

iGVD71 BX-CAN-STO

Intelligent Servo Drive for DC and Brushless Motors

P025.027.iGVD71.CAN.STO.UM.150523

© Technosoft 2023

1	F	Read This First	. 4
2	ł	About This Manual	.4
3	N	Notational Conventions	.4
4	F	Related Documentation	. 5
5	ŀ	f you Need Assistance	. 6
6	S	Safety information	. 6
	6.1	Warnings	. 6
	6.2		
	6.3		
7	F	Product Overview	. 8
	7.1	Introduction	. 8
	7.2	Product Features	. 9
	7.3	dentification Labels	10
	7.4	Supported Motor-Sensor Configurations	10
		7.4.1 Single loop configurations	10
	7	7.4.2 Dual loop configurations	11
8	ŀ	Hardware Installation	12
	8.1	iGVD71 BX-CAN-STO Board Dimensions	12
	0.1	IGVD/ I BA-CAN-STO Board Dimensions	12
	8.2		
	8.2 8.3	Mechanical Mounting	12 13
	8.2 8.3	Mechanical Mounting	12 13 14
	8.2 8.3 8	Mechanical Mounting	12 13 14 15
	8.2 8.3 8	Mechanical Mounting	12 13 14 15 16
	8.2 8.3 8 8 8 8 8.4 8	 Mechanical Mounting Connectors and Pinouts 3.3.1 Mating Connectors 3.3.2 Recommendations for Motor Phases and Motor Power Supply wires 3.3.3 Connection diagram Digital I/O Connection 3.4.1 PNP/NPN Inputs selection 	12 14 15 16 17 17
	8.2 8.3 8 8 8 8.4 8 8	 Mechanical Mounting	12 14 15 16 17 17
	8.2 8.3 8 8 8 8.4 8 8 8 8 8	 Mechanical Mounting	12 13 14 15 16 17 17 17 18
	8.2 8.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 Mechanical Mounting	12 13 14 15 16 17 17 17 17 18 19 20
	8.2 8.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 Mechanical Mounting	12 13 14 15 16 17 17 17 17 18 19 20 20
	8.2 8.3 8 8 8 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 Mechanical Mounting	12 13 14 15 16 17 17 17 18 19 20 20 20
	8.2 8.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 Mechanical Mounting	12 13 14 15 16 17 17 17 17 18 19 20 20 20 20 21
	8.2 8.3 8 8 8 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 Mechanical Mounting	12 13 14 15 16 17 17 17 17 17 20 20 20 20 21 21
	8.2 8.3 8 8 8 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting	12 13 14 15 16 17 17 17 18 19 20 20 20 21 21 21
	8.2 8.3 8 8.4 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting	12 14 15 16 17 17 17 18 20 20 20 21 21 21 21 21 21 21 21 22
	8.2 8.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting.	12 13 14 15 16 17 17 18 19 20 20 21 21 21 21 21 22 22 22
	8.2 8.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting	12 13 14 15 16 17 17 18 20 20 21 21 21 21 22 22 22 22
	8.2 8.3 8 8.4 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting	12 13 14 15 16 17 17 17 18 20 20 21 21 21 21 21 21 22 22 23 23
	8.2 8.3 8 8.4 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting Connectors and Pinouts Analog Connectors Analog Inputs Connection PNP inputs Solenoid driver connection for motor brake (NPN/PNP) Solenoid driver connection for motor brake (NPN/PNP) Analog Inputs Connection: -/- 10V Input Range Analog Inputs Connection: +/- 10V Input Range adapter SAA.1 Recommendation for wiring Motor connection Solenoid for wiring Solenoid	12 13 14 15 16 17 17 18 19 20 20 21 21 21 21 21 22 22 23 23 23
	8.2 8.3 8 8.4 8 8.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting	12 13 14 15 16 17 17 18 20 20 21 21 21 21 21 22 23 23 23 23 23 24
	8.2 8.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mechanical Mounting Connectors and Pinouts Analog Connectors Analog Inputs Connection PNP inputs Solenoid driver connection for motor brake (NPN/PNP) Solenoid driver connection for motor brake (NPN/PNP) Analog Inputs Connection: -/- 10V Input Range Analog Inputs Connection: +/- 10V Input Range adapter SAA.1 Recommendation for wiring Motor connection Solenoid for wiring Solenoid	12 13 14 15 16 17 17 18 19 20 21 21 21 21 22 23 23 23 23 23 24 24

	8.7.3 Differential Digital Hall Connection	24
	8.7.4 Digital Hall Connection for Motor Control	25
	8.7.4.1 Digital Hall only control	
	8.7.4.2 Digital Hall + Incremental or Absolute Encoder control	25
8	8.8 Power Supply Connection	26
	8.8.1 Recommendations to limit over-voltage during braking	26
۶	8.9 Communication connection	27
	8.9.1 RS232 (Micro USB port) connection	
	8.9.2 CAN-bus connection	
	8.9.2.1 Multiple-Axis CAN network	
	8.9.2.2 Recommendation for wiring	
8	8.10 Disabling Autorun	29
8	8.11 Axis ID Selection	29
	8.12 TMLCAN / CANopen selection	
	-	
8	8.13 LED indicators	29
•	Ele stuis al Ou selfis ations	
9	Electrical Specifications	
	9.1.1 Operating Conditions	
	9.1.2 Storage Conditions	
	9.1.3 Mechanical Mounting	
	9.1.4 Environmental Characteristics	
	9.1.5 Logic Supply Input (+V _{LOG})	
	9.1.6Motor Supply Input (+V _{MOT})	
	9.1.7Motor Outputs (A/A+, B/A-,C)	
	9.1.8Digital Inputs - opto-isolated - (IN0, IN1, IN2/LSP, IN3/LSN, IN4)	
	9.1.9 Digital Outputs (OUT0/Brake, OUT1, OUT2, OUT3, OUT4)	
	9.1.10Brake output (OUT0/Brake)	
	9.1.11Digital Hall Inputs (Hall1+, Hall1-, Hall2+, Hall2-, Hall3+, Hall3-)	
	9.1.12 Encoder #1 and #2 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-, A2+, A2-, B2+, B2-, Z2+, Z2-)	
	9.1.13Analog 0…5V Inputs (REF, FDBK)	
	9.1.14SSI, BiSS, EnDAT Encoder Interface	
	9.1.15RS-232	
	9.1.16 CAN-Bus	
	9.1.17Supply Output (+5V)	
	9.1.18 Safe Torque OFF (STO1+; STO1-; STO2+; STO2-)	
	9.1.19 Conformity	34
10	Memory Map	34

1 Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information-retrieval system without permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

2 About This Manual

This book is a technical reference manual for:

Product Name	Part Number	Outpu	t current	Communication
iGVD71 BX-CAN-STO	D025 027 E204	Nominal	Peak	CAN
IGVD/1 BX-CAN-STO	P025.027.E201	71 A _{RMS} / 100A amplitude	100 A _{RMS} / 140A amplitude	CAN

In order to operate the **iGVD71 BX** drives, you need to pass through 3 steps:

- Step 1 Hardware installation
- Step 2 Drive setup using Technosoft EasySetUp software for drive commissioning
- **Step 3 Motion programming** using either one of the options:
 - A CANopen master
 - □ The drives **built-in motion controller** executing a Technosoft Motion Language (**TML**) program developed using Technosoft **EasyMotion Studio** software
 - A TML_LIB motion library for PCs (Windows or Linux)
 - □ A TML_LIB motion library for PLCs
 - A **distributed control** approach which combines the above options, like for example a host calling motion functions programmed on the drives in TML

This manual covers **Step 1** in detail. It describes the **iGVD71 BX** hardware including the technical data, the connectors and the wiring diagrams needed for installation.

For Step 2 and 3, please consult the document **EasyMotion Studio – Quick Setup and Programming Guide**. For detailed information regarding the next steps, refer to the related documentation.

3 Notational Conventions

This document uses the following conventions:

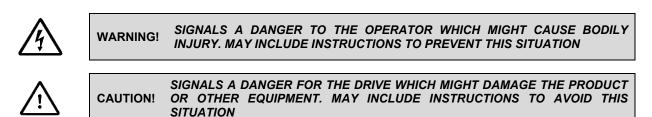
- **iGVD71 BX** all products described in this manual
- IU units Internal units of the drive
- SI units International standard units (meter for length, seconds for time, etc.)
- STO Safe Torque Off
- TML Technosoft Motion Language
- **CANopen** Standard communication protocol that uses 11-bit message identifiers over CAN-bus
- **TMLCAN** Technosoft communication protocol for exchanging TML commands via CAN-bus, using 29bit message identifiers

iGVD71 BX-CAN-STO Datasheet (P025.027.E201.DSH)

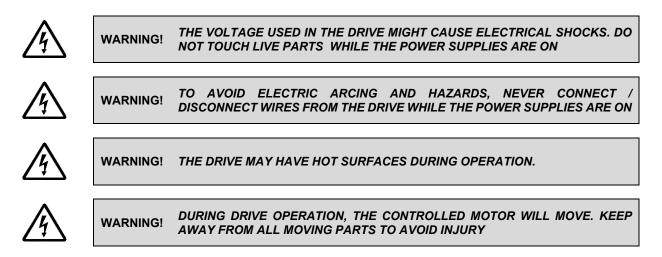
iGVD71 BX-CAN-STO Connection Diagram (P025.027.E201.CDG)

- describes the hardware connections of the iGVD BX intelligent servo drive including the technical data and connectors.

