

Intelligent Servo Drives

iGVD71 BX-CAT

Intelligent Servo Drive for DC and Brushless Motors

P025.027.iGVD71.CAT.UM.1123

© Technosoft 2023

1	Re	ead This First	.4
2	A	oout This Manual	.4
3	No	otational Conventions	.4
4	Tr	ademarks	.4
5	Re	elated Documentation	. 5
6	lf	you Need Assistance	. 5
7	Sa	afety information	. 5
•	7.1	Warnings	. 6
	7.2	Cautions	. 6
	7.3	Quality system, conformance and certifications	. 6
•			_
8	Pr	oduct Overview	. /
8	3.1	Introduction	. 7
8	3.2	Product Features	. 8
8	3.3	Identification Labels	10
8	3.4	Supported Motor-Sensor Configurations	10
	8.4 8.4	.1 Single loop configurations	10
	0.4		10
9	Ha	ardware Installation	11
9	9.1	iGVD71 BX-CAT Board Dimensions	11
ę	9.2	Mechanical Mounting	11
9	9.3	Connectors and Pinouts	12
	9.3	8.1 Mating Connectors	13
	9.3	3.2 Recommendations for Motor Phases and Motor Power Supply wires	14 15
(٥.c		16
	9.4	.1PNP/NPN Inputs selection	16
	9.4	.2 PNP inputs	16
	9.4 o.4	.4NPN Outputs	17 18
	9.4 9.4	.7 Analog Inputs Connection: REF, FDBK	19
	9.4	.8 Analog Inputs Connection: +/- 10V Input Range adapter	19
		9.4.8.1 Recommendation for wiring	19
ļ	9.5	Motor connections	20
	9.5 9.5	5.2Brushless Motor connection	20 20
	9	9.5.2.1 Recommendations for motor wiring	20
ę	9.6	Feedback connections	21
	9.6	5.2 Feedback #1 - Differential Incremental Encoder Connection	21
	9.6 9.6	 .4 Feedback #2 - Differential Incremental Encoder Connection 5 Feedback #1 – Single-Ended Sine-Cosine Encoder Connection 	22 23
	9.6	6.6 Feedback #1 – Differential Sine-Cosine Encoder Connection	23
	9.6	6.7 Feedback #2 – Single-Ended Pulse and Direction Connection	24
	9.6	5.8 Feedback #2 – Differential Pulse and Direction Connection	24

9.6.9 Feedback #2 - Absolute Encoder Connection (SSI, BiSS-C, EnDAT 2.2)	25
9.7 Digital Hall Connection	26
9.7.1 Single-Ended Digital Hall Connection	26
9.7.2 Differential Digital Hall Connection	
9.7.3 Digital Hall Connection for Motor Control	27
9.7.3.1 Digital Hall only control	
9.7.3.2 Digital Hall + Incremental or Absolute Encoder control	27
9.8 Power Supply Connection	28
9.8.1 Recommendations to limit over-voltage during braking	28
9.9 Communication connection	29
9.9.1 USB connection	29
9.9.2 Recommendations for EtherCAT Wiring	
9.9.3 Disabling the setup table at startup	31
9 10 Axis ID Selection	31
9.11 LED INDICATORS	32
9.11.1 EtherCAT® RUN and ERROR LED Indicators	32
10 Electrical Specifications	33
10.1.1 Operating Conditions	33
10.1.2 Storage Conditions	33
10.1.3Mechanical Mounting	33
10.1.4Environmental Characteristics	33
10.1.5Logic Supply Input (+V _{LOG})	33
10.1.6Motor Supply Input (+V _{MOT})	33
10.1.7 Motor Outputs (A/A+, B/A-,C)	33
10.1.8Digital Inputs - opto-isolated - (IN0, IN1, IN2/LSP, IN3/LSN, IN4)	34
10.1.9Digital Outputs (OUT0/Brake, OUT1, OUT2, OUT3, OUT4)	34
10.1.10Brake output (OUT0/Brake)	34
10.1.11Digital Hall Inputs (Hall1+, Hall1-, Hall2+, Hall2-, Hall3+, Hall3-)	35
10.1.12 Encoder #1 and #2 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-, A2+, A2-, B2+, B2-, Z2+, Z2-)	35
10.1.13 Analog 05V Inputs (REF, FDBK)	
10.1.14SSI, BiSS, EnDAT Encoder Interface	
10.1.15 Supply Output (+5V)	
10.1.16 Supply Output (+5V)	
10.1.1/ Sate Torque OFF (STO1+; STO1-; STO2+; STO2-)	
10.1.18 Conformity	
10.1.19 Derating curves	36
11 Memory Map	37

1 Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information-retrieval system without permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

2 About This Manual

This book is a technical reference manual for:

Product Name	Part Number	Outpu	Communication		
	D025 027 E224	Nominal	Peak	EthorCAT	
IGVD/ I BX-CAT	F025.027.E221	71 A _{RMS} / 100A amplitude	100 A _{RMS} / 140A amplitude	ElleICAT	

In order to operate the **iGVD71** drives, you need to pass through 3 steps:

- Step 1 Hardware installation
- Step 2 Drive setup using Technosoft EasySetUp software for drive commissioning
- **Step 3 Motion programming** using one of the options:
 - An EtherCAT® master
 - □ The drives **built-in motion controller** executing a Technosoft Motion Language (**TML**) program developed using Technosoft **EasyMotion Studio** software
 - A distributed control approach which combines the above options, like for example a host calling motion functions programmed on the drives in TML

This manual covers **Step 1** in detail. It describes the **iGVD71 BX** hardware including the technical data, the connectors and the wiring diagrams needed for installation.

For Step 2 and 3, please consult the document EasyMotion Studio – Quick Setup and Programming Guide. For detailed information regarding the next steps, refer to the related documentation.

3 Notational Conventions

This document uses the following conventions:

- **iGVD71** all products described in this manual
- **IU units** Internal units of the drive
- SI units International standard units (meter for length, seconds for time, etc.)
- STO Safe Torque Off
- **TML** Technosoft Motion Language
- CoE CAN application protocol over EtherCAT®

4 Trademarks

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

5 Related Documentation

iGVD71 BX-CAT Datasheet (P025.027.E221.DSH)

iGVD71 BX-CAT Connection Diagram (P025.027.E221.CDG)

- describes the hardware connections of the iGVD BX intelligent servo drive including the technical data and connectors.

iPOS family Safe Torque Off (STO) Operating instructions (P091.099.STO.Operating.Instructions.xxxx)

