

Top view; Pins facing downward; All dimensions are in mm; Header pitch is 2.54 mm . Drawing not to scale.

Motor - sensor configurations					
Sensor Motor	PMSM	BLDC	$\begin{gathered} \text { DC } \\ \text { BRUSH } \end{gathered}$	$\begin{aligned} & \text { STEP } \\ & \text { (2-ph) } \end{aligned}$	$\begin{aligned} & \mathrm{STEP}^{2} \\ & (3-\mathrm{ph}) \end{aligned}$
Incr. Encoder	(5)		(5)	(5)	(5)
Incr. Encoder + Hall	(3)	(3)			
Analog Sin/Cos encoder	(5)	(5)	(5)	(5)	(3)
SSI	(5)	(5)	(5)	(3)	(5)
Biss-C	(5)	(5)	(5)	(5)	(3)
EnDAT ${ }^{1}$	(3)	(3)	(3)	(3)	(3)
Linear Halls	(5)				
Tacho			(5)		
Open-loop (no sensor)				(3)	(5)

${ }^{1}$ Available starting with F514K firmware version
${ }^{2}$ Sensor used only for step loss detection

Mating Connector			
Ref	Producer	Part No.	Description
J1	Samtec	SSQ-112-01-G-S	High-current socket 2.54mm-pitch accepting 0.635mm square pin
	FCI	$87606-305$ LF	2x5 contacts, socket, 2.54mm-pitch
TE Connectivity	$534206-5$	accepting 0.635mm square pin	

- Features

- Motion controller and drive in a single compact unit based on MotionChip ${ }^{\text {TM }}$ technology
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- Advanced motion control capabilities (PVT,S-curve, electronic cam)
- Motor supply: 11-50V. Logic supply: 9-36V
- Output current: 8A cont. (BLDC mode); 20A PEAK , up to 100 KHz PWM
- Feedback Devices (dual-loop support) $1^{\text {st }}$ feedback devices supported:
- Incremental encoder interface (single ended or differential)
- pulse \& direction interface (single ended) for external (master) digital reference
- Analogue sin/cos encoder interface (differential $1 \mathrm{~V}_{\mathrm{pp}}$)
- Digital Hall sensor interface (single-ended and open collector)
- Linear Hall sensors interface
$2^{\text {nd }}$ feedback devices supported:
- Incremental encoder interface (differential)
- pulse \& direction interface (differential) for external (master) digital reference
- BISS-C / SSI / EnDAT ${ }^{1}$ encoder interface
- 6 digital inputs, $12-36 \mathrm{~V}$, PNP/NPN programmable: 2 for limit switches, Enable, 3 general-purpose
- 5 digital outputs, $5-36 \mathrm{~V}, 0.5 \mathrm{~A}$, NPN open-collector: Ready, Error, 3 general-purpose
- 2 analogue inputs: 12-bit, 0-5V: Reference, Feedback or general purpose
- RS-232 serial \& CAN-bus 2.0B interfaces
- $128 \mathrm{~h} / \mathrm{w}$ addresses selectable by h / w pins configuration
- TMLCAN and CANopen (CiA 301v4.2 and 402v3.0) protocols selectable by h / w pin
- $16 \mathrm{k} \times 16$ SRAM memory for data acquisition
- $16 \mathrm{k} \times 16 \mathrm{E}^{2} \mathrm{ROM}$ to store setup data, TML motion programs, cam tables and other user data
- Operating ambient temperature: $0-40^{\circ} \mathrm{C}$ (over $40^{\circ} \mathrm{C}$ with derating)
- NTC/PTC analogue Motor Temperature sensor input

| Name
 ALN | First edition
 March 24, 2021 | Document template: P099.TQT.564.0001 | Last edition
 May 24, 2022 |
| :--- | :--- | :--- | :--- | :--- |
| TSOCHNOSOFT | Title of document | N° document | |
| AN | POS4808 MY-CAN | P027.414.E101.DSH.10D | |