- iPOS family Safe Torque Off (STO) Operating instructions (091.099.STO.Operating.Instructions.xxxx)
 describes the principles of STO function, the applied standards, the safety-related data and the electrical data. It presents the requested information for installation and commissioning of STO function
- EasyMotion Studio Quick Setup and Programming Guide (P091.034.ESM-Quick.Setup.and.Programming.Guide.UM.xxxx) – describes the compatible software installation, drive software setup commissioning, introduction to TML motion programming and motion evaluation tools.
- Help of the EasySetUp software describes how to use EasySetUp to quickly setup any Technosoft drive for your application using only 2 dialogues. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp can be downloaded free of charge from Technosoft web page
- iPOS CANopen Programming (part no. P091.063.iPOS.UM.xxxx) explains how to program the iPOS family of intelligent drives using CANopen protocol and describes the associated object dictionary for CiA 301 v.4.2 application layer and communication profile, CiA WD 305 v.2.2.13 layer settings services and protocols and CiA DSP 402 v4.1.1 device profile for drives and motion control now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards
- Motion Programming using EasyMotion Studio (part no. P091.034.ESM.UM.xxxx) describes how to use the EasyMotion Studio to create motion programs using in Technosoft Motion Language (TML). EasyMotion Studio platform includes EasySetUp for the drive/motor setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can fully benefit from a key advantage of Technosoft drives – their capability to execute complex motions without requiring an external motion controller, thanks to their built-in motion controller. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from the Technosoft web page
- TML_LIB v2.0 (part no. P091.040.v20.UM.xxxx) explains how to program in C, C++,C#, Visual Basic or Delphi Pascal a motion application for the Technosoft intelligent drives using TML_LIB v2.0 motion control library for PCs. The TML_lib includes ready-to-run examples that can be executed on Windows or Linux (x86 and x64).
- TML_LIB_LabVIEW v2.0 (part no. P091.040.LABVIEW.v20.UM.xxxx) explains how to program in LabVIEW a motion application for the Technosoft intelligent drives using TML_LIB_Labview v2.0 motion control library for PCs. The TML_Lib_LabVIEW includes over 40 ready-to-run examples.
- TML_LIB_S7 (part no. P091.040.S7.UM.xxxx) explains how to program in a PLC Siemens series S7-300 or S7-400 a motion application for the Technosoft intelligent drives using TML_LIB_S7 motion control library. The TML_LIB_S7 library is IEC61131-3 compatible.
- TML_LIB_CJ1 (part no. P091.040.CJ1.UM.xxxx) explains how to program in a PLC Omron series CJ1 a motion application for the Technosoft intelligent drives using TML_LIB_CJ1 motion control library for PLCs. The TML_LIB_CJ1 library is IEC61131-3 compatible.
- TML_LIB_X20 (part no. P091.040.X20.UM.xxxx) explains how to program in a PLC B&R series X20 a motion application for the Technosoft intelligent drives using TML_LIB_X20 motion control library for PLCs. The TML_LIB_X20 library is IEC61131-3 compatible.
- **TechnoCAN (part no. P091.063.TechnoCAN.UM.xxxx)** presents TechnoCAN protocol an extension of the CANopen communication profile used for TML commands


If you want to …	Contact Technosoft at
Visit Technosoft online	World Wide Web: http://www.technosoftmotion.com/
Receive general information or assistance (see Note)	World Wide Web: <u>http://www.technosoftmotion.com/</u> Email: <u>sales@technosoftmotion.com</u>
Ask questions about product operation or report suspected problems (see Note)	Tel: +41 (0)32 732 5500 Email: <u>support@technosoftmotion.com</u>
Make suggestions about, or report errors in documentation.	Mail: Technosoft SA Avenue des Alpes 20 CH-2000 Neuchatel, NE Switzerland

6 Safety information


Read carefully the information presented in this chapter before carrying out the drive installation and setup! It is imperative to implement the safety instructions listed hereunder.

This information is intended to protect you, the drive and the accompanying equipment during the product operation. Incorrect handling of the drive can lead to personal injury or material damage.

The following safety symbols are used in this manual:

6.1 Warnings

CAUTION! THE POWER SUPPLIES CONNECTED TO THE DRIVE MUST COMPLY WITH THE PARAMETERS SPECIFIED IN THIS DOCUMENT

<u>\</u>

CAUTION! TROUBLESHOOTING AND SERVICING ARE PERMITTED ONLY FOR PERSONNEL AUTHORISED BY TECHNOSOFT

To prevent electrostatic damage, avoid contact with insulating materials, such as synthetic fabrics or plastic surfaces. In order to discharge static electricity build-up, place the drive on a grounded conductive surface and also ground yourself.

6.3 Quality system, conformance and certifications

EN 61508-2010 Functional safety of electrical power drive systems - Safety requirements – Punctional EN 61508:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems EN ISO 13849-1:2008 Safety of machinery - Safety-related parts of control systems EN 61326-3-1:2008 - General industrial applications - EMC - Immunity requirements for functional safety

For other certifications visit: <u>https://technosoftmotion.com/en/quality/</u>

7 Product Overview

7.1 Introduction

The **iGVD71** is part of the **iPOS** family of fully digital servo drives, based on the latest DSP technology, offering the highest density of power and intelligence.

Suitable for control of **brushless DC**, **brushless AC** (vector control) and **brushed DC** motors, the **iGVD71** accept as position feedback **incremental encoders** (differential), **digital Hall** signals (differential or single-ended) and **absolute encoders** (SSI, BiSS-C and EnDAT2.2¹).

All drives perform position, speed or torque control and work in single, multi-axis or stand-alone configurations. Thanks to the embedded motion controller, the iGVD71 BX-CAN-STO drives combine controller, drive and PLC functionality in a single compact unit and are capable to execute complex motions without requiring intervention of an external motion controller. Using the high-level Technosoft Motion Language (**TML**) the following operations can be executed directly at drive level:

- Setting various motion modes (profiles, PVT, PT, electronic gearing¹ or camming², etc.)
- Changing the motion modes and/or the motion parameters
- Executing homing sequences
- Controlling the program flow through:
 - Conditional jumps and calls of TML functions
 - TML interrupts generated on pre-defined or programmable conditions (protections triggered, transitions on limit switch or capture inputs, etc.)
 - Waits for programmed events to occur
- Handling of digital I/O and analogue input signals
- Executing arithmetic and logic operations
- Performing data transfers between axes
- Controlling motion of an axis from another one via motion commands sent between axes
- Sending commands to a group of axes (multicast). This includes the possibility to start simultaneously motion sequences on all the axes from the group
- Synchronizing all the axes from a network

By implementing motion sequences directly at drive level you can really distribute the intelligence between the master and the drives in complex multi-axis applications, reducing both the development time and the overall communication requirements. For example, instead of trying to command each movement of an axis, you can program the drives using TML to execute complex motion tasks and inform the master when these tasks are done. Thus, for each axis control the master job may be reduced at: calling TML functions stored in the drive EEPROM and waiting for a message, which confirms the TML functions execution completion.

All iGVD71 drives are equipped with a serial RS232 and a CAN 2.0B interface that can be set by hardware pins to operate in 2 communication protocol modes:

- CANopen

When **CANopen** mode is selected, the iGVD71 conforms to **CiA 301 v4.2** application layer communication profile, the **CiA WD 305 v2.2.13** and **CiA DSP 402 v4.1.1** device profile for drives and motion control, now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards. In this mode, the iGVD71 may be controlled via a CANopen master. The iPOS drive offers the possibility for a CANopen master to call motion sequences/ functions, written in TML and stored in the drive EEPROM, using manufacturer specific objects. Also, the drives can communicate separately between each other by using non reserved 11 bit identifiers.

When **TMLCAN** mode is selected, the iGVD71 behaves as standard Technosoft intelligent drive and conforms to Technosoft protocol for exchanging TML commands via CAN-bus. When TMLCAN protocol is used, it is not mandatory to have a master. Any iGVD71 can be set to operate standalone, and may play the role of a master to coordinate both the network communication/synchronization and the motion application via TML commands sent directly to the other drives.

When higher level coordination is needed, apart from a CANopen master, the iGVD71 drives can also be controlled via a PC or a PLC using one of the **TML_LIB** motion libraries.

¹ Available starting with F514K firmware version

² Available if the master axis sends its position via a communication channel, or by using the secondary encoder input

For iGVD71 BX-CAN-STO commissioning EasySetUp or EasyMotion Studio PC applications may be used.

EasySetUp is a subset of EasyMotion Studio, including only the drive setup part. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp shall be used for drive setup in all cases where the motion commands are sent exclusively from a master. Hence neither the iGVD71 TML programming capability nor the drive camming mode are used. **EasySetUp can be downloaded free of charge from Technosoft web page.**

EasyMotion Studio platform includes EasySetUp for the drive setup, and a **Motion Wizard** for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. *With EasyMotion Studio you can execute complex motions, thanks to their built-in motion controllers*. EasyMotion Studio, may be used to program motion sequences in TML. This is the iGVD71 typical CAN operation mode when TMLCAN protocol is selected. EasyMotion Studio can also be used with the CANopen protocol, if the user wants to call TML functions stored in the drive EEPROM or to use the camming mode. With camming mode, EasyMotion Studio offers the possibility to quickly download and test a cam profile and also to create a **.sw** file with the cam data. The .sw file can be afterwards stored in a master and downloaded to the drive, wherever needed. **A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from Technosoft web page.**

7.2 **Product Features**

- Fully digital servo drive suitable for the control of **brushless DC**, **AC** and **brushed DC** motors
- Motor supply: 11-80V
- Logic supply¹: 9-36V
- Output current²:
 - Nominal : 71 A_{RMS} / 100A amplitude
 - Peak : 100 A_{RMS} / 140A amplitude
- **PWM** switching frequency up to 120kHz
- Communication:
- CAN-bus 2.0B up to 1Mbit/s
- RS232 (micro USB port)
- Digital and analog I/O's:
- 1 x analogue input: 12-bit, 0-5V: Reference, Feedback or general purpose
- 5 x opto-isolated digital inputs, 12-36V, PNP/NPN selectable: 2 for limit switches, 3 general-purpose
- 4 x digital outputs, 0.2A PNP/ 0.3A NPN software selectable: Ready, Error, 2 general-purpose
- 1 x PNP/NPN 2A software configurable motor brake digital output: Out0/Brake

Feedback devices (dual-loop support)

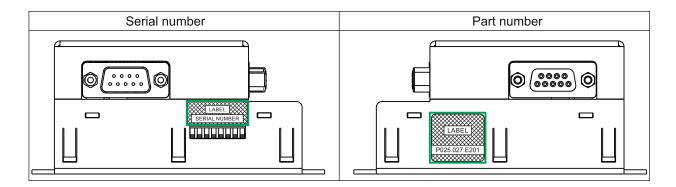
1st feedback devices supported:

• Incremental encoder interface (differential)

2nd feedback devices supported:

