinusoidal am    | plitude value)             |      |      | 8    | A     |
| continuous                    | for PMSM motors with FOC sinusoidal control (sinusoidal effe  | ective value)              |      |      | 5.67 |       |
| Motor output current,<br>peak | maximum 2.5s                                                  |                            | -20  |      | +20  | А     |
| Short-circuit protection thre | shold                                                         |                            | ±22  | ±26  | ±30  | A     |
| Short-circuit protection dela | y .                                                           |                            | 5    | 10   |      | μs    |
| On-state voltage drop         | Nominal output current; including typical mating connector co | ontact resistance          |      | ±0.3 | ±0.5 | V     |
| Off-state leakage current     |                                                               |                            |      | ±0.5 | ±1   | mA    |
|                               |                                                               | F <sub>PWM</sub> = 20 kHz  | 330  |      |      |       |
|                               | Performended value for rinnle +5% of measurement range:       | F <sub>PWM</sub> = 40 kHz  | 150  |      |      | μΗ    |
|                               | Recommended value, for hpple ±5% of measurement range,        | F <sub>PWM</sub> = 60 kHz  | 120  |      |      |       |
|                               | + VMOI - 48 V                                                 | F <sub>PWM</sub> = 80 kHz  | 80   |      |      |       |
| Motor inductance (phase-      |                                                               | F <sub>PWM</sub> = 100 kHz | 60   |      |      |       |
| to-phase)                     |                                                               | F <sub>PWM</sub> = 20 kHz  | 120  |      |      |       |
|                               |                                                               | F <sub>PWM</sub> = 40 kHz  | 40   |      |      |       |
|                               | Absolute minimum value, limited by short-circuit protection;  | F <sub>PWM</sub> = 60 kHz  | 30   |      |      | μH    |
|                               | + V MOT - 48 V                                                | F <sub>PWM</sub> = 80 kHz  | 15   |      |      |       |
|                               |                                                               | F <sub>PWM</sub> = 100 kHz | 8    |      |      |       |
|                               |                                                               | F <sub>PWM</sub> = 20 kHz  | 250  |      |      |       |
| Mater electrical time         | Decommended value for LEO/ surrent measurement error          | F <sub>PWM</sub> = 40 kHz  | 125  |      |      |       |
| Motor electrical time-        | due te ripple                                                 | F <sub>PWM</sub> = 60 kHz  | 100  |      |      | μs    |
|                               |                                                               | F <sub>PWM</sub> = 80 kHz  | 63   |      |      | ]     |
|                               |                                                               | F <sub>PWM</sub> = 100 kHz | 50   |      |      |       |
| Current measurement accu      | racy (ES = Full Scale)                                        |                            |      | +4   | +8   | %ES   |

# 3.6.8 Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN5, IN6)<sup>1</sup>

|                     |                                                            | Min. | Тур.                 | Max.    | Units |
|---------------------|------------------------------------------------------------|------|----------------------|---------|-------|
| Mode compliance     |                                                            |      |                      | PNP     |       |
| Default state       | Input floating (wiring disconnected)                       |      | Log                  | ic LOW  |       |
|                     | Logic "LOW"                                                | -10  | 0                    | 2.2     |       |
|                     | Logic "HIGH"                                               | 6.3  |                      | 36      |       |
| Input voltage       | Floating voltage (not connected)                           |      | 0                    |         | V     |
|                     | Absolute maximum, continuous                               | -10  |                      | +39     |       |
|                     | Absolute maximum, surge (duration $\leq 1s$ ) <sup>†</sup> | -20  |                      | +40     |       |
| Input ourrent       | Logic "LOW"; Pulled to GND                                 |      | 0                    |         | m۸    |
| input current       | Logic "HIGH"                                               |      | 1.3                  | 2       | ША    |
|                     |                                                            | Min. | Min. Typ. Max. Units |         | Units |
| Mode compliance     |                                                            |      | NPN                  |         |       |
| Default state       | Input floating (wiring disconnected)                       |      | Log                  | ic HIGH |       |
|                     | Logic "LOW"                                                | -10  |                      | 2.2     |       |
|                     | Logic "HIGH"                                               | 6.3  |                      | 36      |       |
| Input voltage       | Floating voltage (not connected)                           |      | 3                    |         | V     |
|                     | Absolute maximum, continuous                               | -10  |                      | +36     |       |
|                     | Absolute maximum, surge (duration $\leq 1s$ ) <sup>†</sup> | -20  |                      | +40     |       |
| Input ourrent       | Logic "LOW"; Pulled to GND                                 | -1.6 | 0.6                  | 1       | m۸    |
| input current       | Logic "HIGH"; Pulled to +24V                               | 0    | 0                    | 0.3     | ШA    |
| Input frequency     |                                                            | 0    |                      | 150     | kHz   |
| Minimum pulse width |                                                            | 3.3  |                      |         | μs    |
| ESD protection      | Human body model                                           | ±2   |                      |         | kV    |