Pin	Name	Type	Description
$\mathbf{1}$	LH1	I	Linear Hall 1 input
$\mathbf{2}$	LH2	I	Linear Hall 2 input
$\mathbf{3}$	IN4	I	12-36V general-purpose digital PNP/NPN input
$\mathbf{4}$	IN5/ Enable	I	12-36V general-purpose digital PNP/NPN input; Drive enable input
$\mathbf{5}$	OUT0	O	5-36V 0.5A, general-purpose digital output, NPN open-collector/TTL pull-up
$\mathbf{6}$	OUT3/Ready	$\mathbf{0}$	5-36V 0.5A, drive Ready output, active low, NPN open-collector/TTL pull-up. Also drives the green LED.
$\mathbf{7}$	OUT1	O	5-36V 0.5A, general-purpose digital output, NPN open-collector/TTL pull-up
$\mathbf{8}$	OUT2/Error	O	5-36V 0.5A, drive Error output, active low, NPN open-collector/TTL pull-up. Also drives the red LED
$\mathbf{9}$	REF	IAnalogue input, 12-bit, 0-5V. Used to read an analog position, speed or torque reference, or used as general purpose analogue input	
$\mathbf{1 0}$	FDBK / LH3	IAnalogue input, 12-bit, 0-5V. Used to read an analogue position or speed feedback (as tacho), or used as general purpose analogue input/ or Linear Hall 3 input	

Pin	Name	Type	Description
$\mathbf{1 , 2}$	A/A+	O	Phase A for 3-ph motors, A+ for 2-ph steppers, Motor+ for DC brush motors
$\mathbf{3 , 4}$	B/A-	O	Phase B for 3-ph motors, A- for 2-ph steppers, Motor- for DC brush motors
$\mathbf{5 , 6}$	C/B+	O	Phase C for 3-ph motors, B+ for 2-ph steppers
$\mathbf{7 , 8}$	Cr/B-	\mathbf{O}	Chopping resistor / Phase B- for 2-ph steppers

\dagger leave unconnected if interface extensions are not used

Name First edition ALN March 24, 2021	Document template: P099.TQT.564.0001	Last edition May 24, 2022	Visa : AN
(S) TECHNOSOFT	Title of document iPOS4808 MY-CAN PRODUCT DATA SHEET	$\begin{aligned} & \text { No document } \\ & \text { P027.414.E101.DSH.10D } \\ & \quad \text { Page: } 2 \text { of } 5 \end{aligned}$	

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified)

- $\mathrm{VLOG}=24 \mathrm{VDC}$; $\mathrm{VMOT}=48 \mathrm{VDC}$
- Supplies start-up / shutdown sequence: -any-

Operating Conditions			Min.	Typ.	Max.	Units
Ambient temperature			0		40^{1}	${ }^{\circ} \mathrm{C}$
Ambient humidity		Non-condensing	0		90	\%Rh
Altitude / pressure ${ }^{2}$		Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
		Ambient Pressure	0^{2}	0.75 $\div 1$	10.0	atm
Storage Conditions			Min.	Typ.	Max.	Units
Ambient temperature			-40		100	${ }^{\circ} \mathrm{C}$
Ambient humidity		Non-condensing	0		100	\%Rh
Ambient Pressure			0		10.0	atm
ESD capability (Human body model)		Not powered; applies to any accessible part			± 0.5	kV
		Original packaging			± 15	kV
Mechanical Mounting			Min.	Typ.	Max.	Units
Airflow Spacing required for vertical mounting			natural convection ${ }^{3}$, closed box			
	Between adjacent drives		30			mm
	Between drives and nearby walls		30			mm
	Between drives and roof-top		20			mm
Spacing required for horizontal mounting	Between adjacent drives		4			mm
	Between drives and nearby walls		5			mm
	Space needed for drive removal		10			mm
	Between drives and roof-top		15			mm
Insertion force	$\begin{aligned} & \text { Using recommended mating } \\ & \text { connectors } \end{aligned}$			TBD	TBD	N
Extraction force			TBD	TBD		N
Environmental Characteristics			Min.	Typ.	Max.	Units
Size (Length x Width x Height)	Global size		$60 \times 43.6 \times 12.4$			mm
			$\sim 2.36 \times 1.72 \times 0.49$			inch
Weight			22			g
Cleaning agents	Dry cleaning is recommended		Only Water- or Alcohol- based			
Protection degree	According to IEC60529,UL508		IP00			\bigcirc
Logic Supply Input (+V ${ }_{\text {LoG }}$)			Min.	Typ.	Max.	Units
Supply voltage	Nominal values		9		36	$V_{D C}$
	Absolute maximum values, drive operating but outside guaranteed parameters		8		40	V ${ }_{\text {c }}$
	Absolute maximum values, continuous		-0.6		42	$V_{\text {dc }}$
	Absolute maximum values, surge (duration $\leq 10 \mathrm{~ms}$) ${ }^{\dagger}$		-1		+45	V
Supply current	$+\mathrm{V}_{\text {LOG }}=12 \mathrm{~V}$			130		mA
	$+\mathrm{V}_{\text {LOGG }}=24 \mathrm{~V}$			90	280	
	$+\mathrm{V}_{\text {LOG }}=40 \mathrm{~V}$			85		
Motor Supply Input (+ $\mathrm{V}_{\text {mot }}$)			Min.	Typ.	Max.	Units
Supply voltage	Nominal values		11		50	V_{DC}
	Absolute maximum values, drive operating but outside guaranteed parameters		9		52	Voc
	Absolute maximum values, continuous		-0.6		54	V_{DC}
	Absolute maximum values, surge (duration $\leq 10 \mathrm{~ms})^{\dagger}$		-1		57	V
Supply current	Idle			1	5	mA
	Ope	rating	-20	± 8	+20	A
		olute maximum value, t-circuit condition ation $\leq 10 \mathrm{~ms})^{\dagger}$			26	A