- Incremental encoder interface (differential)
- SSI, BiSS-C and EnDAT2.2³ interface
- Digital Hall sensor interface (single-ended / open collector or differential, selectable by DIP switch)
- Pulse & direction reference (differential) capability
- Various motion programming modes:
 - Position profiles with trapezoidal or S-curve speed shape
 - Position, Velocity, Time (PVT) 3rd order interpolation
 - Position, Time (PT) 1st order interpolation
 - Cyclic Synchronous Position (CSP) for CANopen mode
 - Electronic gearing and camming

¹ Logic supply must be SELV/ PELV type (Safety Extra Low Voltage / Protective Extra Low Voltage)


² Nominal output current possible only with external radiator (not included) that can maintain lower plate temperature below 75°C; The radiator is mounted under the drive using thermal paste or direct metal contact. Its size is application dependent

³ Available starting with F514K firmware version

- 35 Homing modes
- 16 h/w selectable Axis ID addresses
- STO1: 2 safe torque-off inputs, 18-36V SELV/PELV supply, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1;-2/ EN61508-3;-4/ EN ISO 13849-1.
- Two CAN operation modes selectable by HW switch:
 - CANopen conforming with CiA 301 v4.2, CiA WD 305 v2.2.13 and CiA DSP 402 v3.0
 - TMLCAN intelligent drive conforming with Technosoft protocol for exchanging TML commands via CAN-bus
- $16K \times 16 \ internal SRAM$ memory for data acquisition
- 16K × 16 E²ROM to store TML motion programs, cam tables and other user data
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- Protections:
 - Short-circuit between motor phases
 - Short-circuit from motor phases to ground
 - Over-voltage
 - Under-voltage

- Over-current
- Over-temperature
- Communication error
- Control error

Identification Labels 7.3

The iGVD71 BX family can have the following part numbers and names on the identification label: p.n. P025.027.E201 name iGVD71 BX-CAN-STO - standard CAN execution

7.4 **Supported Motor-Sensor Configurations**

7.4.1 Single loop configurations

The position and/or speed are controlled using one feedback sensor. The other available feedback sensor input can be used for External reference Position or Velocity, Pulse and Direction, Electronic Gearing or Camming.

Motor sensors	Motor types				
Encoder ²		Tacho	Brushless PMSM ³	Brushless BLDC⁴	Brushed DC Voice coils
Incremental encoder ⁵ / SSI / BISS-C / EnDAT2.2 ⁶			√		✓
Incremental encoder ⁵ / SSI / BiSS-C / EnDAT2.2 ⁶	√		\checkmark	\checkmark	
None	√		√		
None		\checkmark			\checkmark

¹ The STO circuit must be supplied with minimum 18V to enable PWM output

² Motor encoder can be either on Feedback 1 or on Feedback 2

³ Sinusoidal. Brushless motor is controlled as PMSM using a field oriented control algorithm

⁴ Trapezoidal. Brushless motor is controlled as a BLDC motor using Hall-based commutation.

⁵ Only differential connection is available ⁶ EnDAT 2.2 protocol is available starting with F514K firmware version

7.4.2 **Dual loop configurations**

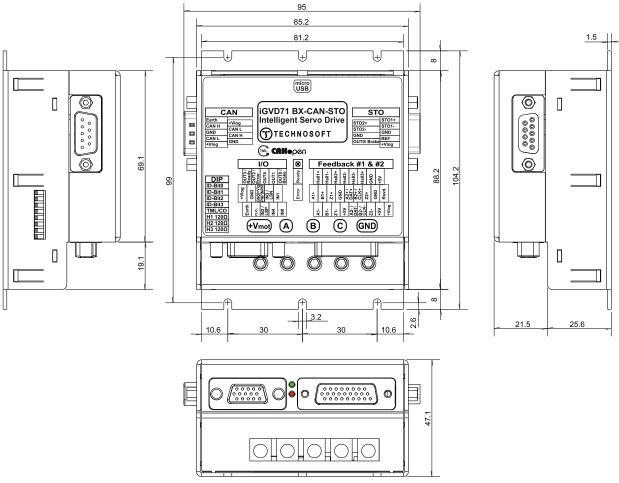
The motor speed control loop is closed on one feedback connected on the motor while the motor position control loop is closed on the other available feedback which is placed on the load. There is usually a transmission between the load and the motor.

Motor senso	rs		Motor types			Load sensors
Encoder	Digital Halls	Tacho	Brushless PMSM ¹	Brushless BLDC ²	Brushed DC Voice coils	Encoder ³
Incremental encoder ⁴ / SSI / BISS-C / EnDAT2.2 ^{5 6}			√		\checkmark	Incremental encoder ⁴ / SSI / BiSS-C / EnDAT2.2 ⁵⁶
Incremental encoder ⁴ / SSI / BiSS-C / EnDAT2.2 ^{5 6}	\checkmark			√		Incremental encoder ⁴ / SSI / BiSS-C / EnDAT2.2 ⁵⁶
None	√		√			Incremental encoder ⁴ / SSI / BiSS-C / EnDAT2.2 ³⁶
None			\checkmark			Incremental encoder ⁴ / SSI / BiSS-C / EnDAT2.2 ⁵⁶
None		✓			✓	Incremental encoder ⁴ / SSI / BiSS-C / EnDAT2.2 ⁵⁶

Each defined motor type can have any combination of the supported feedbacks either on motor or on load. Example:

-PMSM motor with Incremental encoder (from feedback #1) on motor and Incremental encoder (from feedback#2) on load

-DC brush motor with BiSS C encoder (from feedback #2) on motor and Incremental encoder (from feedback #1) on load.

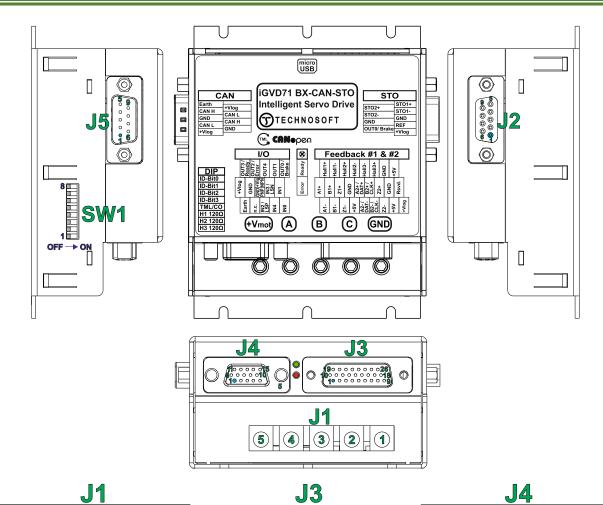

¹ Sinusoidal. Brushless motor is controlled as PMSM using a field oriented control algorithm

² Trapezoidal. Brushless motor is controlled as a BLDC motor using Hall-based commutation.

³ Load encoder is on Feedback 2 / 1, if motor encoder is on Feedback 1 / 2

 ⁴ Only differential connection is available
 ⁵ EnDAT 2.2 protocol is available starting with F514K firmware version
 ⁶ SSI / BiSS-C / EnDAT2.2 can be only on Feedback #2

8.1 iGVD71 BX-CAN-STO Board Dimensions


All dimensions are in mm. The drawings are not to scale.

8.2 Mechanical Mounting

The iGVD71 BX drive is intended to be mounted horizontally on a metallic support using the provided mounting holes and the recommended inserts and screws:

Image	Connector	Description	Manufacturer	Part Number
	-	Self-clinching nuts M3	PennEngineering® (PEM®)	KF2-M3-ET
	-	Screws M3x10	Bossard	BN610-M3x10

The metallic support must act as a cooling heat sink.

	J	1
--	---	---

Pin	Name	Туре	Description
1	GND	-	Negative return (ground) of the power supply
2	С	0	Phase C for 3-ph motors
3	в	0	Phase B for 3-ph motors, Motor- for DC brush motors
4	А	ο	Phase A for 3-ph motors, Motor+ for DC brush motors
5	+V _{MOT}	I	Positive terminal of the motor supply: 11 to 80V _{DC} .

J2

Pin	Name	Туре	Description
1	$+V_{LOG}$	I	Positive terminal of the logic supply: 9 to 36V _{DC} . Internally connected to other +Vlog pins.
2	REF	ı	Analogue input, 12-bit, 0-5V. Used to read an analog position, speed or torque reference, or used as general-purpose analogue input
3	GND	-	Negative return (ground)
4	STO1-	T	Safe Torque Off input 1, negative return (opto-isolated, 18+36V)
5	STO1+	Т	Safe Torque Off input 1, positive input (opto- isolated, 18+36V)
6	OUT0/Brake	ο	Digital output used for an electro-mechanical brake,12-36V, 2A PNP/ 2A NPN software selectable
7	GND	-	Negative return (ground)
8	STO2-	T	Safe Torque Off input 2, negative return (opto-isolated, 18+36V)
9	STO2+	I	Safe Torque Off input 2, positive input (opto-isolated, 18+36V)
			15

			<u> </u>
Pin	Name	Туре	Description
1&9	+V _{LOG}	I	Positive terminal of the logic supply: 9 to 36Vpc. Internally connected to other +Vlog pins.
2&8	CAN L	I/O	CAN-Bus negative line (dominant low)
3&6	GND	-	Negative return (ground)
4&7	CAN H	I/O	CAN-Bus positive line (dominant high)
5	Earth	-	Earth connection; Internally connected to the metallic side of J2,3,4 and 5
			J6
Pin	Name	Туре	Description
USB		-	Standard micro-USB port. Is identified in Windows as RS232 COM port.