# ESD protection Human body model 3.6.9 Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4)

|                                        |                                                                                                                                                                                                                                                                  |             |                         | Min. | Тур.    | Max.                  | Units |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|------|---------|-----------------------|-------|--|
| Mode<br>compliance                     | All outputs (OUT0, OUT1, OUT2/Error, OUT3/R                                                                                                                                                                                                                      | leady)      |                         |      | NPN 24V |                       |       |  |
|                                        | Not supplied (+V <sub>LOG</sub> floating or to GND)                                                                                                                                                                                                              |             |                         |      | High-Z  | (floating)            |       |  |
|                                        | Immediately often neuron un                                                                                                                                                                                                                                      | OUT0, C     | DUT1,OUT4               |      | Logic   | "HIGH"                |       |  |
| Default state                          | immediately after power-up                                                                                                                                                                                                                                       | OUT2/E      | rror, OUT3/ Ready       |      | Logi    | c "LOW"               |       |  |
|                                        | Normal approxim                                                                                                                                                                                                                                                  | OUT0, C     | OUT1, OUT2/Error, OUT4  |      | Logic   | : "HIGH"              |       |  |
|                                        | Infinite operation         OUT3/Ready           Logic "LOW"; output at nominal current         UDT2/Error, OUT           Logic "HIGH"; output current = 0, no load         OUT2/Error, OUT           Logic "HIGH", external load to +VLog         OUT0, OUT1, OU | eady        |                         | Logi | c "LOW" |                       |       |  |
| Logic "LOW"; output at nominal current |                                                                                                                                                                                                                                                                  |             |                         |      | 0.8     |                       |       |  |
|                                        | Logic "HIGH": output current = 0, no logd                                                                                                                                                                                                                        | OUT2/E      | rror, OUT3/ Ready       | 2.9  | 3       | 3.3                   | V     |  |
| Output                                 | Dutput Logic "HIGH"; output current = 0, no load                                                                                                                                                                                                                 | OUT0, C     | DUT1, OUT4              | 4    | 4.5     | 5                     |       |  |
| voltage                                | Logic "HIGH", external load to +VLOG                                                                                                                                                                                                                             |             |                         |      | VLOG    |                       |       |  |
|                                        | Absolute maximum, continuous                                                                                                                                                                                                                                     |             |                         | -0.5 |         | V <sub>LOG</sub> +0.5 |       |  |
|                                        | Absolute maximum, surge (duration $\leq$ 1s) <sup>†</sup>                                                                                                                                                                                                        |             |                         | -1   |         | V <sub>LOG</sub> +1   |       |  |
|                                        | Logic "LOW", sink current, continuous OUT0, O                                                                                                                                                                                                                    | UT1, OUT2   | , OUT3, OUT4            |      |         | 0.5                   | A     |  |
| Output                                 | Logic "LOW", sink current, pulse ≤ 5 sec. OUT0                                                                                                                                                                                                                   | , OUT1, OU  | T2, OUT3, OUT4          |      |         | 1                     | A     |  |
| Curront                                | Logic "HIGH", source current; external load to G                                                                                                                                                                                                                 | GND; Vout   | OUT2/Error, OUT3/ Ready |      |         | 2                     | mA    |  |
| current                                | >= 2.0V                                                                                                                                                                                                                                                          |             | OUT0, OUT1              |      |         | 4                     | mA    |  |
|                                        | Logic "HIGH", leakage current; external load to                                                                                                                                                                                                                  | +VLOG; VOUT | $= V_{LOG} \max = 40V$  |      | 0.1     | 0.2                   | mA    |  |
| Minimum pulse                          | width                                                                                                                                                                                                                                                            |             |                         | 2    |         |                       | μs    |  |
| ESD protection                         | - Human body model                                                                                                                                                                                                                                               |             |                         | ±15  |         |                       | kV    |  |

