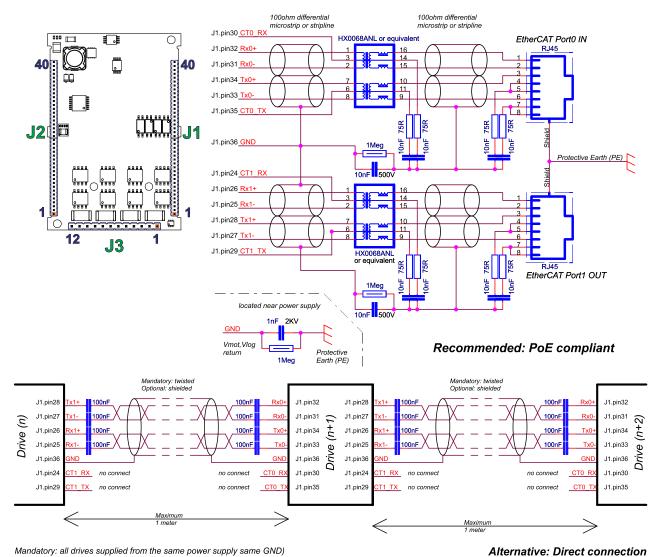


Top view; Pins facing upward; All dimensions are in mm; Header pitch of J1 & J2 is 1.27mm and for J3 is 2.54 mm. Drawing not to scale. The free area around the mounting holes (free of components or other copper features) has a 5.5mm diameter.

Motor – sensor configurations								
Motor Sensor	PMSM	BLDC	DC BRUSH	STEP (2-ph)	STEP (3-ph)			
Incr. Encoder	Θ		5	3				
Incr. Encoder + Dig. Hall	3	3						
Linear Halls	T							
Digital Hall control only	T							
Analog Sin/Cos encoder	3	3	5	E				
SSI / BiSS-C/ EnDAT/ TAMAGAWA/ Panasonic/ Nikon / Sanyo Denki	T	T	T	3				
Tacho			T					
Open-loop (no sensor)				3	3			

Features

- Motion controller and drive in a single compact unit based on MotionChip [™] technology
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- Advanced motion control capabilities (PVT, S-curve, electronic cam)
- Motor supply: 12-80V; Logic SELV/ PELV supply: 9-36V; STO SELV/


PELV supply: 18-40V

- Motor output current:
- Nominal*: 15A_{RMS} / 21.2A amplitude;
- Peak: 28.3A_{RMS} / 40A amplitude.
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- NTC/PTC analogue Motor Temperature sensor input
- Communication interfaces:
 USB
- -03B
- LV-TTL UART (RS-232 with external transceiver)
 - dual 100Mbps EtherCAT® ports

	Feedback Devices (dual-loop support)
	1 st feedback devices supported:
	Incremental encoder interface (single ended or differential)
	 Analogue sin/cos encoder interface (differential 1V_{pp})
	Digital Hall sensor interface (single-ended and open collector)
	Linear Hall sensors interface
	2 nd feedback devices supported:
	Incremental encoder interface (differential)
	 SSI / BiSS-C/ EnDAT/ TAMAGAWA/ Panasonic/ Nikon/ Sanyo Denki encoder interface
•	Pulse & direction reference (single-ended or differential) capability
•	STO: 2 safe torque-off inputs, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1; -2/ EN61508-3; -4/ EN ISO 13849-1.
•	6 x digital inputs, 12-36V, PNP/NPN software selectable: 2 x for limit switches or general-purpose, 4 x general-purpose
•	5 x digital outputs, 5-36V: 0.4A NPN / 0.3A PNP, polarity software selectable: Ready, Error or general-purpose
•	1 x dedicated motor brake or general-purpose output (OUT0): 2A NPN / 1.5A PNP, polarity software selectable
•	2 x analogue inputs software selectable: 12-bit 0-5V: Reference, Feedback or general-purpose
•	Commissioning (set-up) possible through RS232, FoE (file-over- EtherCAT⊛), EoE (Ethernet-over-EtherCAT⊛)
•	EtherCAT® connection between multiple MZ drives: direct 1:1 without any series components
•	EtherCAT [®] connection to standard RJ45: requires external magnetics (may be integrated into RJ45)
•	255 h/w addresses selectable by h/w pins configuration
•	16k x 16 SRAM memory for data acquisition
•	24k x16 E ² ROM to store setup data, TML motion programs, cam tables and other user data
th	t is mandatory to mount the iPOS8015 MZ on a metallic support using e provided mounting holes. To achieve the rated current capability, the eat sink temperature must not exceed 75°C .