Pin	Name	Туре	Description
1	A1-	1	Incr. encoder1 A- diff. input
2	B1-	I	Incr. encoder1 B- diff. input
3	Z1-	1	Incr. encoder1 Z- diff. input
4	+5Vout	0	5V output supply
5	A2- /Pulse-/ Data-/SL-	I	Incr. encoder2 A diff. input, or Pulse, or Data- for SSI, or Slave- for BiSS; has internal 120Ω resistor between pins 5 and 14
6	B2-/Dir-/CLK- /MA-	I/O	Incr. encoder2 B- diff. input, or Dir-, or Clock-for SSI, or Master- for BiSS; has internal 120Ω resistor between pins 6 and 15
7	Z2-	I.	Incr. encoder2 Z- diff. input; has internal 120Ω resistor between pins 7 and 16
8	+5Vout	0	5V output supply for sensors usage
9	+V _{LOG}	I	Positive terminal of the logic supply: 9 to 36V _{DC} . Internally connected to other +Vlog pins.
10	A1+/ Pulse	1	Incr. encoder1 A+ diff. input, or Pulse
11	B1+/Dir	1	Incr. encoder1 B+ diff. input, or Dir
12	Z1+	I.	Incr. encoder1 Z+ diff. input
13	GND	-	Return ground for sensors supply
14	A2+/Pulse+/ Data+/SL+	I	Incr. encoder2 A+ diff. input, or Pulse+, or Data+ for SSI, or Slave+ for BiSS; has internal 120Ω resistor between pins 5 and 14
15	B2+/Dir+/CLK +/MA+	I/O	Incr. encoder2 B+ diff. input, or Dir+, or Clock+ for SSI, or Master+ for BiSS; has internal 120Ω resistor between pins 6 and 15
16	Z2+	I	Incr. encoder2 Z+ diff. input; has internal 120Ω resistor between pins 7 and 16
17	GND	-	Return ground for sensors supply
18	n.c.		not connected
19	Hall 1+	I	Digital input Hall 1+ diff. sensor input; SW1 pin 3 can connect an 120Ω resistor between pins 19 and 20
20	Hall 1-	ı	Digital input Hall 1- diff. sensor input; SW1 pin 3 can connect an 120Ω resistor between pins 19 and 20
21	Hall 2+	ı	Digital input Hall 2+ diff. sensor input; SW1 pin 2 can connect an 120Ω resistor between pins 21 and 22
22	Hall 2-	I	Digital input Hall 2- diff. sensor input; SW1 pin 2 can connect an 120Ω resistor between pins 21 and 22
23	Hall 3-	I	Digital input Hall 3- diff. sensor input; SW1 pin 1 can connect an 120Ω resistor between pins 23 and 24
24	Hall 3+	I	Digital input Hall 3+ diff. sensor input; SW1 pin 1 can connect an 120Ω resistor between pins 23 and 24
25	GND	-	Return ground for sensors supply
26	+5Vout	0	5V output supply

Description

Pin

Name

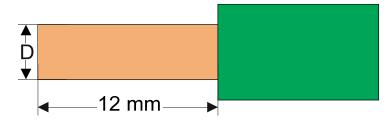
Type

J4

Pin	Na	ime	Туре	Description
1	Ea	arth	-	Earth connection; Internally connected to the metallic side of J2,3,4 and 5
2	n.c.		-	not connected
3	IN2/LSP IN4 IN0 +V _{LOG}		I	12-36V digital PNP/NPN opto-isolated input. Positive limit switch function
4			I	12-36V general-purpose digital PNP/NPN opto-isolated input.
5			Т	12-36V general-purpose digital PNP/NPN opto-isolated input.
6			+V _{LOG}	
7	GND		-	Return ground for I/O pins
8	GND PNP +Vlog NPN IN3/LSN		-	PNP/NPN Inputs type selector. Connect to GND to use inputs as PNP; Connect to +Vlog to use inputs as NPN
9			I	12-36V digital PNP/NPN opto-isolated input. Negative limit switch function
10	I	N1	I	12-36V general-purpose digital PNP/NPN opto-isolated input.
11	OUT3	/Ready	0	12-36V drive Ready digital output, 0.2A PNP/ 0.3A NPN, software selectable
12	OUT2	2/Error	ο	12-36V drive Error digital output, 0.2A PNP/ 0.3A NPN, software selectable
13	OUT4 OUT1		0	12-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
14			ο	12-36V general-purpose digital output, 0.2A PNP/ 0.3A NPN, software selectable
15	OUTO	/Brake	ο	Digital output used for an electro-mechanical brake,12-36V, 2A PNP/ 2A NPN software selectable

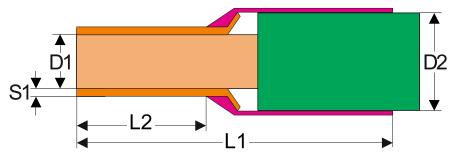
SW1

Pin	Name	Position	Description
1	Η3 120Ω	up (ON)	Internally connect an 120Ω termination resistor between Hall 3+ and Hall 3- pins
2	H2 120Ω	up (ON)	Internally connect an 120Ω termination resistor between Hall 2+ and Hall 2- pins
3	H1 120Ω	up (ON)	Internally connect an 120Ω termination resistor between Hall 1+ and Hall 1- pins
4	TML/CO -	up (ON)	Select CANopen communication protocol
4		down (OFF)	Select TMLCAN communication protocol
5	ID-Bit3	-	Hardware AxisID selection switches
6	ID-Bit2	-	They represent the first 4 LSB bits of an 8-bit
7	ID-Bit1	-	Axis ID number.
8	ID-Bit0	-	When all bits are 0 then AxisID=255; If AxisID = 255 in CANopen, the drive will be in "LSS inactive" state and the Green LED will flash at 1 second intervals

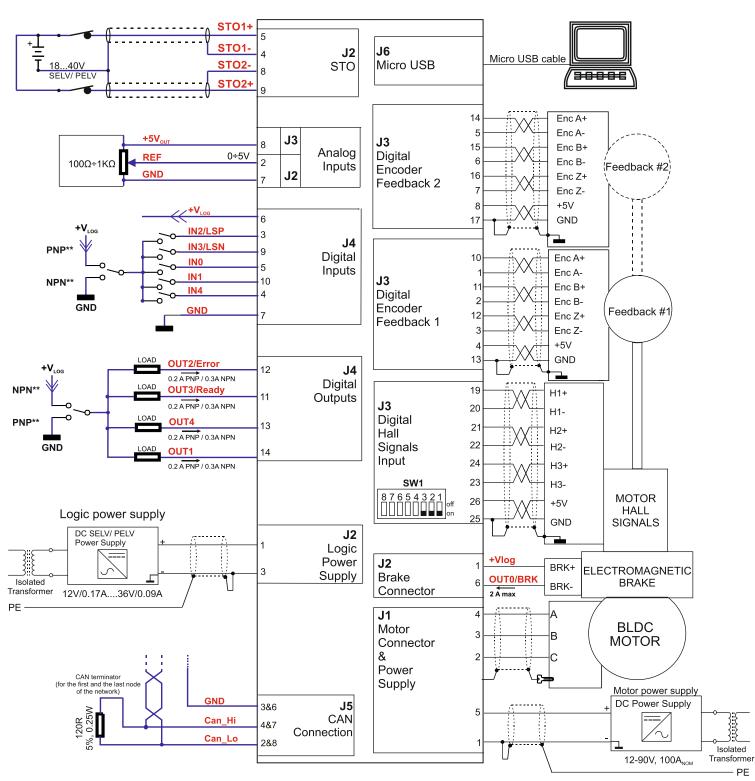

Connector	Function	Component	Diagram
J1	Motor Phases	High AMP wire. 4mm HEX socket. Strip: - min 8 mm for cables with isolation diameter less than 6.5 mm; - min 12 mm/ max 15 mm for cables with isolation diameter bigger than 6.5 mm. AWG 6-16 wire gauge.	
51	Motor Supply	Avoid generating metal debris/ filings into drive from the wire leads! In case of multi-stranded wires, a proper crimp ferrule must be used as wire terminal.	
	Logic Supply		
	STO		Page a
J2	Analogue Reference	Generic 9-pin Sub-D male connector.	
	Motor Brake		
	Feedback #1		
J3	Feedback #2	Generic 26-pin High Density Sub-D male connector.	
	Digital Hall		
	Inputs		A B B B
J4	Outputs	Generic 15-pin High Density Sub-D male connector.	
J5	CAN	Generic 9-pin Sub-D female connector.	
9C	Micro USB	Standard Micro USB cable.	

8.3.2 Recommendations for Motor Phases and Motor Power Supply wires

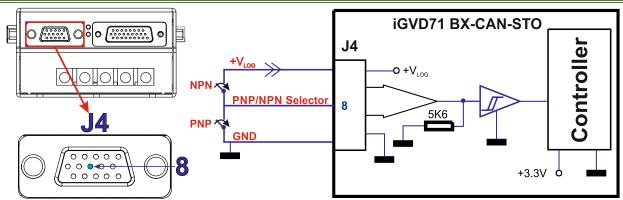
	Torque (Chart	
AWG	G 6-14 (mr	n² 10 – 2	2.5)
AWG	mm ²	In-lb	N-M
6	-	35	3.95
-	10	- 35	3.90
8	-	25	2 92
-	6	25	2.02
10	-		2.82
-	4		
12	-	20	2.26
-	2.5		
14	-		


Cable connections

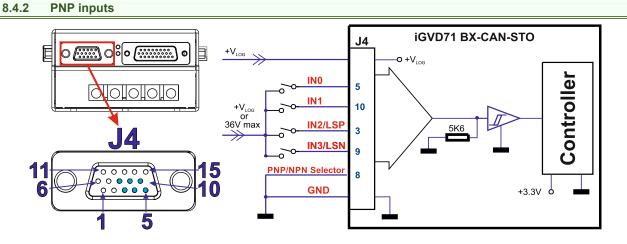
Solid wire or tinned strand wire


✤ D_{max} = 4.1 mm (AWG6)

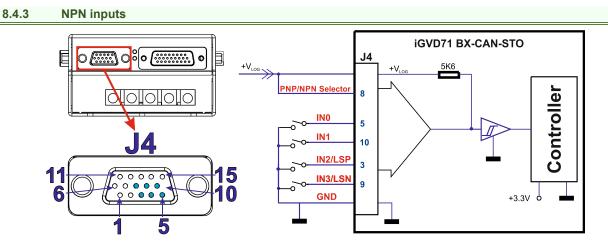
Strand wire with ferrule


Options for industrial standard ferrules

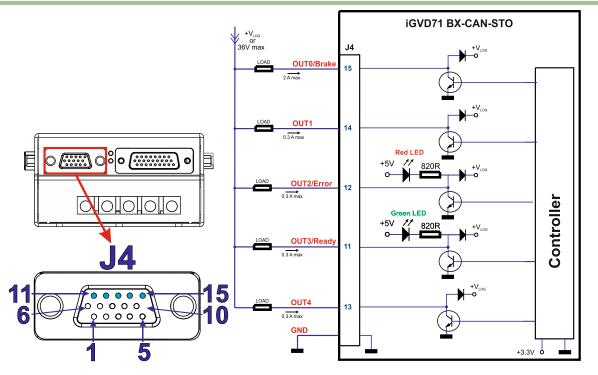
Mod	el No	Applicable Colour Cod					Code Dimensions (mm)					
French Code	German Code	mm²	AWG	- Style	French Code	German Code	L1	L2	D1	S1	D2	
FWE2.5-8	GWE2.5-8	2.50	14	I	Grey	Blue	14	8	2.2	0.15	4.2	
FWE4-10	GWE4-10	4.00	12	I	Orange	Grey	17	10	2.8	0.2	4.8	
FWE6-12	GWE6-12	6.00	10	I	Green	Black	20	12	3.5	0.2	6.3	
FWE10-12	GWE10-12	10.0	8	I	Brown	lvory	22	12	4.5	0.2	7.6	