 $<sup>^{\</sup>rm 1}$  The digital inputs are software selectable as PNP or NPN

#### 3.6.10 Digital Hall Inputs (Hall1, Hall2, Hall3)

|                                                                       |                                                           | Min. | Тур.   | Max.         | Units |
|-----------------------------------------------------------------------|-----------------------------------------------------------|------|--------|--------------|-------|
| Mode compliance                                                       |                                                           | TTI  | / CMOS | / Open-colle | ector |
| Default state                                                         | Input floating (wiring disconnected)                      |      | Logic  | : HIGH       |       |
|                                                                       | Logic "LOW"                                               |      | 0      | 0.8          |       |
| Input voltage                                                         | Logic "HIGH"                                              | 2    | 5      |              | V     |
|                                                                       | Floating voltage (not connected)                          |      | 4.4    |              |       |
|                                                                       | Absolute maximum, surge (duration $\leq$ 1s) <sup>†</sup> | -10  |        | +15          |       |
| lanut ourrent                                                         | Logic "LOW"; Pull to GND                                  |      |        | 1.2          |       |
| Input current                                                         | Logic "HIGH"; Internal 1K $\Omega$ pull-up to +5          | 0    | 0      | 0            | mA    |
| Minimum pulse width                                                   |                                                           | 2    |        |              | μs    |
| ESD protection                                                        | Human body model                                          | ±5   |        |              | kV    |
| 3.6.11 Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,) <sup>1</sup> |                                                           |      |        |              |       |

#### Min. Тур. Max. Units Single-ended mode compliance Leave negative inputs disconnected TTL / CMOS / Open-collector Logic "LOW" 1.6 Input voltage, single-ended mode A/A+, v Logic "HIGH" 1.8 B/B+ Floating voltage (not connected) 3.3 Logic "LOW" 1.2 Input voltage, single-ended mode Z/Z+ Logic "HIGH" 1.4 V Floating voltage (not connected) 4.7 Input current, single-ended mode A/A+, B/B+, Z/Z+\_\_\_\_ Logic "LOW"; Pull to GND 5.5 6 mΑ Logic "HIGH"; Internal 2.2KΩ pull-up to +5 0 0 0 Differential mode compliance For full RS422 compliance, see <sup>2</sup> TIA/EIA-422-A ±0.06 Hysteresis ±0.1 ±0.2 V Input voltage, differential mode Differential mode -14 +14 Common-mode range (A+ to GND, etc.) -11 +14 A1+, A2+, B1+, B2+, Z1+, Z2+ 2.2 kΩ A1-, A2-, B1-, B2-, Z1-, Z2-1.6 Input impedance, differential MHz 0 10 Differential mode Differential mode 50 ns ESD protection Human body model ±1 kV 3.6.12 Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-)<sup>3</sup>