- describes the principles of STO function, the applied standards, the safety-related data and the electrical data. It
 presents the requested information for installation and commissioning of STO function
- <u>EasyMotion Studio Quick Setup and Programming Guide (P091.034.ESM-Quick.Setup.and.Programming.Guide.UM.xxxx</u>) describes the compatible software installation, drive software setup commissioning, introduction to TML motion programming and motion evaluation tools.
- Help of the EasySetUp software describes how to use EasySetUp to quickly setup any Technosoft drive for your application using only 2 dialogues. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp can be downloaded free of charge from Technosoft web page
- <u>CoE Programming (part no. P091.064.UM.xxxx)</u> explains how to program the Technosoft intelligent drives using CAN application protocol over EtherCAT® and describes the associated object dictionary.
- <u>Motion Programming using EasyMotion Studio (part no. P091.034.ESM.UM.xxxx)</u> describes how to use the EasyMotion Studio to create motion programs using in Technosoft Motion Language (TML). EasyMotion Studio platform includes EasySetUp for the drive/motor setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can fully benefit from a key advantage of Technosoft drives their capability to execute complex motions without requiring an external motion controller, thanks to their built-in motion controller. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from the Technosoft web page</u>

6 If you Need Assistance ...

If you want to	Contact Technosoft at
Visit Technosoft online	World Wide Web: <u>http://www.technosoftmotion.com/</u>
Receive general information or assistance (see Note)	World Wide Web: <u>http://www.technosoftmotion.com/</u> Email: <u>sales@technosoftmotion.com</u>
Ask questions about product operation or report suspected problems (see Note)	Tel: +41 (0)32 732 5500 Email: <u>support@technosoftmotion.com</u>
Make suggestions about, or report errors in documentation.	Mail: Technosoft SA Avenue des Alpes 20 CH-2000 Neuchatel, NE Switzerland

7 Safety information

Read carefully the information presented in this chapter before carrying out the drive installation and setup! It is imperative to implement the safety instructions listed hereunder.

This information is intended to protect you, the drive and the accompanying equipment during the product operation. Incorrect handling of the drive can lead to personal injury or material damage.

The following safety symbols are used in this manual:

WARNING! SIGNALS A DANGER TO THE OPERATOR WHICH MIGHT CAUSE BODILY INJURY. MAY INCLUDE INSTRUCTIONS TO PREVENT THIS SITUATION

SIGNALS A DANGER FOR THE DRIVE WHICH MIGHT DAMAGE THE PRODUCT CAUTION! OR OTHER EQUIPMENT. MAY INCLUDE INSTRUCTIONS TO AVOID THIS SITUATION

7.1 Warnings

CAUTION! THE POWER SUPPLIES CONNECTED TO THE DRIVE MUST COMPLY WITH THE PARAMETERS SPECIFIED IN THIS DOCUMENT

 \triangle

CAUTION! TROUBLESHOOTING AND SERVICING ARE PERMITTED ONLY FOR PERSONNEL AUTHORISED BY TECHNOSOFT

To prevent electrostatic damage, avoid contact with insulating materials, such as synthetic fabrics or plastic surfaces. In order to discharge static electricity build-up, place the drive on a grounded conductive surface and also ground yourself.

7.3 Quality system, conformance and certifications

IQNet and **Quality Austria** certification about the implementation and maintenance of the Quality Management System which fulfills the requirements of Standard **ISO 9001:2015**. **Quality Austria Certificate** about the application and further development of an effective **Quality Management System** complying with the requirements of Standard **ISO 9001:2015**

REACH Compliance - TECHNOSOFT hereby confirms that this product comply with the legal obligations regarding Article 33 of the European REACH Regulation 1907/2006 (Registration, Evaluation, Authorization and Restriction of Chemicals), which came into force on 01.06.2007.

RoHS Compliance - Technosoft SA here with declares that this product is manufactured in compliance with the RoHS directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)

Technosoft SA hereby declares that this product conforms to the following European applicable directives:

2014/30/EU Electromagnetic Compatibility (EMC) Directive

2014/35/EU Low Voltage Directive (LVD) 93/68/EEC CE Marking Directive

Conflict minerals statement - Technosoft declares that the company does not purchase 3T&G (tin, tantalum, tungsten & gold) directly from mines or smelters...

We have no indication that Technosoft products contain minerals from conflict mines or smelters in and around the DRC.

STO compliance – TUV SUD certifies that this product is SIL 3 / Cat 3 / PL e compatible and is in conformity with the following safety – related directives:

EN ISO 13849-1:2015 Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design

EN 61800-5-1:2007 Adjustable speed electrical power drive systems — Safety requirements — Electrical, thermal and energy

EN 61800-5-2:2007 Adjustable speed electrical power drive systems - Safety requirements –Functional EN 61508:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems EN ISO 13849-1:2008 Safety of machinery - Safety-related parts of control systems

EN 61326-3-1:2008 - General industrial applications - EMC - Immunity requirements for functional safety

For other certifications visit: <u>https://technosoftmotion.com/en/quality/</u>

8 Product Overview

8.1 Introduction

The **iGVD71** is part of the **iPOS** family of fully digital servo drives, based on the latest DSP technology, offering the highest density of power and intelligence.

Suitable for control of **brushless DC**, **brushless AC** (vector control) and **brushed DC** motors, the **iGVD71** accept as position feedback **incremental encoders** (differential or single-ended), **digital Hall** signals (differential or single-ended) and **absolute encoders** (BISS-C / SSI / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki).

All drives perform position, speed or torque control and work in single, multi-axis or stand-alone configurations. Thanks to the embedded motion controller, the iGVD71 BX drives combine controller, drive and PLC functionality in a single compact unit and are capable to execute complex motions without requiring intervention of an external motion controller. Using the high-level Technosoft Motion Language (**TML**) the following operations can be executed directly at drive level:

- Setting various motion modes (profiles, PVT, PT, electronic gearing¹ or camming¹, etc.)
- Changing the motion modes and/or the motion parameters
- Executing homing sequences
- Controlling the program flow through:
 - Conditional jumps and calls of TML functions
 - TML interrupts generated on pre-defined or programmable conditions (protections triggered, transitions on limit switch or capture inputs, etc.)
 - · Waits for programmed events to occur
- Handling of digital I/O and analogue input signals
- Executing arithmetic and logic operations
- Performing data transfers between axes
- Controlling motion of an axis from another one via motion commands sent between axes
- Sending commands to a group of axes (multicast). This includes the possibility to start simultaneously motion sequences on all the axes from the group
- Synchronizing all the axes from a network

By implementing motion sequences directly at drive level you can really distribute the intelligence between the master and the drives in complex multi-axis applications, reducing both the development time and the overall communication requirements. For example, instead of trying to command each movement of an axis, you can program the drives using TML to execute complex motion tasks and inform the master when these tasks are done. Thus, for each axis control the master job may be reduced at: calling TML functions stored in the drive EEPROM and waiting for a message, which confirms the TML functions execution completion.

For iGVD71 BX-CAT commissioning EasySetUp or EasyMotion Studio PC applications may be used.