* For other available feedback / motor options, check the detailed connection diagrams below

8.4.1 PNP/NPN Inputs selection

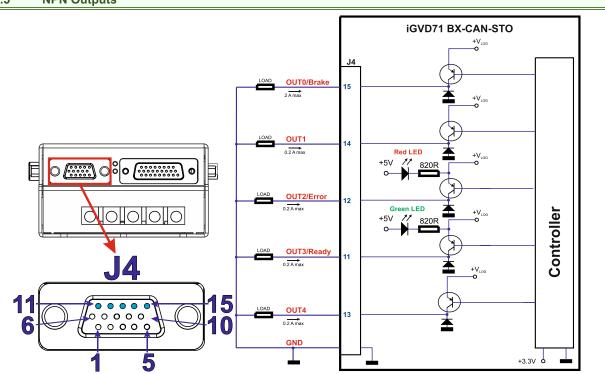

Remarks:

- 1. If the hardware selection is not done (J4 pin 8 is not connected), the inputs state cannot be changed.
- 2. The inputs needs to be selected as PNP/ NPN also in the setup part, according to the hardware connection.

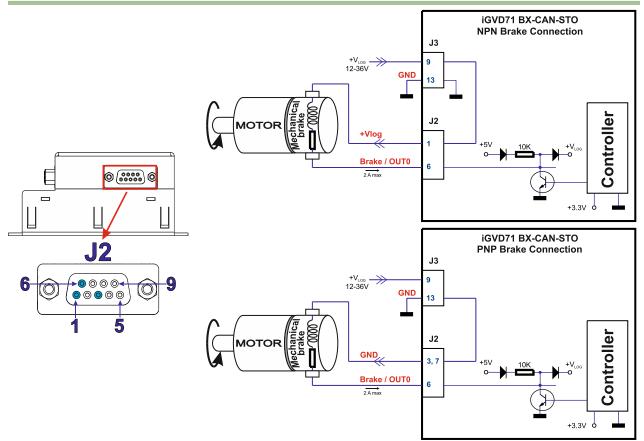


Remarks:

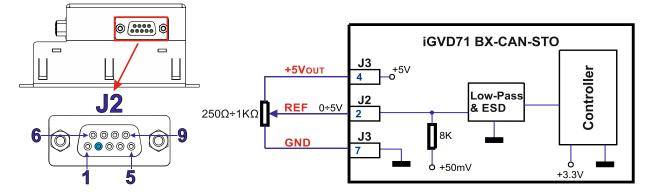
- 1. The PNP inputs are compatible with PNP outputs the input must receive a positive voltage value: 12-36V to change its default state
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surge in industrial environment.



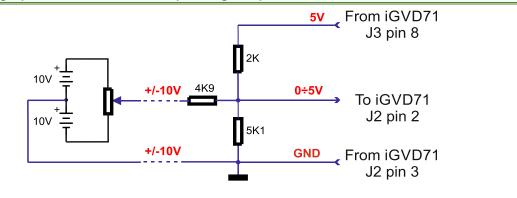
- 1. The NPN inputs are compatible with NPN outputs the input must be pulled to GND to change its default state.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surge in industrial environment.


Remarks:

- 1. The outputs are software selectable as PNP/NPN.
- 2. The NPN outputs are compatible with NPN inputs (load is tied to common $+V_{LOG}$, output pulls to GND when active and is floating when inactive
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.


8.4.5 NPN Outputs

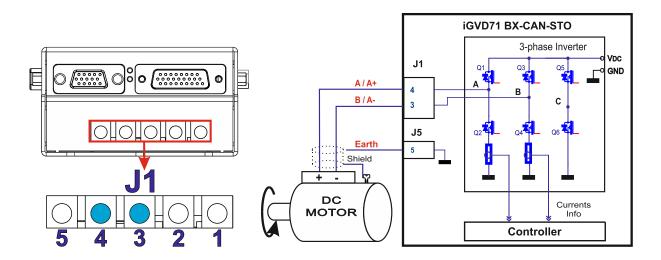
- 1. The outputs are software selectable as PNP/NPN.
- 2. The PNP outputs are compatible with PNP inputs (load is tied to common $+V_{LOG}$, output pulls to GND when active and is floating when inactive
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.


- 1. The firmware can control the OUT0 output to automatically engage/disengage a mechanical brake when motor control is started/stopped.
- 2. The digital output can be used for an electro-mechanical brake, 12-36V, 2A PNP/ 2A NPN or as PNP/NPN general-purpose digital output.
- 3. The selection can be made by software. To enable the mechanical brake functionality select the checkbox from EasyMotion Studio:

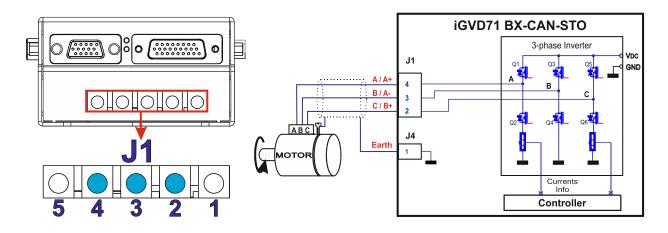
Motor brake
✓ Motor brake on output line :
OUTO/Brake
Motor brake is released when NPN (sink) output is active (pulled to GND).
Drive not active Drive active
Brake applied Brake released
Brake release delay : Brake apply delay : 0 ms

Remark:

- 1. Default input range for analog inputs is 0÷5 V for REF analogue input.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

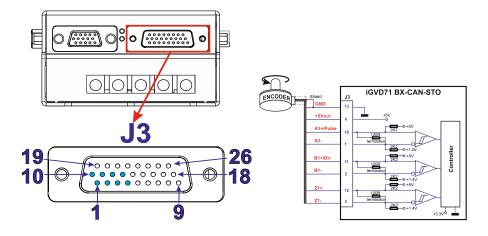


8.4.8 Analog Inputs Connection: +/- 10V Input Range adapter


8.4.8.1 Recommendation for wiring

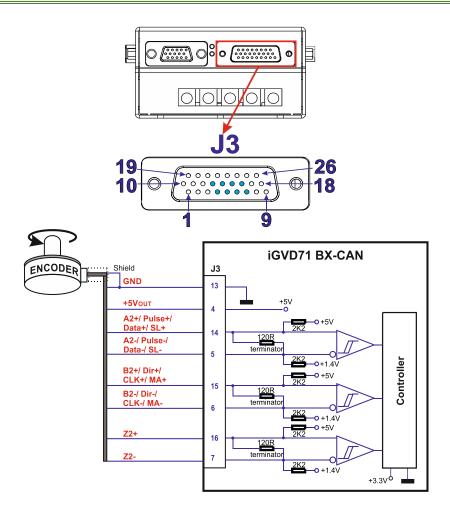
- 1. If the analogue signal source is single-ended, use a 2-wire twisted shielded cable as follows: 1st wire connects the live signal to the drive input; 2nd wire connects the source ground to the drive ground; shield will be connected to the drive ground terminal.
- 2. If the analogue signal source is differential and the signal source ground is isolated from the drive GND, use a 2-wire twisted shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source minus (negative, out-of-phase) to the drive ground (GND). Shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.
- 3. If the analogue signal source is differential and the signal source ground is common with the drive GND, use a 2-wire shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source ground to the drive ground (GND); shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.

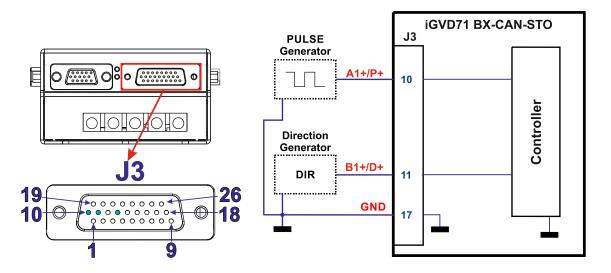
8.5.1 DC Motor connection


8.5.2 Brushless Motor connection

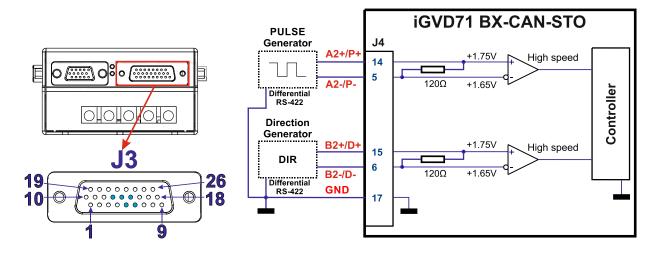
8.5.2.1 Recommendations for motor wiring

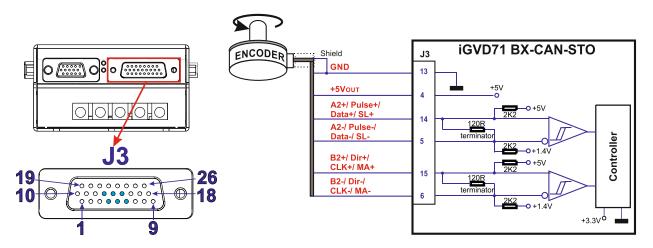
- 1. Avoid running the motor wires in parallel with other wires for a distance longer than 2 meters. If this situation cannot be avoided, use a shielded cable for the motor wires. Connect the cable shield to the GND pin. Leave the other end disconnected.
- The parasitic capacitance between the motor wires must not bypass 10nF. If very long cables (tens of meters) are used, this condition may not be met. In this case, add series inductors between the iGVD71 outputs and the cable. The inductors must be magnetically shielded (toroidal, for example), and must be rated for the motor surge current. Typically the necessary values are around 100 μH.
- 3. A good shielding can be obtained if the motor wires are running inside a metallic cable guide.