|                                  |                                     | Min.  | Тур.   | Max.    | Units |
|----------------------------------|-------------------------------------|-------|--------|---------|-------|
| Differential mode compliance     |                                     |       | TIA/EI | A-422-A |       |
|                                  | Hysteresis                          | ±0.06 | ±0.1   | ±0.2    |       |
| Input voltage, differential mode | Differential mode                   | -14   |        | +14     | V     |
|                                  | Common-mode range (A+ to GND, etc.) | -11   |        | +14     |       |
|                                  |                                     |       | 120    |         | Ω     |
| Input impedance, differential    | Differential mode                   | 0     |        | 10      | MHz   |
| • •                              | Differential mode                   | 50    |        |         | ns    |
| ESD protection                   | Human body model                    | ±1    |        |         | kV    |

# 3.6.13 Linear Hall Inputs (LH1, LH2, LH3)<sup>4</sup>

|                          |                                                           | Min. | Тур.    | Max. | Units |
|--------------------------|-----------------------------------------------------------|------|---------|------|-------|
| Input voltage            | Operational range                                         | 0    | 0.5÷4.5 | 4.9  |       |
|                          | Absolute maximum values, continuous                       | -7   |         | +7   | V     |
|                          | Absolute maximum, surge (duration $\leq$ 1s) <sup>†</sup> | -11  |         | +14  |       |
| Input current            | Input voltage 0+5V                                        | -1   | ±0.9    | +1   | mA    |
| Interpolation Resolution | Depending on software settings                            |      |         | 11   | bits  |
| Frequency                |                                                           | 0    |         | 1    | kHz   |
| ESD protection           | Human body model                                          | ±1   |         |      | kV    |

# 3.6.14 Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)<sup>5</sup>

|                               |                                                            | Min. | Тур. | Max. | Units |
|-------------------------------|------------------------------------------------------------|------|------|------|-------|
| Input voltage, differential   | Sin+ to Sin-, Cos+ to Cos-                                 |      | 1    | 1.25 | VPP   |
|                               | Operational range                                          | -1   | 2.5  | 4    |       |
| Input voltage, any pin to GND | Absolute maximum values, continuous                        | -7   |      | +7   | V     |
|                               | Absolute maximum, surge (duration $\leq 1s$ ) <sup>†</sup> | -11  |      | +14  |       |
| Innutimpedance                | Differential, Sin+ to Sin-, Cos+ to Cos-                   | 4.2  | 4.7  |      | kΩ    |
| input impedance               | Common-mode, to GND                                        |      | 2.2  |      | kΩ    |
| Resolution with interpolation | Software selectable, for one sine/cosine period            | 2    |      | 10   | bits  |
| Fragueney                     | Sin-Cos interpolation                                      | 0    |      | 450  | kHz   |
| Frequency                     | Quadrature, no interpolation                               | 0    |      | 10   | MHz   |
| ESD protection                | Human body model                                           | ±2   |      |      | kV    |

<sup>&</sup>lt;sup>1</sup> Encoder #1 differential input pins needs termination resistors connected across; set SW2 pins 3,4 and 5 to ON

<sup>&</sup>lt;sup>2</sup> For full RS-422 compliance, 120Ω termination resistors must be connected across the differential pairs, set SW2 pins 3,4 and 5 to ON. See Differential Incremental Encoder #1 Connection chapter

<sup>&</sup>lt;sup>3</sup> Encoder #2 differential input pins have internal 120Ω termination resistors connected across

 $<sup>^{\</sup>rm 4}$  Linear hall inputs are available only with P027.314.E701

<sup>5</sup> For many applications, a termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS-. This can be achieved by setting SW2 pins 3,4 and 5 to ON. Please consult the feedback device datasheet for confirmation.