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ iPOS4808 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

${ }^{3}$ In case of forced cooling (conduction or ventilation) the spacing requirements may drop substantially down to zero as long as the ambient temperature is kept below the maximum operating limit
${ }^{4}$ @20Khz Fpwm
${ }^{5}$ The digital inputs are software selectable as PNP or NPN

Name	First edition
ALN	March 24, 2021

Document template: P099.TOT. 564.0001
Title of documment
iPOS4808 MY-CAN
PRODUCT DATA SHEET

Last edition	Visa :
May 24, 2022	AN
N°	

Digital Outputs (OUTO, OUT1, OUT2/Error, OUT3/ Ready, OUT4)			Min.	Typ.	Max.	Units
Mode compliance	All outputs (OUT0, OUT1, OUT2/Error, OUT3/Ready)		NPN 24V			
Default state	Not supplied (+ ${ }_{\text {Log }}$ floating or to GND)		High-Z (floating)			
	Immediately after powerup	OUT0, OUT1, OUT4	Logic "HIGH"			
		OUT2/Error, OUT3/ Ready	Logic "LOW"			
	Normal operation	OUT0, OUT1, OUT2/Error	Logic "HIGH"			
		OUT3/Ready	Logic "LOW"			
Output voltage	$\begin{array}{\|l} \hline \text { Logic "LOW"; output current = } \\ 0.5 \mathrm{~A} \end{array}$				0.8	V
	Logic "HIGH"; output current $=0$, no load	OUT2/Error, OUT3/ Ready	2.9	3	3.3	
		OUTO, OUT1, OUT4	4	4.5	5	
	Logic "HIGH", external load to $+\mathrm{V}_{\text {Log }}$			V Log		
	Absolute maximum, continuous		-0.5		$\mathrm{V}_{\text {Log }}+0.5$	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~S})^{\dagger}$		-1		$\mathrm{V}_{\text {Log }}+1$	
Output current	Logic "LOW", sink current				0.5	A
	Logic "LOW", sink current, pulse $\leq 5 \mathrm{sec}$.				1	A
	Logic "HIGH", source current; external load to GND; Vout >= 2.0V	OUT2/Error, OUT3/ Ready			2	mA
		$\begin{aligned} & \text { OUTO, } \\ & \text { OUT1, } \\ & \text { OUT44 } \end{aligned}$			4	mA
	Logic "HIGH", leakage current; external load to $+\mathrm{V}_{\text {LOG; }}$; $\mathrm{V}_{\text {OUT }}=$ $V_{\text {LOG }} \max =40 \mathrm{~V}$			0.1	0.2	mA
Minimum pulse width			2			$\mu \mathrm{s}$
ESD protection	Human body mod	model	± 15			kV
Digital Hall Inputs (Hall1, Hall2, Hall3)			Min.	Typ.	Max.	Units
Mode compliance			TTL / CMOS / Open-collector			
Default state	Input floating(wiring disconnected)		Logic HIGH			
Input voltage	Logic "LOW"			0	0.8	V
	Logic "HIGH"		2	5		
	Floating voltage (not connected)			4.4		
	Absolute maximum, surge (duration $\leq 1 \mathrm{~S}$) ${ }^{\dagger}$		-10		+15	
Input current	Logic "LOW"; Pull to GND				1.2	mA
	Logic "HIGH"; Internal 4.7K Ω pull-up to +5		0	0	0	
Minimum pulse width			2			$\mu \mathrm{s}$
ESD protection	Human body mod	model	± 5			kV
$\begin{array}{\|l} \hline \text { Encoder1 Inputs } \\ \text { (A1/A1+, A1-, B1/B1+, B1-, Z1/Z1+, Z1-) } \end{array}$			Min.	Typ.	Max.	Units
Single-ended mode compliance	Leave negative inputs disconnected		TTL / CMOS / Open-collector			
Input voltage, single-ended mode A/A+, B/B+	Logic "LOW"				1.6	V
	Logic "HIGH"		1.8			
	Floating voltage (not connected)			3.3		
Input voltage, single-ended mode Z/Z+	Logic "LOW"				1.2	V
	Logic "HIGH"		1.4			
	Floating voltage (not connected)			4.7		
	Logic "LOW"; P	Pull to GND		5.5	6	