EasySetUp is a subset of EasyMotion Studio, including only the drive setup part. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp shall be used for drive setup in all cases where the motion commands are sent exclusively from a master. Hence neither the iGVD71 TML programming capability nor the drive camming mode are used. **EasySetUp can be downloaded free of charge from Technosoft web page.**

EasyMotion Studio platform includes EasySetUp for the drive setup, and a **Motion Wizard** for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. *With EasyMotion Studio you can execute complex motions, thanks to their built-in motion controllers*. EasyMotion Studio, may be used to program motion sequences in TML. This is the iGVD71 typical CAN operation mode when TMLCAN protocol is selected. EasyMotion Studio can also be used with the CANopen protocol, if the user wants to call TML functions stored in the drive EEPROM or to use the camming mode. With camming mode, EasyMotion Studio offers the possibility to quickly download and test a cam profile and also to create a **.sw** file with the cam data. The .sw file can be afterwards stored in a master and downloaded to the drive, wherever needed. **A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from Technosoft web page.**

© Technosoft 2023

¹ Available if the master axis sends its position via a communication channel, or by using the secondary encoder input

Product Features 8.2

- Fully digital servo drive suitable for the control of brushless DC, AC and brushed DC motors •
- Motor supply: 11-80V; Logic supply¹: 9-36V
- Output current²:
 - Nominal: 71 ARMS / 100A amplitude •
 - Peak: 100 ARMS / 140A amplitude
- PWM switching frequency up to 100kHz
- **Communication:**
 - Dual 100Mbps EtherCAT® interfaces, for use in daisy-chaining topologies
 - RS-232 (micro USB port)
- Digital and analog I/O's:
 - 2 x analogue inputs: 12-bit, 0-5V: Reference and Feedback (for tacho) or general purpose
 - 5 x opto-isolated digital inputs, 12-36V, PNP/NPN selectable: 2 for limit switches, 3 general-purpose
 - 4 x digital outputs, 0.2A PNP/ 0.3A NPN software selectable: Ready, Error, 2 general-purpose
 - 1 x PNP/NPN 2A software configurable motor brake digital output: Out0/Brake

Feedback devices (dual-loop support)

1st feedback devices supported:

- Incremental encoder interface (single-ended or differential, selectable by DIP switch)
- Analogue Sin/Cos encoder interface (differential 1V_{pp})

2nd feedback devices supported:

- Incremental encoder interface (single-ended or differential, selectable by DIP switch)
- BISS / SSI / EnDAT / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki interface
- Digital Hall sensor interface (single-ended / open collector or differential, selectable by DIP switch)
- Pulse & direction reference (single-ended or differential) capability
- Various motion programming modes:
 - Position profiles with trapezoidal or S-curve speed shape
 - Position, Velocity, Time (PVT) 3rd order interpolation
 - Position, Time (PT) 1st order interpolation
 - Cyclic Synchronous Position (CSP)
 - Cyclic Synchronous Velocity (CSV)
 - Cyclic Synchronous Torque (CST)
 - · Electronic gearing and camming
 - 40 Homing modes
- 32 h/w selectable Axis ID addresses
- STO3: 2 safe torque-off inputs, 18-36V SELV/PELV supply, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1;-2/ EN61508-3;-4/ EN ISO 13849-1.
- EtherCAT® supported protocols:
 - CoE CAN application protocol over EtherCAT
 - FoE File over EtherCAT for setup/TML functions and firmware update
 - **EoE** Ethernet over EtherCAT for Easy Motion studio communication over EtherCAT
- 16K × 16 internal SRAM memory for data acquisition
- $24K \times 16 E^2 ROM$ to store TML motion programs, cam tables and other user data
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- Protections:
 - Short-circuit between motor phases
 - Short-circuit from motor phases to ground
 - Over-voltage
 - Under-voltage

- Over-current
- Over-temperature
- Communication error
- Control error

¹ Logic supply must be SELV/ PELV type (Safety Extra Low Voltage / Protective Extra Low Voltage)

² Nominal output current possible only with external radiator (not included) that can maintain lower plate temperature below 75°C; The radiator is mounted under the drive using thermal paste or direct metal contact. Its size is application dependent ³ The STO circuit must be supplied with minimum 18V to enable PWM output

8.3 **Identification Labels**

The iGVD71 BX family can have the following part numbers and names on the identification label: p.n. P025.027.E221 name iGVD71 BX-CAT - standard CAT execution

8.4 **Supported Motor-Sensor Configurations**

8.4.1 Single loop configurations

The position and/or speed are controlled using one feedback sensor. The other available feedback sensor input can be used for External reference Position or Velocity, Pulse and Direction, Electronic Gearing or Camming.

Motor sensors	Motor types				
Encoder ¹	Digital Halls	Tacho	Brushless PMSM ²	Brushless BLDC ³	Brushed DC Voice coils
Incremental encoder / SinCos / SSI / BISS-C / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki			~		\checkmark
Incremental encoder / SinCos / SSI / BISS-C / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki	√		~	\checkmark	
None	√		\checkmark		
None		\checkmark			\checkmark

8.4.2 **Dual loop configurations**

The motor speed control loop is closed on one feedback connected on the motor while the motor position control loop is closed on the other available feedback which is placed on the load. There is usually a transmission between the load and the motor.

Motor sensors		Motor types			Load sensors	
Encoder	Digital Halls	Tacho	Brushless PMSM ¹	Brushless BLDC ¹	Brushed DC Voice coils	Encoder⁴
Incremental encoder / SinCos						Incremental encoder / SSI / BISS-C / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki
Incremental encoder / SSI / BISS-C / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki			V		V	Incremental encoder / SinCos
Incremental encoder / SinCos						Incremental encoder / SSI / BISS-C / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki
Incremental encoder / SSI / BISS-C / EnDAT2.2 / TAMAGAWA / Panasonic/ Nikon/ Sanyo Denki	v		v	v		Incremental encoder / SinCos
None	\checkmark		\checkmark			Incremental encoder / SinCos
None		√			1	Incremental encoder / SinCos

Each defined motor type can have any combination of the supported feedbacks either on motor or on load. Example:

-PMSM motor with Incremental encoder (from feedback #1) on motor and Incremental encoder (from feedback#2) on load

-DC brush motor with BiSS C encoder (from feedback #2) on motor and Incremental encoder (from feedback #1) on load.

¹ Motor encoder can be either on Feedback 1 or on Feedback 2

² Sinusoidal. Brushless motor is controlled as PMSM using a field oriented control algorithm

³ Trapezoidal. Brushless motor is controlled as a BLDC motor using Hall-based commutation.
⁴ Load encoder is on Feedback 2 / 1, if motor encoder is on Feedback 1 / 2

9.1 iGVD71 BX-CAT Board Dimensions

All dimensions are in mm. The drawings are not to scale.

9.2 Mechanical Mounting

The iGVD71 BX drive is intended to be mounted horizontally on a metallic support using the provided mounting holes and the recommended inserts and screws:

Image	Connector	Description	Manufacturer	Part Number
	-	Self-clinching nuts M3	PennEngineering® (PEM®)	KF2-M3-ET
	-	Screws M3x10	Bossard	BN610-M3x10

The metallic support must act as a cooling heat sink.