## 3.6.15 CAN-BUS

|                                                   |                                 | Min.    | Тур.                                                         | Max.      | Units |  |
|---------------------------------------------------|---------------------------------|---------|--------------------------------------------------------------|-----------|-------|--|
| Standarda compliance                              |                                 | ISO118  | ISO11898, CiA 301v4.2, CiA WD 308<br>v2.2.13, CiA DSP402v3.0 |           |       |  |
| Standards compliance                              |                                 | v       |                                                              |           |       |  |
| Bit rate                                          | Depending on software settings  | 125     | 125 1000 K                                                   |           |       |  |
|                                                   | 1Mbps                           |         |                                                              | 25        |       |  |
| Bus length                                        | 500Kbps                         |         |                                                              | 100       | m     |  |
|                                                   | ≤ 250Kbps                       |         |                                                              | 250       |       |  |
| Number of CAN nodes/drives                        |                                 |         | 125 -                                                        |           |       |  |
| Termination resistor                              | Between CAN-Hi, CAN-Lo          |         | none on-board                                                |           |       |  |
|                                                   | Hardwara by Hay switch (SW(1)   |         | 1 ÷ 15 & LSS non-configured (CANopen);                       |           |       |  |
| Node addressing                                   | Thatdware. By Thex Switch (SWT) |         | 1-15 & 25                                                    | 5 (TMLCAN | 1)    |  |
|                                                   | Software                        | 1 ÷ 127 | 1 ÷ 127 (CANopen); 1- 255 (TMLCAN)                           |           |       |  |
| Voltage, CAN-Hi or CAN-Lo to GND                  |                                 | -26     |                                                              | -26       | V     |  |
| ESD protection                                    | Human body model                | ±15     |                                                              |           | KV    |  |
| 3.6.16 SSI / EnDAT <sup>1</sup> encoder interface |                                 |         |                                                              |           |       |  |

|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min. | Тур.      | Max.            | Units |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----------------|-------|
| Differential mode compliance (CLOCK, DA                                                                            | TA) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | TIA/      | EIA-422         |       |
|                                                                                                                    | Differential; 50Ω differential load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0  | 2.5       | 5.0             | V     |
| CECCIC Culput Voltage                                                                                              | Common-mode, referenced to GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3  | 2.5       | 2.7             | v     |
| CLOCK frequency                                                                                                    | Software selectable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10   | 00, 2000, | 3000            | kHz   |
| DATA Input hysteresis                                                                                              | Differential mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.1 | ±0.2      | ±0.5            | V     |
| Data input impedance                                                                                               | Termination resistor on-board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 120       |                 | Ω     |
|                                                                                                                    | Referenced to GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -7   |           | +12             |       |
| DATA input common mode range                                                                                       | Absolute maximum, surge (duration $\leq$ 1s) <sup>†</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -25  |           | +25             | v     |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Bina      | ry / Gray       |       |
| DATA format                                                                                                        | Software selectable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Single-tu | rn / Multi-turr | า     |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | Countir   | ng direction    |       |
| DATA resolution                                                                                                    | Total resolution (single turn or single turn + multi turn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |           | 31              | bit   |
| DT+                                                                                                                | A Constraint of the second sec |      |           |                 |       |
| Multi-turn frame<br>$T/2 \qquad T \qquad $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |                 |       |
| 3.6.17 BiSS Encoder Interfa                                                                                        | ace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |                 |       |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min  | Typ       | Max             | Units |