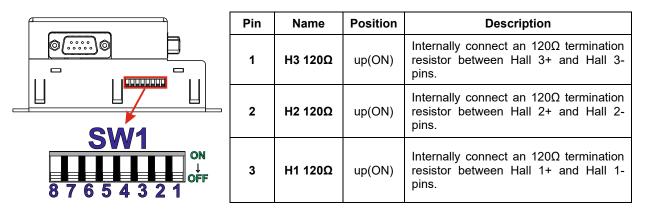

8.6.1 Feedback #1 - Differential Incremental Encoder Connection


Remarks:

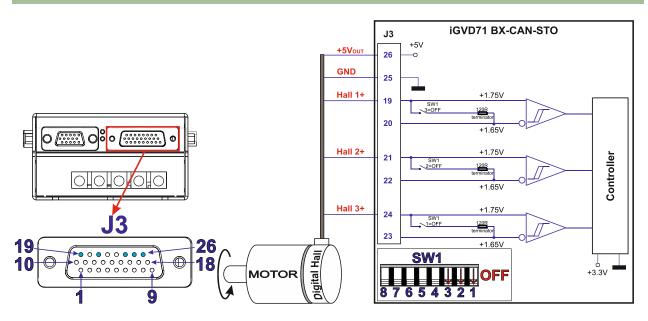
- 1. For Feedback #1 differential connection, 120Ω (0.25W) terminators are internally connected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.


8.6.2 Feedback #2 - Differential Incremental Encoder Connection

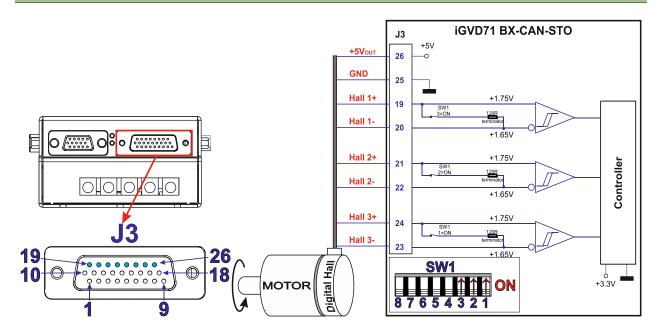

- 1. For Feedback #2 differential connection, 120Ω (0.25W) terminators are internally connected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

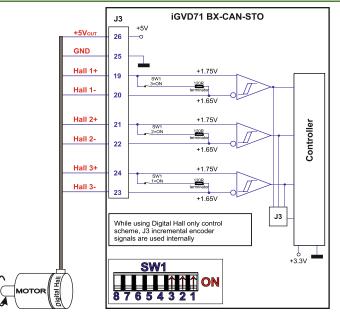


8.6.5 Feedback #2 - Absolute Encoder Connection (SSI, BiSS-C, EnDAT 2.2)

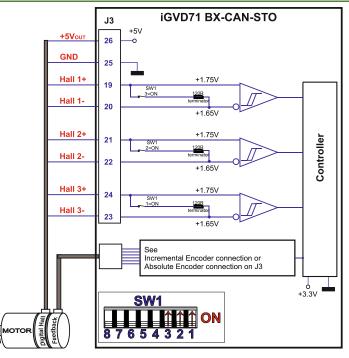


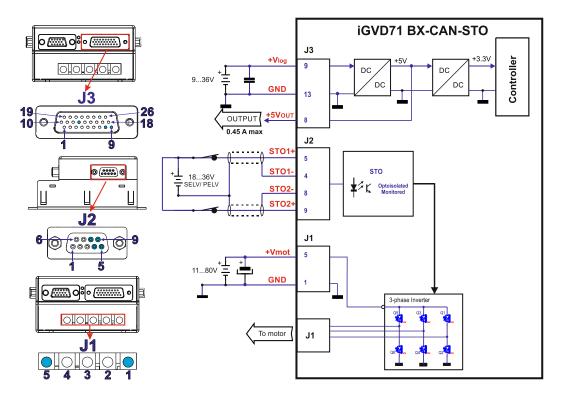
- 1. For Feedback #2 absolute encoder connection, 120Ω (0.25W) terminators are internally connected.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.


8.7.1 Hall termination resistors - SW1 Settings


8.7.2 Single-Ended Digital Hall Connection

8.7.3 Differential Digital Hall Connection


8.7.4.1 Digital Hall only control


Remarks:

- 1. Digital Hall only control method can be achieved also using a single-ended digital Hall connection.
- 2. This connection is required when using the digital Halls as the only feedback device for the motor control.
- 3. While using this control scheme, the incremental encoder signals from J3 are used internally by the drive.
- 4. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

8.7.4.2 Digital Hall + Incremental or Absolute Encoder control

- 1. Digital Hall + Incremental or Absolute Encoder control method can be achieved also using a single-ended digital Hall connection.
- 2. This connection is required when using Hall start method BLDC or PMSM and also for the Trapezoidal commutation method.
- 3. The digital halls are not used in this case as a feedback measurement device. The actual motor control is done with an incremental or absolute encoder.
- 4. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Remarks:

- 1. The iGVD71 BX-CAN-STO requires three supply voltages: V_{LOG} , V_{MOT} and STO.
- 2. The STO circuit must be supplied with minimum 18V to enable PWM output.
- 3. Use short, thick wires between the iGVD71 and the motor power supply. If the wires are longer than 2 meters, use twisted wires for the supply and ground return.
- 4. For wires longer than 20 meters, add a capacitor of at least 4,700μF (rated at an appropriate voltage) right on the terminals of the iGVD71.
- 5. It is recommended to connect the negative motor supply return (GND) to the Earth protection near the power supply terminals.

8.8.1 Recommendations to limit over-voltage during braking

During abrupt motion brakes or reversals the regenerative energy is injected into the motor power supply. This may cause an increase of the motor supply voltage (depending on the power supply characteristics). If the voltage bypasses **86V**, the drive over-voltage protection is triggered and the drive power stage is disabled.

In order to avoid this situation **a** capacitor can be added on the motor supply big enough to absorb the overall energy flowing back to the supply. The capacitor must be rated to a voltage equal or bigger than the maximum expected overvoltage and can be sized with the formula:

$$C \ge \frac{2 \times E_M}{U_{MAX}^2 - U_{NOM}^2}$$

where:

U_{MAX} = 86V is the over-voltage protection limit

U_{NOM} is the nominal motor supply voltage

 E_M = the overall energy flowing back to the supply in Joules. In case of a rotary motor and load, E_M can be computed with the formula:

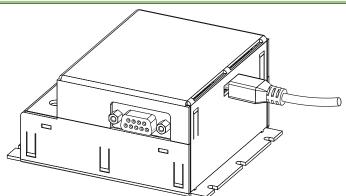
$$\mathsf{E}_{\mathsf{M}} = \underbrace{\frac{1}{2}(\mathsf{J}_{\mathsf{M}} + \mathsf{J}_{\mathsf{L}})\varpi_{\mathsf{M}}^{2}}_{\mathsf{M}} + \underbrace{(\mathsf{m}_{\mathsf{M}} + \mathsf{m}_{\mathsf{L}})\mathsf{g}(\mathsf{h}_{\mathsf{initial}} - \mathsf{h}_{\mathsf{final}})}_{\mathsf{M}} - \underbrace{3\mathsf{I}_{\mathsf{M}}^{2}\mathsf{R}_{\mathsf{Ph}}\mathsf{t}_{\mathsf{d}}}_{\mathsf{M}} - \underbrace{\frac{\mathsf{t}_{\mathsf{d}}\varpi_{\mathsf{M}}}{2}\mathsf{T}_{\mathsf{F}}}_{\mathsf{M}}}_{\mathsf{M}}$$

Kinetic energy

Potential energy

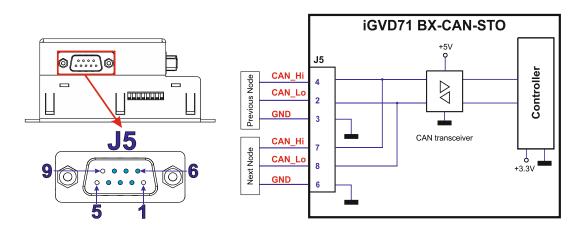
Copper losses Friction losses

where:

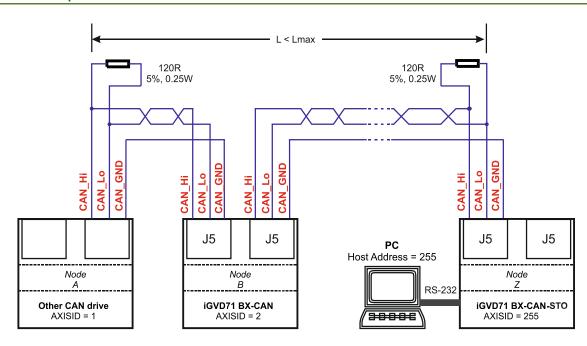

- J_M total rotor inertia [kgm²]
- J_L total load inertia as seen at motor shaft after transmission [kgm²]
- $\overline{\mathbf{\omega}}_{M}$ motor angular speed before deceleration [rad/s]
- M_M motor mass [kg] when motor is moving in a non-horizontal plane
- mL load mass [kg] when load is moving in a non-horizontal plane
- g gravitational acceleration i.e. 9.8 [m/s²]
- h_{initial} initial system altitude [m]
- h_{final} final system altitude [m]
- I_M motor current during deceleration [A_{RMS}/phase]
- R_{Ph} motor phase resistance [Ω]
- td time to decelerate [s]
- T_F total friction torque as seen at motor shaft [Nm] includes load and transmission

In case of a linear motor and load, the motor inertia J_M and the load inertia J_L will be replaced by the motor mass and

the load mass measured in [kg], the angular speed $\overline{\omega}_M$ will become linear speed measured in [m/s] and the friction torque T_F will become friction force measured in [N].