Connector	Function	Component	Diagram
J1	Motor Phases	High AMP wire. 4mm HEX socket. Strip: - min 8 mm for cables with isolation diameter less than 6.5 mm; - min 12 mm/ max 15 mm for cables with isolation diameter bigger than 6.5 mm. AWG 6-16 wire gauge.	A DUR
	Motor Supply	Avoid generating metal debris/ filings into drive from the wire leads! In case of multi-stranded wires, a proper crimp ferrule must be used as wire terminal.	
	Feedback #1		
J2, J3	Halls	Generic 15-pin High Density Sub-D male connector.	
	Feedback #2		
J4	Inputs	Generic 15-pin High Density D-Sub female	
	Outputs		000
	STO		reter
J5	Logic Supply	Female connector; CAGE CLAMP®; 0.5 mm²; Pin spacing 2.5 mm; 6-pole	a onthe
J6	Communication	Standard Micro USB cable.	
J7, J8	EtherCAT	Standard 8P8C modular jack (RJ-45) male	

9.3.2 Recommendations for Motor Phases and Motor Power Supply wires

	Torque	Chart											
AWG 6-14 (mm ² 10 – 2.5)													
AWG	mm ²	In-lb	N-M										
6	-	35	2.05										
-	10	- 35	3.95										
8	-	25	2 92										
-	6	20	2.02										
10	-												
-	4												
12	-	20	2.26										
-	2.5												
14	-												

Cable connections

Solid wire or tinned strand wire

D_{max} = 4.1 mm (AWG6)

Strand wire with ferrule

Options for industrial standard ferrules

French and German Code < Polypropylene insulated and tin-plated electrolytic copper>											
Mod	Applicable wire		Chulo	Colour Code Dimensions (mm))	
French Code	German Code	mm²	AWG	Style	French Code	German Code	L1	L2	D1	S1	D2
FWE2.5-8	GWE2.5-8	2.50	14	I	Grey	Blue	14	8	2.2	0.15	4.2
FWE4-10	GWE4-10	4.00	12	I	Orange	Grey	17	10	2.8	0.2	4.8
FWE6-12	GWE6-12	6.00	10	I	Green	Black	20	12	3.5	0.2	6.3
FWE10-12	GWE10-12	10.0	8	I	Brown	lvory	22	12	4.5	0.2	7.6

* For other available feedback / motor options, check the detailed connection diagrams below

9.4.1 PNP/NPN Inputs selection

Remarks:

- 1. Connect J4 pin 9 to GND to use inputs as PNP; Connect to +V_{LOG} to use inputs as NPN.
- 2. If the hardware selection is not done (J4 pin 9 is not connected), the inputs state cannot be changed.
- 3. The inputs needs to be selected as PNP/ NPN also in the setup part, according to the hardware connection.

Remarks:

- 1. The PNP inputs are compatible with PNP outputs the input must receive a positive voltage value: 12-36V to change its default state
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surge in industrial environment.

- 1. The NPN inputs are compatible with NPN outputs the input must be pulled to GND to change its default state.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surge in industrial environment.

Remarks:

- 1. The outputs are software selectable as PNP/NPN.
- 2. The NPN outputs are compatible with NPN inputs (load is tied to common $+V_{LOG}$, output pulls to GND when active and is floating when inactive
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

9.4.5 PNP Outputs

- 1. The outputs are software selectable as PNP/NPN.
- 2. The PNP outputs are compatible with PNP inputs (load is tied to common $+V_{LOG}$, output pulls to GND when active and is floating when inactive
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

- 1. The firmware can control the OUT0 output to automatically engage/disengage a mechanical brake when motor control is started/stopped.
- 2. The digital output can be used for an electro-mechanical brake, 12-36V, 2A PNP/ 2A NPN or as PNP/NPN general-purpose digital output.
- 3. The selection can be made by software. To enable the mechanical brake functionality select the checkbox from EasyMotion Studio:

Motor brake	
Motor brake on output	ut line :
OUT0/Brake	•
Motor brake is release output is active (pulle	ed when NPN (sink) d to GND).
Drive not active	Drive active
Brake applied	Brake released
	→ ←
Brake release delay :	Brake apply delay :
0 ms 💌	0 ms 💌

Remark:

- 1. Default input range for analog inputs REF and FDBK is 0÷5 V.
- 2. The inputs range can be modified via software to +/-10 V using only an external input range adapter.
- 3. The recommended values for RFGAIN and RFOFFSET parameters when using an the default input range, are: RFGAIN = 4240 and RFOFFSET = 37485.
- 4. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Remark:

- 1. The recommended values for RFGAIN and RFOFFSET parameters when using an +/-10V input range adapter are: RFGAIN = 1.078035 and RFOFFSET = 2000.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

9.4.8.1 Recommendation for wiring

- 1. If the analogue signal source is single-ended, use a 2-wire twisted shielded cable as follows: 1st wire connects the live signal to the drive input; 2nd wire connects the source ground to the drive ground; shield will be connected to the drive ground terminal.
- 2. If the analogue signal source is differential and the signal source ground is isolated from the drive GND, use a 2-wire twisted shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source minus (negative, out-of-phase) to the drive ground (GND). Shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.
- 3. If the analogue signal source is differential and the signal source ground is common with the drive GND, use a 2-wire shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source ground to the drive ground (GND); shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.

9.5.1 DC Motor connection

9.5.2 Brushless Motor connection

- 1. Avoid running the motor wires in parallel with other wires for a distance longer than 2 meters. If this situation cannot be avoided, use a shielded cable for the motor wires. Connect the cable shield to the GND pin. Leave the other end disconnected.
- The parasitic capacitance between the motor wires must not bypass 10nF. If very long cables (tens of meters) are used, this condition may not be met. In this case, add series inductors between the iGVD71 outputs and the cable. The inductors must be magnetically shielded (toroidal, for example), and must be rated for the motor surge current. Typically the necessary values are around 100 μH.
- 3. A good shielding can be obtained if the motor wires are running inside a metallic cable guide.

9.6.1 Feedback #1 – Single-Ended Incremental Encoder Connection

Remarks:

- 1. For Feedback #1 single-ended connection, SW1 switch 8 must be OFF -120Ω (0.25W) terminators must be disconnected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

CAUTION! DO NOT CONNECT UNTERMINATED WIRES TO PINS J3.14, J3.15 AND J3.10. THEY MIGHT PICK UP UNWANTED NOISE AND GIVE FALSE ENCODER READINGS. Encoder cable shield must be connected to the connector case (PE) to avoid disturbances / noise induced by nearby cables.

9.6.2 Feedback #1 - Differential Incremental Encoder Connection

Remarks:

- 1. For Feedback #1 differential connection, SW1 position 8 must be "ON" 120Ω (0.25W) terminators must be internally connected between the differential pairs.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

CAUTION!

Remarks:

- 1. For Feedback #2 differential connection, SW1 position 9 must be "OFF" 120Ω (0.25W) terminators must be disconnected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

DO NOT CONNECT UNTERMINATED WIRES TO PINS J2.14, J2.15 AND J2.10. THEY MIGHT PICK UP UNWANTED NOISE AND GIVE FALSE ENCODER READINGS. Encoder cable shield must be connected to the connector case (PE) to avoid disturbances / noise induced by nearby cables.

9.6.4 Feedback #2 - Differential Incremental Encoder Connection

CAUTION!