|                                            |                                                            | IVIIII.                   | iyp.                     | IVIAA.  | Units |  |
|--------------------------------------------|------------------------------------------------------------|---------------------------|--------------------------|---------|-------|--|
| Differential mode compliance (CLOCK, DATA) |                                                            | TIA/EIA-422               |                          |         |       |  |
| CLOCK Output voltage                       | Differential; 50Ω differential load                        | 2.0                       | 2.5                      | 5.0     | V     |  |
|                                            | Common-mode, referenced to GND                             | 2.3                       | 2.5                      | 2.7     | v     |  |
| CLOCK frequency                            | Software selectable                                        | 1000,                     | 2000, 300                | 0, 4000 | kHz   |  |
| DATA Input hysteresis                      | Differential mode                                          | ±0.1                      | ±0.2                     | ±0.5    | V     |  |
| Data input impedance                       | Termination resistor on-board                              |                           | 120                      |         | Ω     |  |
| · ·                                        | Referenced to GND                                          | -7                        |                          | +12     |       |  |
| DATA Input common mode range               | Absolute maximum, surge (duration $\leq$ 1s) <sup>†</sup>  | -25                       |                          | +25     | V     |  |
| B) (I) ( Input continent mode range        | Saftware extends                                           |                           | Single-turn / Multi-turn |         |       |  |
|                                            | Software selectable                                        |                           | Counting direction       |         |       |  |
| DATA resolution                            | Total resolution (single turn or single turn + multi turn) |                           |                          | 31      | bit   |  |
| Protocol                                   |                                                            | BiSS C mode (sensor mode) |                          |         | ode)  |  |

 $<sup>^{\</sup>rm 1}$  EnDAT 2.2 protocol available starting with F514K firmware version

#### 3.6.18 Analog 0...5V Inputs (REF, FDBK)

|                    |                                                           | win. | тур. | wax. | Units             |
|--------------------|-----------------------------------------------------------|------|------|------|-------------------|
|                    | Operational range                                         | 0    |      | 5    |                   |
| Input voltage      | Absolute maximum values, continuous                       | -12  |      | +18  | V                 |
|                    | Absolute maximum, surge (duration $\leq$ 1s) <sup>†</sup> |      |      | ±36  |                   |
| Input impedance    | To GND                                                    |      | 30   |      | kΩ                |
| Resolution         |                                                           |      | 12   |      | bits              |
| Integral linearity |                                                           |      |      | ±2   | bits              |
| Offset error       |                                                           |      | ±2   | ±10  | bits              |
| Gain error         |                                                           |      | ±1%  | ±3%  | % FS <sup>1</sup> |
| Bandwidth (-3dB)   | Software selectable                                       | 0    |      | 1    | kHz               |
| ESD protection     | Human body model                                          | ±2   |      |      | kV                |
| 3.6.19 RS-232      |                                                           |      |      |      |                   |

|                          |                                |               | _    |        |       |
|--------------------------|--------------------------------|---------------|------|--------|-------|
|                          |                                | Min.          | Тур. | Max.   | Units |
| Standards compliance     |                                | TIA/EIA-232-C |      |        |       |
| Bit rate                 | Depending on software settings | 9600          |      | 115200 | Baud  |
| Short-circuit protection | 232TX short to GND             | Guaranteed    |      |        |       |
| ESD protection           | Human body model               | ±2            |      |        | kV    |

| 3.6.20 | Supply | Output | (+5V) |
|--------|--------|--------|-------|
|--------|--------|--------|-------|

|                          |                         | Min.          | тур. | Max. | Units |
|--------------------------|-------------------------|---------------|------|------|-------|
| +5V output voltage       | Current sourced = 250mA | 4.8           | 5    | 5.2  | V     |
| +5V output current       | iPOS4808 BX-CAN-STO     | 200           | 250  |      |       |
| Short-circuit protection |                         | Yes           |      |      |       |
| Over-voltage protection  |                         | NOT protected |      |      |       |
| ESD protection           | Human body model        | ±2            |      |      | kV    |
|                          |                         |               |      |      |       |