8.9 Communication connection

8.9.1 RS232 (Micro USB port) connection


- 1. For the RS232 connection a standard **Micro USB cable** is required. The drivers are found automatically in Windows 10 and the device is identified as a COM port.
- 2. The RS232 communication includes micro USB to RS232 adapter.
- 3. In Easy Motion studio, choose the following communication settings:

Communication Setup X
Channel Type: USB as Virtual Com Port
Port: COM1
Axis ID of drive/motor connected to PC is: autodetected
Work offline Advanced
OK Cancel Help

Remarks:

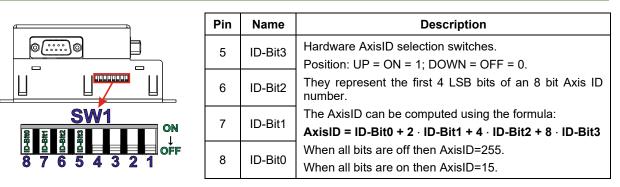
- 1. The CAN network requires a 120-Ohm terminator. This is not included in the iGVD71 drive.
- 2. CAN signals are not isolated from other iGVD71 circuits.

8.9.2.1 Multiple-Axis CAN network

8.9.2.2 Recommendation for wiring

- 1. Build CAN network using cables with twisted wires (2 wires/pair), with CAN-Hi twisted together with CAN-Lo. It is recommended but not mandatory to use a shielded cable. If so, connect the shield to GND. The cable impedance must be 105 ... 135 ohms (120 ohms typical) and a capacitance below 30pF/meter.
- 2. The 120Ω termination resistors must be rated at 0.2W minimum. Do not use winded resistors, which are inductive.

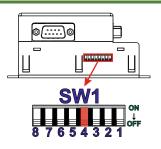
8.10 Disabling Autorun


When an iGVD71 BX-CAN-STO is set in TMLCAN operation mode, by default after power-on, it enters automatically in **Autorun** mode. In this mode, if the drive has in its local EEPROM memory a valid TML application (motion program), it is automatically executed as soon as the motor supply VMOT is turned on.

In order to disable Autorun mode, there are 3 methods:

- 1. Software by writing value 0x0001 in first EEPROM location at address 0x4000.
- 2. **Hardware1** set the drive temporarily in CANopen mode. While in CANopen state, no motion will autorun. Set SW1 pin4 in down position.
- 3. **Hardware2** by temporary connecting all digital Hall inputs to GND, during the power-on for about 1 second, until the green LED is turned on. This option is particularly useful when it is not possible to communicate with the drive.

After the drive is set in *non-Autorun/slave* mode using 2nd method, the 1st method may be used to invalidate the TML application from the EEPROM. On next power on, in absence of a valid TML application, the drive enters in the *non-Autorun/slave* mode independently of the digital Hall inputs status.


8.11 Axis ID Selection

Remarks:

- 1. All pins are sampled at power-up, and the drive is configured accordingly.
- 2. If CANopen mode is selected and the AxisID is set to 255, the drive remains "non-configured" waiting for a CANopen master to configure it, using CiA-305 protocol.
- 3. A "non-configured" drive answers only to CiA-305 commands. All other CANopen commands are ignored and transmission of all other messages (including boot-up) is disabled. The Ready (green) LED will flash at 1 second time intervals while in this mode.

8.12 TMLCAN / CANopen selection

Pin	Name	Position	Function
4	TML/CO	Up (ON)	Select CANopen communication protocol.
4	TML/CO	Down (OFF)	Select TMLCAN communication protocol.

Remark: All pins are sampled at power-up, and the drive is configured accordingly.

8.13 LED indicators

	LED name	LED color	Function
	Ready LED		Lit after power-on when the drive initialization ends. Turned off when an error occurs.
Ready LEDError LED	Error LED		Turned on when the drive detects an error condition.

9 Electrical Specifications

All parameters measured under the following conditions (unless otherwise specified):

- V_{LOG} = 24 VDC; V_{MOT} = 80VDC
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude) = 100A

9.1.1 Operating Conditions

		Min.	Тур.	Max.	Units
Ambient temperature		0		40 ^{1, 3}	°C
Ambient humidity	Non-condensing	0		90	%Rh
Altitude (pressure?	Altitude (vs. sea level)	-0.1	0 ÷ 2.5	2	Km
Altitude / pressure ²	Ambient Pressure	0 ²	0.75 ÷ 1	10.0	atm

9.1.2 Storage Conditions

		Min.	Тур.	Max.	Units
Ambient temperature		-40		105	°C
Ambient humidity	Non-condensing	0		100	%Rh
Ambient Pressure		0		10.0	atm
CCD conchility (Llumon hady model)	Not powered; applies to any accessible part			±0.5	kV
ESD capability (Human body model)	Original packaging			±15	kV

9.1.3 Mechanical Mounting

		Min.	Тур.	Max.	Units		
External bastoink (sealing plate)	Current capability depends on heat transfer, heatsink dimension, cooling technique (natural or forced).						
External heatsink (cooling plate)	Keep lower plate temperature at maximum 75°C						

9.1.4 Environmental Characteristics

		Min.	Тур.	Max.	Units
Size (Length y) ((idth y Lleight)	Without moting compostors	104	4.2 x 95 x 4	47.1	mm
Size (Length x Width x Height)	Without mating connectors	~4.1 x 3.74 x 1.85		inch	
Weight	Without mating connectors		300		g
Power dissipation	Idle (no load)		3		w
	Operating		80÷100		vv
Efficiency			98		%
Cleaning agents	Dry cleaning is recommended	Only	Water- or a	Alcohol- ba	ased
Protection degree	According to IEC60529, UL508		IP20		-

9.1.5 Logic Supply Input (+VLOG)

			Min.	Тур.	Max.	Units
	Nominal values		12	24	36	VDC
Supply voltage	Absolute maximum values, drive operating but ou	Itside guaranteed parameters	8	24	40	V _{DC}
	Absolute maximum values, surge (duration \leq 10n	ns) [†]	-1		+45	V
	;	+V _{LOG} = 12V		170		
Supply current	No encoder and no load on digital outputs	+V _{LOG} = 24V		110		mA
		+V _{LOG} = 36V		90		
Utilization Category	zation Category Acc. to 60947-4-1 (IPEAK<=1.05*INOM)			DC-	1	

9.1.6 Motor Supply Input (+V_{MOT})

		Min.	Тур.	Max.	Units
	Nominal values	12	80	90	VDC
Supply voltage	Absolute maximum values, drive operating but outside guaranteed parameters	11		94	V _{DC}
11,5 5	Absolute maximum values, surge (duration \leq 10ms) [†]	-1		95	V
	Idle		1	5	mA
	Operating	-130	±100	+130	А
Supply current	Absolute maximum value, short-circuit condition (Duration ≤ 10 ms) [†]			140	А
Utilization Category	Acc. to 60947-4-1 (I _{PEAK} <=4*I _{NOM})		DC	-3	

¹Operating temperature at higher temperatures is possible with reduced current and power ratings

² iGVD71 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

9.1.7 Motor Outputs (A/A+, B/A-,C)

			Min.	Тур.	Max.	Units
Nominal (recommended)	for DC brushed and BLDC motors with Hall-based trapezoidal control				86.6	٨
output current, continuous ¹	for PMSM motors with FOC sinusoidal control (sinusoidal an	nplitude value)			100	A
*As long as drive lower plate does not exceed 75°C	for PMSM motors with FOC sinusoidal control (sinusoidal eff	ective value)			70.7	ARMS
Motor output current, peak	As long as drive back plate does not exceed 75°C		-135		+135	А
Short-circuit protection threshol					±140	А
Short-circuit protection delay			5	10		μS
On-state voltage drop	Nominal output current; including typical mating connector co	ntact resistance		±0.3	±0.5	V
Off-state leakage current				±0.5	±1	mA
		F _{PWM}				
	December de la colora for comparte de la comparte de la colora de la c	20 kHz	300			μH
	Recommended value, for current ripple max. ±5% of full range; +V _{MOT} = 60 V	40 kHz	150			
Matan industry of July and		60 kHz	100			
Motor inductance (phase-to-		80 kHz	75			
phase)		20 kHz	150			
	Minimum value, limited by short-circuit protection; +V _{MOT} =	40 kHz	75			
	60 V	60 kHz	50			μН
		80 kHz	38			
		20 kHz	250			
Motor electrical time-constant (L/R)		40 kHz	125			μs
	Recommended value for ±5% current measurement error	60 kHz	100			
		80 kHz	63			
Current measurement accuracy	FS = Full scale accuracy			±4	±8	%FS

9.1.8 Digital Inputs - opto-isolated - (IN0, IN1, IN2/LSP, IN3/LSN, IN4)

		Min.	Тур.	Max.	Units		
Mada annalismaa	PNP (J4, pin8 connected to GND)	Connect digital input pin to +Vlog to change its state					
Mode compliance	NPN (J4, pin8 connected to +Vlog)	Connect digital in	put pin to GND	to change its	s state		
Default state	Input floating (wiring disconnected)		Logic LOV	V			
	Logic LOW	0		6			
Input voltage	Logic HIGH	11		36	V		
	Absolute maximum	-5		50			
	Logic LOW	0		0.2			
Input current	Logic HIGH	0.65	1.9	3.2	mA		
	Absolute maximum	0		4			
Input frequency			2		kHz		
Minimum pulse			500		μs		
ESD protection	Human body model	±15			kV		

9.1.9 Digital Outputs (OUT0/Brake, OUT1, OUT2, OUT3, OUT4)

		Min.	Тур.	Max.	Units
Mode compliance			PNP 24	V	
Default state	Not supplied (+VLOG floating or to GND)		High-Z (floa	ating)	
Delault state	Normal operation		Logic "Hig	gh"	
	Logic "HIGH"; output current = 0.2A		V _{LOG} -0.2	V _{LOG} -0.8	
	Logic "LOW"; output current = 0, no load		open-collector		
Output voltage	Logic "HIGH", external load to GND		0		V
. 3	Absolute maximum, continuous	-0.3		V _{LOG} +0.3	
	Absolute maximum, surge (duration \leq 1s) [†]	-0.5		V _{LOG} +0.5	
		OU.	T1,2,3,4	0.2	
	Logic "HIGH", source current, continuous	OUT	0/Brake	2	A
Output current		OU.	T1,2,3,4	0.4	
	Logic "HIGH", source current, pulse ≤ 5 s	OUT	OUT0/Brake		A
	Logic "LOW", means High-Z				mA
Minimum pulse width		2			μs
ESD protection	Human body model	±15			kV