Remarks:

- 1. For Feedback #2 differential connection, SW1 position 9 must be "ON" 120Ω (0.25W) terminators must be internally connected between the differential pairs.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

CAUTION!

Remarks:

- 1. For Feedback #1 single-ended connection, SW1 switch 8 must be OFF 120Ω (0.25W) terminators must be disconnected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Encoder cable shield must be connected to the connector case (PE) to avoid disturbances / noise induced by nearby cables.

9.6.6 Feedback #1 – Differential Sine-Cosine Encoder Connection

CAUTION!

Remarks:

- 1. For Feedback #2 differential connection, SW1 position 9 must be "ON" 120Ω (0.25W) terminators must be internally connected between the differential pairs.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

CAUTION!

9.6.8 Feedback #2 – Differential Pulse and Direction Connection

Remarks:

- 1. For Feedback #2 absolute connection, SW1 position 9 must be "ON" 120Ω (0.25W) terminators must be internally connected between the differential pairs
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

CAUTION!

CAUTION!

Encoder cable shield must be connected to the connector case (PE) to avoid disturbances / noise induced by nearby cables.

9.6.10 Feedback #2 - Absolute Encoder Connection (Panasonic, Tamagawa, Nikon, Sanyo Denki)

Remarks:

- 1. For Feedback #2 absolute connection, SW1 position 9 must be "ON" 120Ω (0.25W) terminators must be internally connected between the differential pairs
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

9.7.1 Single-Ended Digital Hall Connection

Remarks:

- 1. For differential Hall connection, SW1 position 7 must be "OFF" 120Ω (0.25W) terminators must be disconnected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Remarks:

- 1. For differential Hall connection, SW1 position 7 must be "ON" 120Ω (0.25W) terminators must be internally connected between the differential pairs
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

CAUTION!

9.7.3.1 Digital Hall only control

Remarks:

- 1. Digital Hall only control method can be achieved also using a single-ended digital Hall connection.
- 2. This connection is required when using the digital Halls as the only feedback device for the motor control.
- While using this control scheme, the incremental encoder signals from J3 are used internally by the drive.
 The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

9.7.3.2 Digital Hall + Incremental or Absolute Encoder control

- 1. Digital Hall + Incremental or Absolute Encoder control method can be achieved also using a single-ended digital Hall connection.
- 2. This connection is required when using Hall start method BLDC or PMSM and also for the Trapezoidal commutation method.
- 3. The digital halls are not used in this case as a feedback measurement device. The actual motor control is done with an incremental or absolute encoder.
- 4. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Remarks:

- 1. The iGVD71 BX-CAT requires three supply voltages: VLOG, VMOT and STO.
- 2. The STO circuit must be supplied with minimum 18V to enable PWM output.
- 3. Use short, thick wires between the iGVD71 and the motor power supply. If the wires are longer than 2 meters, use twisted wires for the supply and ground return.
- 4. For wires longer than 20 meters, add a capacitor of at least 4,700μF (rated at an appropriate voltage) right on the terminals of the iGVD71.
- 5. It is recommended to connect the negative motor supply return (GND) to the Earth protection near the power supply terminals.

9.8.1 Recommendations to limit over-voltage during braking

During abrupt motion brakes or reversals the regenerative energy is injected into the motor power supply. This may cause an increase of the motor supply voltage (depending on the power supply characteristics). If the voltage bypasses **86V**, the drive over-voltage protection is triggered and the drive power stage is disabled.

In order to avoid this situation **a** capacitor can be added on the motor supply big enough to absorb the overall energy flowing back to the supply. The capacitor must be rated to a voltage equal or bigger than the maximum expected overvoltage and can be sized with the formula:

$$C \ge \frac{2 \times E_M}{U_{MAX}^2 - U_{NOM}^2}$$

where:

U_{MAX} = 86V is the over-voltage protection limit

 U_{NOM} is the nominal motor supply voltage

 $E_{\rm M}\,$ = the overall energy flowing back to the supply in Joules. In case of a rotary motor and load, $\,E_{\rm M}\,$ can be computed with the formula:

$$E_{M} = \underbrace{\frac{1}{2}(J_{M} + J_{L})\varpi_{M}^{2}}_{} + \underbrace{(m_{M} + m_{L})g(h_{initial} - h_{final})}_{} - \underbrace{3I_{M}^{2}R_{Ph}t_{d}}_{} - \underbrace{\frac{t_{d}\varpi_{M}}{2}T_{F}}_{}$$

where:

Potential energy

Copper losses Friction losses

J_M – total rotor inertia [kgm²]

Kinetic energy

 J_L – total load inertia as seen at motor shaft after transmission [kgm²]

 ϖ_{M} – motor angular speed before deceleration [rad/s]

 m_{M} – motor mass [kg] – when motor is moving in a non-horizontal plane

 m_L – load mass [kg] – when load is moving in a non-horizontal plane

g – gravitational acceleration i.e. 9.8 [m/s²]

h_{initial} – initial system altitude [m]

h_{final} – final system altitude [m]

 I_M – motor current during deceleration [A_{RMS}/phase]

 R_{Ph} – motor phase resistance [Ω]

 t_d – time to decelerate [s]

 T_{F} – total friction torque as seen at motor shaft $[\mathsf{Nm}]$ – includes load and transmission

In case of a linear motor and load, the motor inertia J_M and the load inertia J_L will be replaced by the motor mass and the load mass measured in [kg], the angular speed $\overline{\omega}_M$ will become linear speed measured in [m/s] and the friction torque T_F will become friction force measured in [N].

9.9 Communication connection

9.9.1 USB connection

- 1. For the USB connection a standard **Micro USB cable** is required. The drivers are found automatically in Windows 10 and the device is identified as a COM port.
- 2. In Easy Motion studio, choose the following communication settings:

Communication Setup	×
Channel Type: USB as Virtual Com Port	•
Port COM1	-
Axis ID of drive/motor connected to PC is: autodetected	
Work offline Advanced	±
OK Cancel Help	

9.9.2 Recommendations for EtherCAT Wiring

- a) Build EtherCAT® network using UTP (unshielded twisted pair) cables rated CAT5E or higher (CAT6, etc.). Cables with this rating must have multiple characteristics, as described in TIA/EIA-568-B. Among these are: impedance, frequency attenuation, cross-talk, return loss, etc.
- b) It is acceptable to use STP (shielded twisted pair) or FTP (foil twisted pair) cables, rated CAT5E or higher (CAT6, etc.). The added shielding is beneficial in reducing the RF (radio-frequency) emissions, improving the EMC emissions of the application.
- c) The maximum length of each network segment must be less than 100 meters.
- d) The network topology is daisy-chain. All connections are done using point-to-point cables. The global topology can be one of the two:
 - Linear, when the J8 / OUT port of the last drive in the chain remains not connected. Master is connected to J7 / IN port of the first drive; J8 / OUT of the first drive is connected to J7 / IN of the following drive; J8 / OUT of the last drive remains unconnected.

See Figure 1. EtherCAT network linear topology for a visual representation of the linear topology.