### 3.6.21 <sup>2</sup>Safe Torque OFF (STO1+; STO1-; STO2+; STO2-)

|                                                 |                                                                                       | Min.                       | Тур. | Max                       | Units |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------|------|---------------------------|-------|--|
| Safety function                                 | According to EN61800-5-2                                                              | STO (Safe Torque OFF)      |      |                           | F)    |  |
| EN 61800-5-1/ -2 and EN 61508-5-3/ -4           | Safety Integrity Level                                                                | safety integrity level 3 ( |      | ity level 3 (S            | SIL3) |  |
| Classification                                  | PFHd (Probability of Failures per Hour - dangerous)                                   | 8*10 <sup>-10</sup>        | ł    | 10ur <sup>-1</sup> (0.8 F | IT)   |  |
| EN12840 1 Classification                        | Performance Level                                                                     | Cat3/PLe                   |      |                           |       |  |
| EN13049-1 Classification                        | MTTFd (meantime to dangerous failure)                                                 | 377                        |      | years                     |       |  |
| Mode compliance                                 |                                                                                       |                            |      | PNP                       |       |  |
| Default state                                   | Input floating (wiring disconnected)                                                  |                            | Log  | ic LOW                    |       |  |
|                                                 | Logic "LOW" (PWM operation disabled)                                                  | -20                        |      | 5.6                       | V     |  |
| Input voltage                                   | Logic "HIGH" (PWM operation enabled)                                                  | 18                         |      | 36                        |       |  |
|                                                 | Absolute maximum, continuous                                                          | -20                        |      | +40                       |       |  |
| Input ourrent                                   | Logic "LOW"; pulled to GND                                                            |                            | 0    |                           | mA    |  |
| input current                                   | Logic "HIGH", pulled to +Vlog                                                         |                            | 5    | 13                        |       |  |
| Repetitive test pulses                          | Ignored high-low-high                                                                 |                            |      | 5                         | ms    |  |
| Repetitive test pulses                          |                                                                                       |                            |      | 20                        | Hz    |  |
| Fault reaction time                             | From internal fault detection to register DER bit 14 =1 and<br>OUT2/Error high-to-low |                            |      | 30                        | ms    |  |
| PWM operation delay                             | From external STO low-high transition to PWM operation<br>enabled                     |                            |      | 30                        | ms    |  |
| ESD protection                                  | Human body model                                                                      | ±2                         |      |                           | kV    |  |
| 3.6.22 <sup>3</sup> Enable circuit (ENA1, ENA2) |                                                                                       |                            |      |                           |       |  |

#### Min. Typ. Max Units Enable function Disables motor power when either ENA1 or ENA2 is disconnected from the power source Mode compliance Default state PNP Input floating (wiring disconnected) Logic LOW Logic "LOW" -36 0 8 Logic "HIGH" Input voltage 18 -50 24 36 +50 V Absolute maximum, continuous Logic "LOW"; pulled to GND Logic "HIGH", pulled to +24V 0 Input current mΑ 2.5 2 Ignored low-high-low TBD TBD Pulse duration Ignored high-low-high ms Accepted pulse TBD ESD protection Human body model ±2 kV

† Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

<sup>&</sup>lt;sup>1</sup> "FS" stands for "Full Scale"

<sup>&</sup>lt;sup>2</sup> STO inputs are available only for iPOS4808 BX-CAN-STO <sup>3</sup> ENABLE inputs are available only for iPOS4808 BX-CAN

#### 3.6.23 iPOS4808 BX-CAN / -STO Derating curves



## 4 Memory Map

iPOS4808 BX-CAN has 2 types of memory available for user applications:  $16K \times 16$  SRAM and up to  $16K \times 16$  serial E<sup>2</sup>ROM.

The SRAM memory is mapped in the address range: C000h to FFFFh. It can be used to download and run a TML program, to save real-time data acquisitions and to keep the cam tables during run-time.

The E<sup>2</sup>ROM is mapped in the address range: 4000h to 7FFFh. It is used to keep in a non-volatile memory the TML programs, the cam tables and the drive setup information.

**Remark:** EasyMotion Studio handles automatically the memory allocation for each motion application. The memory map can be accessed and modified from the main folder of each application





<sup>&</sup>lt;sup>1</sup> Measured under the following conditions: BLDC; Vmot=48V, Vlog=24V, PWM=20kHZ