Input current, single-ended mode A/A + , B/B+, Z/Z+	Logic "HIGH"; Internal 2.2K Ω pull-up to +5	0	0	0	
Differential mode compliance	For full RS422 compliance, see ${ }^{1}$	TIA/EIA-422-A			
Input voltage, differential mode	Hysteresis	± 0.06	± 0.1	± 0.2	V
	Common-mode range (A + to GND, etc.)	-7		+7	
Input impedance, differential	$\begin{aligned} & \mathrm{A} 1+\text { to } \mathrm{A} 1-, \mathrm{B} 1+\text { to } \mathrm{B} 1-, \mathrm{Z} 1+\text { to } \\ & \mathrm{Z} 1- \end{aligned}$		1		$\mathrm{k} \Omega$
Input frequency	Single-ended mode, Opencollector / NPN	0		5	MHz
	Differential mode, or Singleended driven by push-pull (TTL / CMOS)	0		10	MHz
Minimum pulse width	Single-ended mode, Opencollector / NPN	1			$\mu \mathrm{s}$
	Differential mode, or Singleended driven by push-pull (TTL / CMOS)	50			ns
Input voltage, any pin to GND	Absolute maximum values, continuous	-7		+7	V
	Absolute maximum, surge (duration $\leq 1 \mathrm{~S})^{\dagger}$	-11		+14	
ESD protection	Human body model	± 1			kV
$\begin{aligned} & \text { Encoder2 Inputs } \\ & \text { (A2+/Data+, A2-/Data-, B2+/Clk+, B2-/Clk-, Z2+, } \\ & \text { Z2-I }^{2} \end{aligned}$		Min.	Typ.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ${ }^{1}$	TIA/EIA-422-A			
Input voltage	Hysteresis	± 0.06	± 0.1	± 0.2	V
	Differential mode	-14		+14	
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential	$\begin{array}{\|l} \text { A2+, B2+, Z2+ } \\ \text { A2-, B2-, Z2- } \end{array}$		120		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns
Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)		Min.	Typ.	Max.	Units
Input voltage, differential	Sin+to Sin-, Cos+ to Cos-		1	1.25	$\mathrm{V}_{\text {PP }}$
Input voltage, any pin to GND	Operational range	-1	2.5	4	V
	Absolute maximum values, continuous	-7		+7	
	Absolute maximum, surge (duration $\leq 1 S)^{\dagger}$	-11		+14	
Input impedance	Differential, Sin+ to Sin-, Cos+ to Cos- ${ }^{3}$	4.2	4.7		k Ω
	Common-mode, to GND		2.2		$\mathrm{k} \Omega$
Resolution with interpolation	Software selectable, for one sine/cosine period	2		10	bits
Frequency	Sin-Cos interpolation	0		450	kHz
	Quadrature, no interpolation	0		10	MHz
ESD protection	Human body model	± 1			kV
Analog 0...5V Inputs (REF, FDBK)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0		5	V
	Absolute maximum values, continuous	-12		+18	
	Absolute maximum, surge (duration $\leq 1 S) ~^{\dagger}$			± 36	
Input impedance	To GND		28		k Ω
Resolution		12			bits
Integral linearity				± 2	bits
Offset error			± 24	± 37	mV
Gain error			$\pm 1 \%$	$\pm 3 \%$	\% FS ${ }^{4}$
$\begin{array}{\|l} \hline \begin{array}{l} \text { Bandwidth } \\ (-3 \mathrm{~dB}) \end{array} \\ \hline \end{array}$	Software selectable	0		1	kHz
ESD protection	Human body model	± 5			kV