- Ring, when the J8 / OUT port of the last drive in the chain is connected back to the master controller, on the 2nd port of the master. This topology consists of the linear topology described above, plus an extra connection between the master, which has two RJ45 ports, to J8 / OUT of the last drive.
 See Figure 2. EtherCAT network ing topology for a visual representation of the ring topology.
- See Figure 2. EtherCAT network ring topology for a visual representation of the ring topology.
- e) Ring topology is preferred for its added security, since it is insensitive to one broken cable / connection along the ring (re-routing of communication is done automatically, so that to avoid the broken cable / connection)
- f) It is highly recommended to use qualified cables, assembled by a specialized manufacturer. When using CAT5E UTP cables that are manufactured / commissioned / prepared on-site, it is highly recommended to check the cables. The check should be performed using a dedicated Ethernet cable tester, which verifies more parameters than simple galvanic continuity (such as cross-talk, attenuation, etc.). The activation of "Link" indicators will NOT guarantee a stable and reliable connection! This can only be guaranteed by proper quality of cables used, according to TIA/EIA-568-B specifications.

Figure 1. EtherCAT network linear topology

Figure 2. EtherCAT network ring topology

In some very rare cases, the setup table might be corrupted, causing the drive to reset continuously. This state can be noticed by seeing both the Ready and Error LED blinking for short periods of time continuously.

To recover from this state, the setup table must be invalidated by connecting all digital Hall inputs to GND.

On the next power on, the drive will load the default settings and set bit 2 from Motion Error Register – "Invalid Setup Data". After a new valid setup table is loaded onto the drive, disconnect the hall sensors from GND and execute a new power off/ power on cycle.

Figure 3. Temporary connection during power-on to disable the setup table

9.10 Axis ID Selection

	Pin	Name	Description
	1	ID-Bit0	Hardware AxisID selection switches.
	2	ID-Bit1	They represent the first 5 LSB bits of an 8-bit Axis ID number.
	3	ID-Bit2	The AxisID can be computed using the formula: AxisID = ID-Bit0 + 2 · ID-Bit1 + 4 · ID-Bit2 + 8 · ID-Bit3
8 7 6 5 4 3 2 1	4	ID-Bit3	+16 · ID-Bit4 When all switches are OFF then AxisID=255.
	5	ID-Bit4	When all switches are ON then AxisID=31.

- 1. The drive axis/address number is set when H/W is selected in Drive Setup under AxisID field or when the Setup is invalid.
- 2. The axis ID is an 8-bit unsigned number. Its bits are controlled by the ID-bit0 to ID-bit4. In total, 32 axis ID HW values can result from the DIP switch combinations.
- 3. When the AxisID bits are all OFF, the drive Axis ID will be 255 and the EtherCAT register called "configured station alias" will be 0.
- 4. All pins are sampled at power-up, and the drive is configured accordingly.

9.11 LED indicators

9.11.1 EtherCAT® RUN and ERROR LED Indicators

The RUN states are displayed with a 180 degree phase shift to the ERROR states as noted in Figure 4. STATUS indicator Example.

The behavior of the RUN indicator is specified in Table 1. RUN Indicator States" and the behavior of the ERROR indicator specified in Table 2. ERROR Indicator States".

Figure 4. STATUS indicator Example

Table	1.	RUN	Indicator	States
-------	----	-----	-----------	--------

Indicator states	Slave State	Description
Off	INITIALISATION	The drive is in state INIT
Blinking	PRE-OPERATIONAL	The drive is in state PRE-OEPRATIONAL
Single Flash	SAFE-OPERATIONAL	The drive is in state SAFE-OPERATIONAL
On	OPERATIONAL	The drive is in state OPERATIONAL

Table 2. ERROR Indicator States

ERR state	Error name	Description
On	Application controller failure	An critical communication or application controller error has occurred
Double Flash	Process Data Watchdog Timeout/ EtherCAT Watchdog Timeout	An application watchdog timeout has occurred.
Single Flash	Local Error	Slave device application has changed the EtherCAT state autonomously, due to local error (see ETG.1000 part 6 EtherCAT State Machine). Error Indicator bit is set to 1 in AL Status register.
Blinking	Invalid Configuration	General Configuration Error
Flickering	Booting Error	Booting Error was detected. INIT state reached, but Error Indicator bit is set to 1 in AL Status register
Off	No error	The EtherCAT communication of the device is in working condition

For a more detailed description of EtherCAT® LED functionalities please read ETG.1300 S (R) V1.0.1 available at www.EtherCAT.org

All parameters measured under the following conditions (unless otherwise specified):

- VLOG = 24 VDC; VMOT = 80VDC; FPWM = 20HZ
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude) = 100A
- 10.1.1 Operating Conditions

		Min.	Тур.	Max.	Units		
Ambient temperature		0		40 ¹	°C		
Ambient humidity	Non-condensing	0		90	%Rh		
Altitude / pressure ²	Altitude (vs. sea level)	-0.1	0 ÷ 2.5	2	Km		
	Ambient Pressure	0 ²	0.75 ÷ 1	10.0	atm		
10.1.2 Storage Conditions							
		Min.	Тур.	Max.	Units		
Ambient temperature		-40		105	°C		
Ambient humidity	Non-condensing	0		100	%Rh		
Ambient Pressure		0		10.0	atm		
	Not powered: applies to any accessible part			+0.5	kV		
ESD capability (Human body model)	not ponorou, applico to uny accocciono punt			±0.0			

10.1.3 **Mechanical Mounting**

Min. Typ. Max. Units Current capability depends on heat transfer, heatsink dimension, cooling technique (natural or forced). Keep lower plate temperature at **maximum 75°C** External heatsink (cooling plate)

Original packaging

10.1.4 **Environmental Characteristics**

		Min.	Тур.	Max.	Units
Size (Longth x Width x Hoight)	Without mating connectors		104.2 x 90.5 x 46.8		
Size (Lengin x Widin x Height)			~4.1 x 3.56 x 1.84		
Weight	Without mating connectors	300			g
Rower dissinction	Idle (no load)		3		10/
	Operating		80÷100		vv
Efficiency			98		%
Cleaning agents	Dry cleaning is recommended	Only Water- or Alcohol- bas			sed
Protection degree	According to IEC60529, UL508	IP20		-	

10.1.5 Logic Supply Input (+VLOG)

			Min.	Тур.	Max.	Units
Supply voltage	Nominal values		12	24	36	V _{DC}
	Absolute maximum values, drive operating but outside guaranteed parameters		8	24	40	V _{DC}
	Absolute maximum values, surge (duration ≤ 10ms) [†]		-1		+45	V
		+V _{LOG} = 12V		170		
Supply current	No encoder and no load on digital outputs +V _{LOG} = 24V +V _{LOG} = 36V			110		mA
				90]
Utilization Category	Acc. to 60947-4-1 (I _{PEAK} <=1.05*I _{NOM})			DC-1		