Mode compliance			NPN 24	١V	
Default state	Not supplied (+V _{LOG} floating or to GND)		High-Z (flo	ating)	
Delault state	Normal operation		High-Z		
	Logic "LOW"; output current = 0.3A		0.2	0.8	
Output voltage	Logic "HIGH"; output current = 0, no load		open-collector		
	Logic "HIGH", external load to +VLOG		VLOG		V
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3	
	Absolute maximum, surge (duration \leq 1s) [†]	-0.5		V _{LOG} +0.5	
	Logic "LOW" sink surrent continuous	OUT	1,2,3,4	0.3	٨
	Logic "LOW", sink current, continuous	OUT	0/Brake	2	A
Output current	Logic "LOW", sink current, pulse ≤ 5 s	OUT	OUT1,2,3,4		Α
	LOgic LOw, sink current, puise = 5.5	OUT	OUT0/Brake		
	Logic "HIGH", means High-Z				mA
Minimum pulse width		2			μs
ESD protection	Human body model	±15			kV

9.1.10 Brake output (OUT0/Brake)

			Min.	Тур.	Max.	Units
		Out0/Brake: solenoid driver, 24	Α.			
	Not supplied (+VLOG floating or to GNI	0)		High-Z (fl	oating)	
Default state	Immediately after power-up Brake- High-Z (floatin					
	Normal operation	Brake-		High-Z (fl	oating)	
	Logic "LOW" (Brake-)				0.2	
Output voltage	Logic "HIGH"; load present			+V _{LOG}		v
	Logic "HIGH", no load present	Logic "HIGH", no load present		+5		
	Absolute maximum, continuous		-0.5		+V _{LOG} +0.3	
	Logic "LOW", sink current, continuous	s, Brake-			3	А
Output current	Logic "HIGH", leakage current; extern $V_{OUT} = V_{LOG} max = 55V$	Logic "HIGH", leakage current; external load to +V _{LOG} ; $V_{OUT} = V_{LOG}$ max = 55V			0.2	mA

9.1.11 Digital Hall Inputs (Hall1+, Hall1-, Hall2+, Hall2-, Hall3+, Hall3-)¹

			Min.	Тур.	Max.	Units	
Mode compliance			TTI	/ CMOS / Op	en-collecto	r	
Default state	Input floating (Wiring disconnected)		Logic HIGH				
	Logic "LOW"			0	0.8	0.8	
	Logic "HIGH"		2	5			
Input voltage	Floating voltage (Not connected)	H1+, H2+, H3+		4.4		V	
1 5	Floating voltage (Not connected)	H1-, H2-, H3-		1.8			
	Absolute maximum, surge (duratio	n ≤ 1s) [†]	-10		+15		
Innut ourrant	Logic "LOW"; Pull to GND	·			1.2	mA	
Input current	Logic "HIGH"; Internal 4.7KΩ pull-u	up to +5	0	0	0	mA	
Minimum pulse width			2			μs	

Differential mode compliance	RS422 compliance		TIA/EIA-42	2-A	
	Hysteresis	±0.06	±0.1	±0.2	
Input voltage	Differential mode	-14		+14	v
	Common-mode range (A+ to GND, etc.)	-11		+14	
Input impedance, differential			120		Ω
Input frequency	Differential mode	0		10	MHz
Minimum pulse width	Differential mode	50			ns
ESD protection	Human body model	±5			kV

9.1.12 Encoder #1 and #2 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-, A2+, A2-, B2+, B2-, Z2+, Z2-)²

		Min.	Тур.	Max.	Units
Differential mode compliance	For full RS422 compliance, see ¹		TIA/EI	A-422-A	
	Hysteresis	±0.06	±0.1	±0.2	
Input voltage, differential mode	Differential mode	-14		+14	V
	Common-mode range (A+ to GND, etc.)	-11		+14	
	A1+/A1-, B1+/B1-, Z1+/Z1- & A2+/A2-, B2+/B2-, Z2+/Z2-		120		Ω
Input impedance, differential	Differential mode	0		10	MHz
	Differential mode	50			ns

 $^{^1}$ Differential input HALL pins have internal 120 Ω termination resistors connected across when SW1 pins 1,2,3 are ON 2 All differential input pins have internal 120 Ω termination resistors connected across

9.1.13 Analog 0...5V Inputs (REF, FDBK)

		Min.	Тур.	Max.	Units
	Operational range	0		5	
Input voltage	Absolute maximum values, continuous	-12		+18	V
mput voltage	Absolute maximum, surge (duration \leq 1s) [†]			±36	
Input impedance	To GND		18		kΩ
Resolution			12		bits
Integral linearity				±2	bits
Offset error			±2	±10	bits
Gain error			±1%	±3%	% FS ¹
Bandwidth (-3dB)	Software selectable	0		1	kHz
ESD protection	Human body model	±5			kV

9.1.14 SSI, BiSS, EnDAT² Encoder Interface

		Min.	Тур.	Max.	Units	
Differential mode compliance (CLOC	CK, DATA)	TIA/EIA-422				
CLOCK Output voltage	Differential; 50Ω differential load	2.0	2.5	5.0	V	
	Common-mode, referenced to GND	2.3	2.5	2.7	v	
CLOCK frequency	Software selectable	1000, 2	2000, 3000,	kHz		
DATA Input hysteresis	Differential mode	±0.1	±0.2	±0.5	V	
Data input impedance	Termination resistor on-board		120		Ω	
	Referenced to GND	-7		+12		
DATA Input common mode range	Absolute maximum, surge (duration \leq 1s) [†]	-25		+25	V	
Brin input common mode range	Software selectable	Single-turn / Multi-turn		rn		
			Counting direction			
DATA resolution	Total resolution (single turn or single turn + multi turn)			56	bit	
	If total resolution >31 bits, some bits must be ignored by software se	etting to achieve a max 31 bits resolution				
Protocol		Bi	BiSS C mode (sensor mode)			

9.1.15 RS-232

		Min.	Тур.	Max.	Units
Standards compliance		TIA/EIA-232-C			
Bit rate	Depending on software settings	9600		115200	Baud
Short-circuit protection	232TX short to GND	Guaranteed			
ESD protection	Human body model	±2			kV

9.1.16 CAN-Bus

		Min.	Тур.	Max.		Units	
Compliance	ISO1189	ISO11898, CiA-301v4.2, CiA 305 v2.2.13, 402v3.0					
Bit rate	Software selectable	125		1000		kbps	
Bus length	1Mbps			25			
	500Kbps			100		m	
	≤ 250Kbps			250			
Resistor	Between CAN-Hi, CAN-Lo	none on-board					
Nodo oddrogoing	Hardware: by SW1 switch	CANopen: 1 ÷ 15 & 127 (LSS non-configured); TMLCAN: 1-15 & 255					
Node addressing	Software	1 ÷ 127 (CANopen); 1- 255 (TMLCAN)					
Voltage, CAN-Hi or CAN-Lo to GND		-26		26		V	
ESD protection	Human body model	±15				kV	
	Logic "HIGH", leakage current; external load to	+VLOG; VOUT = VLOG max	= 55V		0.2	mA	

9.1.17 Supply Output (+5V)

		Min.	Тур.	Max.	Units
+5V output voltage	Current sourced = 250mA	4.8	5	5.2	V
+5V output current		600	650		mA
Short-circuit protection		Protected			
Over-voltage protection		NOT protected			
ESD protection	Human body model 0.1nF 1.5 kΩ	±1			kV

¹ "FS" stands for "Full Scale"

 $^{^{\}rm 2}$ EnDAT 2.2 protocol is available starting with F514K firmware version

³ Availabile only for EnDAT and BiSS feedback options

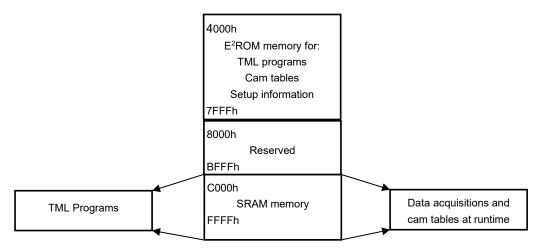
9.1.18 Safe Torque OFF (STO1+; STO1-; STO2+; STO2-)

		Min.	Тур.	Max	Units	
Safety function	According to EN61800-5-2	STO (Safe Torque OFF)				
EN 61800-5-1/ -2 and EN 61508-5-3/ -4	Safety Integrity Level	safety integrity level 3 (SIL3)				
Classification	PFHd (Probability of Failures per Hour - dangerous)	8*10 ⁻¹⁰ hour ⁻¹ (0.8 FIT)			Г)	
EN13849-1 Classification	Performance Level	Cat3/PLe				
EN 13649-1 Classification	MTTFd (meantime to dangerous failure)	377	377 years			
Mode compliance		PNP				
Default state	Input floating (wiring disconnected)	Logic LOW				
	Logic "LOW" (PWM operation disabled)	-20		5.6		
Input voltage	Logic "HIGH" (PWM operation enabled)	18		36	V	
	Absolute maximum, continuous	-20		+40		
Input current	Logic "LOW"; pulled to GND		0		mA	
Input current	Logic "HIGH", pulled to +V _{LOG}		5	10	IIIA	
Diagnosis	Ignored high-low-high			5	ms	
Pulse duration	Accepted pulse			20	Hz	
PWM operation delay	From external STO low-high transition to PWM operation enabled			30	ms	
ESD protection	Human body model	±2			kV	

9.1.19 Conformity

		Min.	Тур.	Max.	Units
EU Declaration	2014/30/EU (EMC), 2014/35/EU (LVD), 2011/65/EU (RoHS), 1907/2006/EC (RE/ EC 428/2009 (non dual-use item, output frequency limited to 590Hz)	ACH), 93/68	B/EEC (CE M	Marking D	irective),

† Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.


10 Memory Map

iGVD71 BX has 2 types of memory available for user applications: 16K×16 SRAM and up to 16K×16 serial E²ROM.

The SRAM memory is mapped in the address range: C000h to FFFFh. It can be used to download and run a TML program, to save real-time data acquisitions and to keep the cam tables during run-time.

The E²ROM is mapped in the address range: 4000h to 7FFFh. It is used to keep in a non-volatile memory the TML programs, the cam tables and the drive setup information.

Remark: EasyMotion Studio handles automatically the memory allocation for each motion application. The memory map can be accessed and modified from the main folder of each application