${ }^{\prime}$ For full RS-422 compliance, 120Ω termination resistors must be connected across the differential pairs, as close as possible to the drive input pins
${ }^{2}$ Encoder2 differential input pins have internal 120Ω termination resistors connected across
${ }^{3}$ For many applications, a 120Ω termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS-. Please consult the feedback device datasheet for confirmation.
4 "FS" stands for "Full Scale"

Name First edition ALN March 24, 2021	Document template: P099.TQT.564.0001	Last edition May 24, 2022	Visa : AN
	Title of document iPOS4808 MY-CAN PRODUCT DATA SHEET	N° document P027.414.E101.DSH.10D Page: 4 of 5	

RS-232		Min.	Typ.	Max.	Units
Compliance		TIA/EIA-232-C			
Bit rate	Software selectable	9600		115200	Baud
Short-circuit	232TX short to GND	Guaranteed			
ESD protection	Human body model	± 2			kV
Linear Hall Inputs (LH1, LH2, LH3)		Min.	Typ.	Max.	Units
Input voltage	Operational range	0	0.5 $\div 4.5$	4.9	V
Input voltage	Absolute maximum values, continuous	-7		+7	V
	Absolute maximum, surge (duration $\leq 1 S$) †	-11		+14	
Input current	Input voltage 0... +5 V	0		0.2	mA
Interpolation Resolution	Depending on software settings			11	bits
Frequency		0		1	KHz
ESD protection	Human body model	± 1			kV
CAN-Bus		Min.	Typ.	Max.	Units
Compliance		ISO11898, CiA-301v4.2 \& 402v3.0			
Bit rate	Software selectable	125		1000	Kbps
Bus length	1Mbps			25	m
	500 Kbps			100	
	$\leq 250 \mathrm{Kbps}$			250	
Resistor	Between CAN-Hi, CAN-Lo	none on-board			
Node addressing	$\begin{aligned} & \text { Strapping option (AxisID } \\ & \text { Bit0..6) } \end{aligned}$	1 $\div 127$; 255 (all bits 0)			-
ESD protection	Human body model	± 15			kV
Supply Output (+5V)		Min.	Typ.	Max.	Units
Output voltage	Current sourced $=250 \mathrm{~mA}$	4.8	5	5.2	V
Output current		600	650		mA
Short-circuit		NOT protected			
Over-voltage		NOT protected			
ESD protection	Human body model	± 1			kV

\dagger Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.

Figure 1. iPOS4808 MY-CAN De-rating with ambient temperature ${ }^{1}$

Figure 2. iPOS4808 MY-CAN Over-current diagram ${ }^{10}$

Figure 3. iPOS4808 MY-CAN Output Voltage De-rating with PWM frequency ${ }^{10}$

Figure 4. iPOS4808 MY-CAN De-rating with altitude ${ }^{10}$
${ }^{1}$ Measured under the following conditions: BLDC; Vmot=48V, Vlog=24V, PWM=20kHZ

Name First edition ALN March 24, 2021	Document template: P099.TQT.564.0001	Last edition May 24, 2022	Visa : AN
(S) TECHNOSOFT	Title of document iPOS4808 MY-CAN PRODUCT DATA SHEET	$\begin{aligned} & \hline \mathrm{N}^{\circ} \text { document } \\ & \text { P027.414.E101.DSH.10D } \end{aligned}$ Page: 5 of 5	