10.1.6 Motor Supply Input (+V_{MOT})

		Min.	Тур.	Max.	Units
Supply voltage Supply current Utilization Category	Nominal values	12	80	90	VDC
	Absolute maximum values, drive operating but outside guaranteed parameters	11		94	VDC
	Absolute maximum values, surge (duration \leq 10ms) [†]	-1		95	V
Supply voltage Supply current Utilization Category	Idle		1	5	mA
	Operating	-130	±100	+130	А
	Absolute maximum value, short-circuit condition (Duration \leq 10ms) [†]			140	А
Utilization Category	Acc. to 60947-4-1 (I _{PEAK} <=4*I _{NOM})		DC-3		

10.1.7 Motor Outputs (A/A+, B/A-,C)

			Min.	Тур.	Max.	Units
Nominal current	PMSM motors sinusoidal amplitude				100	А
*As long as drive lower	PMSM motors sinusoidal RMS				71	ARMS
plate does not exceed 75°C	DC/BLDC motors continuous				86.6	А
Peak current	*As long as drive back plate does not exceed 75°C		-135		+135	A
Short-circuit protection thresh	hold				±140	Α
Short-circuit protection delay			5	10		μs
On-state voltage drop	Nominal output current; including typical mating connector contact resis	stance		±0.3	±0.5	V
Off-state leakage current				±0.5	±1	mA
	PMSM motors sinusoidal amplitude as drive lower es not exceed PMSM motors sinusoidal RMS DC/BLDC motors continuous ent *As long as drive back plate does not exceed 75°C uit protection threshold uit protection delay voltage drop Nominal output current; including typical mating connector contact resistance eakage current Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 60 V 40 kl Minimum value, limited by short-circuit protection; +V _{MOT} = 60 V 20 kl electrical time- Recommended value for ±5% current measurement error 20 kl 40 kl 60 kl 80 kl 80 kl 80 kl 80 kl	FPWM				μН
		20 kHz	300			
		40 kHz	150			
Mater inductors		60 kHz	100			
		80 kHz	75			
(priase-to-priase)		20 kHz	150			
	Minimum value, limited by short singuit protection: $\pm 1/(1-2) = 60.1/$	40 kHz	75			μH
	Minimum value, inflited by short-circuit protection, +vMot - 60 v	60 kHz	50			
		80 kHz	38			
		20 kHz	250			μs
Motor electrical time-	Pacammandad value for ±5% ourrant macaurement error	40 kHz	125			
constant (L/R)		60 kHz	100			
		80 kHz	63			

¹Operating temperature at higher temperatures is possible with reduced current and power ratings ² iGVD71 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

kV

±15

Current measurement accuracy (FS = Full scale accuracy) ±4 ±8 %FS 10.1.8 Digital Inputs - opto-isolated - (IN0, IN1, IN2/LSP, IN3/LSN, IN4) 5

		Min.	Тур.	Max.	Units	
Mada compliance	PNP (J4, pin9 connected to GND)	Connect digital input pin to +Vlog to change its state				
Mode compliance	NPN (J4, pin9 connected to +Vlog)	Connect digital in	out pin to GND	Max. 1 to change its to change its V 5 36 50 14 6.6 7.5	state	
Default state	Input floating (wiring disconnected)		Logic LOV	Logic LOW 5 36		
	Logic LOW	0		5		
Input voltage	Logic HIGH	8		36	V	
	Absolute maximum	-5		50		
	Logic LOW	0		14		
Input current	Logic HIGH	0.6	5	6.6	mA	
	Absolute maximum	0		Max. Vlog to change its IND to change its s LOW 5 36 50 14 6.6 7.5		
Input frequency			2		kHz	
Minimum pulse			500		μs	
ESD protection	Human body model	±15			kV	

10.1.9 Digital Outputs (OUT0/Brake, OUT1, OUT2, OUT3, OUT4)

		Min.	Тур.	Max.	Units
Mode compliance			PNP 24	/	
Defeute	Not supplied (+V _{LOG} floating or to GND)		High-Z (floa	ting)	
Delault State	Normal operation		Logic "Hig	h"	
Mode compliance Default state Output voltage Output current Minimum pulse width ESD protection	Logic "HIGH"; output current = 0.2A		V _{LOG} -0.2	V _{LOG} -0.8	
	Logic "LOW"; output current = 0, no load		open-collector		
	Logic "HIGH", external load to GND		0		V
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3	
	Absolute maximum, surge (duration \leq 1s) [†]	-0.5		V_{LOG} +0.5	
	Logia "HICH" course current continuous	OUT	OUT1,2,3,4		٨
Default state Output voltage Output current Minimum pulse width		OUT	0/Brake	2	A
Output current	Logia "LICLI" course current nulse < 5 c	OUT	OUT1,2,3,4		٨
	Logic FIGH, source current, pulse ≤ 5 s	OUT	0/Brake	3	A
	Logic "LOW", means High-Z				mA
Minimum pulse width		2			μs
ESD protection	Human body model	±15			kV

Mode compliance		NPN 24V				
Mode compliance Default state Output voltage Output current	Not supplied (+V _{LOG} floating or to GND)	High-Z (floating)				
	Normal operation		High-Z			
	Logic "LOW"; output current = 0.3A		0.2	0.8		
	Logic "HIGH"; output current = 0, no load		open-collector			
Output voltage	Logic "HIGH", external load to +V _{LOG}		V _{LOG}		V	
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3		
	Absolute maximum, surge (duration \leq 1s) [†]	-0.5		V _{LOG} +0.5		
	Logia "LOW" sink current continuous	OUT1,2,3,4		0.3	- A	
		OUT	OUT0/Brake			
Output current	Logia "LOW" eink eurrent nules CE a	OUT1,2,3,4		0.5		
	Logic LOW, sink current, pulse ≤ 5.5	OUT	OUT0/Brake		~	
	Logic "HIGH", means High-Z				mA	
Minimum pulse width		2			μs	
ESD protection	Human body model	±15			kV	

10.1.10 Brake output (OUT0/Brake)

			Min.	Тур.	Max.	Units				
	(Out0/Brake: solenoid driver, 2	2A.		•					
	Not supplied (+VLOG floating or to GND))		High-Z (floating)						
Default state	Immediately after power-up	Brake-		High-Z (floating)						
	Normal operation	Normal operation Brake-		High-Z (floating)						
Output voltage	Logic "LOW" (Brake-)				0.2					
	Logic "HIGH"; load present			+V _{LOG}		v				
1 5	Logic "HIGH", no load present			+5						
	Absolute maximum, continuous		-0.5		+V _{LOG} +0.3					
	Logic "LOW", sink current, continuous, Brake-				3	А				
Output current	Logic "HIGH", leakage current; external load to +V _{LOG} ; V _{OUT} = V _{LOG} max = 55V				0.2	mA				

10.1.11 Digital Hall Inputs (Hall1+, Hall1-, Hall2+, Hall2-, Hall3+, Hall3-)¹

		Min.	Тур.	Max.	Units	
Mode compliance	mpliance TTL / CMOS / Open-collector		en-collector			
Default state	Input floating (Wiring disconnected)		Logic HIG	θH		
	Logic "LOW"		0	0.8		
	Logic "HIGH"	2	5			
Input voltage	Floating voltage (Not connected) H1+, H2+, H3+ H1-, H2-, H3-		4.4 1.8		V	
	Absolute maximum, surge (duration \leq 1s) [†]	-10		+15		
Input current	Logic "LOW"; Pull to GND			1.2	m۸	
input current	Logic "HIGH"; Internal 4.7K Ω pull-up to +5	0	0	0	mА	
Minimum pulse width		2			μs	
Differential mode compliance	RS422 compliance		TIA/EIA-42	22-A		
· · ·	Hysteresis	±0.06	±0.1	±0.2		
Input voltage	Differential mode	-14		+14	V	
	Common-mode range (A+ to GND, etc.)	-11		+14		
Input impedance, differential			120		Ω	
Input frequency Differential mode		0		10	MHz	
Minimum pulse width	Differential mode	50			ns	
ESD protection	Human body model	±5			kV	

10.1.12 Encoder #1 and #2 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-, A2+, A2-, B2+, B2-, Z2+, Z2-)²

		Min.	Тур.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ¹		TIA/EI	A-422-A	
	Hysteresis	±0.06	±0.1	±0.2	
Input voltage, differential mode	Differential mode	-14		+14	V
	Common-mode range (A+ to GND, etc.)	-11		+14	
	A1+/A1-, B1+/B1-, Z1+/Z1- & A2+/A2-, B2+/B2-, Z2+/Z2-		120		Ω
Input impedance, differential	Differential mode	0		10	MHz
	Differential mode	50			ns
10.1.13 Analog 05V Inputs (REF, FDBK)					

		Min.	Тур.	Max.	Units	
Input voltage	Operational range	0		5		
	Absolute maximum values, continuous	-12		+18	V	
	Absolute maximum, surge (duration \leq 1s) [†]			±36		
Input impedance	To GND		18		kΩ	
Resolution		12		bits		
Integral linearity				±2	bits	
Offset error			±2	±10	bits	
Gain error			±1%	±3%	% FS ³	
Bandwidth (-3db)	Software selectable	0		1	kHz	
ESD protection	Human body model	±5			kV	
10.1.14 SSI, BiSS, EnDAT Encoder Interface						

		Min.	Тур.	Max.	Units
Differential mode compliance (CLOCK, DATA)			TIA/	EIA-422	
CLOCK Output voltage	Differential; 50Ω differential load	2.0	2.5	5.0	V
	Common-mode, referenced to GND	2.3	2.5	2.7	
CLOCK frequency	Software selectable	1000, 2000, 3000, 4000 ⁴ kH			kHz
DATA Input hysteresis	Differential mode	±0.1	±0.2	±0.5	V
Data input impedance	Termination resistor on-board		120		Ω
· · ·	Referenced to GND	-7		+12	
DATA Input common mode range	Absolute maximum, surge (duration \leq 1s) [†]	-25		+25	V
Bitti tinpat common mode range	Software selectable	Single-turn / Multi-turn			
		Counting direction			
	Total resolution (single turn or single turn + multi turn)			56	bit
DATATESOIUIION	If total resolution >31 bits, some bits must be ignored by software setting to achieve a max 31 bits resolution				
Protocol BiSS C mode (sensor mo		node)			
40.4.45.0					

10.1.15 Supply Output (+5V)

		Min.	Тур.	Max.	Units	
Compliance		IEEE802.3, IEC61158				
Transmission line specification	According to TIA/EIA-568-5-A	Cat. 5e.UTP				
J7, J8 pinout	EtherCAT® supports MDI/MDI-X auto-crossover	TIA/EIA-568-A or TIA/EIA-568-B		68-B		
Software protocols compatibility		CoE, CiA402, IEC61800-7-301				
Node addressing [*]	By hardware sliding switch	1 ÷ 31, 255				
	By software		1 ÷ 255		7 -	
MAC addressing			none		-	
ESD protection	Human body model	±15			kV	
Remark: When Avis ID is 255, the EtherCAT register called "configured station alias" will be 0						

 ¹ Differential input HALL pins have internal 120Ω termination resistors connected across when SW1 pins 1,2,3 are ON
 ² All differential input pins have internal 120Ω termination resistors connected across
 ³ "FS" stands for "Full Scale"
 ⁴ Availabile only for EnDAT and BiSS feedback options

10.1.16 Supply Output (+5V)

		Min.	Тур.	Max.	Units	
+5V output voltage	Current sourced = 250mA	4.8	5	5.2	V	
+5V output current		600	650		mA	
Short-circuit protection	t-circuit protection Protected		cted			
Over-voltage protection		NOT protected				
ESD protection	Human body model 0.1nF 1.5 kΩ	±1			kV	
10.1.17 Safe Torque OFF (STO1+; STO1-; STO2+; STO2-)						
		B.41	T	14	11	

		Min.	Тур.	Max	Units
Safety function	According to EN61800-5-2	STO (Safe Torque OFF)			=)
EN 61800-5-1/ -2 and EN 61508-5-3/ -4	Safety Integrity Level	saf	ety integrity	level 3 (S	L3)
Classification	PFHd (Probability of Failures per Hour - dangerous)	8*10 ⁻¹⁰	hou	ur-1 (0.8 Fl	Т)
EN12840 1 Classification	Performance Level		Cat3/	PLe	
EN 13649-1 Classification	MTTFd (meantime to dangerous failure)	377		years	
Mode compliance			PN	Р	
Default state	Input floating (wiring disconnected)		Logic	LOW	
	Logic "LOW" (PWM operation disabled)	-20		5.6	
Input voltage	Logic "HIGH" (PWM operation enabled)	18		36	V
	Absolute maximum, continuous	-20		+40	
Input current	Logic "LOW"; pulled to GND		0		mA
input current	Logic "HIGH", pulled to +V _{LOG}		5	10	
Diagnosis	Ignored high-low-high			5	ms
Pulse duration	Accepted pulse			20	Hz
PWM operation delay	From external STO low-high transition to PWM operation enabled			30	ms
ESD protection	Human body model	±2			kV
10.1.18 Conformity					
		Min.	Тур.	Max.	Units

	······· ······· ········ ·············	_
EU Declaration	2014/30/EU (EMC), 2014/35/EU (LVD), 2011/65/EU (RoHS), 1907/2006/EC (REACH), 93/68/EEC (CE Marking Directive), EC 428/2009 (non dual-use item, output frequency limited to 590Hz)	
		_

[†] Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

10.1.19 Derating curves

11 Memory Map

iGVD71 BX has 2 types of memory available for user applications: 16K×16 SRAM and up to 16K×24 serial E²ROM.

The SRAM memory is mapped in the address range: C000h to FFFFh. It can be used to download and run a TML program, to save real-time data acquisitions and to keep the cam tables during run-time.

The E²ROM is mapped in the address range: 4000h to 7FFFh. It is used to keep in a non-volatile memory the TML programs, the cam tables and the drive setup information.

Remark: EasyMotion Studio handles automatically the memory allocation for each motion application. The memory map can be accessed and modified from the main folder of each application