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa:
ALN June 5, 2024			June 5, 2024	
		Title of document	N° document	
TE	CHNOSOFT	iPOS8015 MZ-CAT	P022.036.E122.DSH.01A	
		PRODUCT DATA SHEET		Page: 1 of 6

Mandatory: all drives supplied from the same power supply same GND)

Mating Connectors							
Wher	When J3 is plugged into a connector and maximum current should not exceed 12.7A Sine amplitude						
Ref	Producer	Part No.	Description				
	Harwin	M52-5012045	1x20 contacts, socket 1.27mm-pitch; 4 pcs needed for one drive				
J1, J2	Samtec	SMS-140-01-L-S	1x40 contacts, socket 1.27mm-pitch; 2 pcs				
5	Samec	SMS-140-01-G-S	needed for one drive				
J3	Mill-Max	801-47-012-10- 001000	1x12 contacts, High-current socket 2.54mm-pitch accepting 0.635mm square pin; 1 pcs is needed for one drive; the current should not exceed 12.7A				
When	When J3 is soldered directly onto a motherboard and the maximum current can exceed 13A Sine amplitude						
Ref	Producer	Part No.	Description				
J1, J2	Harwin	M52-5012045	1x20 contacts, socket 1.27mm-pitch; 4 pcs needed for one drive				
J3 The pins are directly soldered onto a motherboard for increased current capability							

	Pin	Name	Туре	Description
	1,2	GND	-	Return ground for motor. Internally connected to all GND signals except STO GND.
	3,4	Cr/B-	0	Chopping resistor / Phase B- for 2-ph steppers
	5,6	C/B+	0	Phase C for 3-ph motors, B+ for 2-ph steppers
J3	පු 7,8 B/A-		0	Phase B for 3-ph motors, A- for 2-ph steppers, Motor- for DC brush motors
	9,10	A/A+	ο	Phase A for 3-ph motors, A+ for 2-ph steppers, Motor+ for DC brush motors
	11,12	+Умот	I	Positive terminal of the motor supply: 12 to 80V _{DC} .

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa:
ALN	June 5, 2024		June 5, 2024	
	·	Title of document	N° document	
TE C	ECHNOSOFT	iPOS8015 MZ-CAT	P022.036.E122.DSH.01A	
-		PRODUCT DATA SHEET		Page: 2 of 6

iPOS8015 MZ-CAT DATASHEET P/N: P022.036.E122

-Preliminary-

	Pin	Name	Туре					
	1	Temp Mot	I	NTC/PTC 3.3V input. Used to read an analog temperature value				
	2	TTL TX	0	Low voltage TTL UART data transmission				
	3	TTL RX	1	Low voltage TTL UART data reception				
	4	USB Data-	I/O	USB Data negative				
	5	USB Data+	I/O	USB Data positive				
	6	USB V+	I	USB +5V input				
	7	P1 LED	0	ECAT OUT port LED				
	8	P0 LED	0	ECAT IN port LED				
	9	Axis ID Bit7	I					
	10	Axis ID Bit6		-8-bit H/W Axis ID register. -Pin 16 is Bit 0 Pin 9 is Bit 7 of the Axis value.				
	11	Axis ID Bit5	1	 Bit = 0, if pin is left unconnected. 				
	12	Axis ID Bit4	I	 Bit = 0, if pin is ten unconnected. Bit = 1, if pin is connected to GND. 				
	13	Axis ID Bit3	1	AxisID values: from 1 to 255. AxisID = 255 also				
	14	Axis ID Bit2	1	when all pins are left unconnected.				
	15	Axis ID Bit1	1	In EtherCAT, when Axis ID is 255, the register called				
	16	Axis ID Bit0	1	"configured station alias" will be 0.				
	17	RUN	0	Anode of Run LED (EtherCAT status machine).				
	18	ERR	0	Anode of Error LED (EtherCAT status machine).				
	19	Spi2 Clk	0	Reserved. Do not use				
	20	Spi2 Out	0	Reserved. Do not use				
	21	Spi2 In	Reserved. Do not use					
22 Spi2 CS O Reserved. Do not use								
	23	Spi2 Irq	1	Reserved. Do not use				
				Connect to center tap of OUT port magnetics PHY				
	24	CT1_Rx	-	Rx.				
	25	RX1-	I/O	Receive/Transmit negative, OUT port. Connect to magnetics PHY RX1.				
۲	26	RX1+	I/O	Receive/Transmit positive, OUT port. Connect to magnetics PHY RX1.				
	27	TX1-	I/O	Transmit/Receive negative, OUT port. Connect to magnetics PHY TX1.				
	28	TX1+	I/O	Transmit/Receive positive, OUT port. Connect to magnetics PHY TX1.				
	29	CT1_Tx	-	Connect to center tap of OUT port magnetics PHY Tx.				
	30	CT0_Rx	-	Connect to center tap of IN port magnetics PHY Rx.				
	31	RX0-	I/O	Receive/Transmit negative, IN port. Connect to magnetics PHY RX0.				
	32	RX0+	I/O	Receive/Transmit positive, IN port. Connect to magnetics PHY RX0.				
	33	TX0-	I/O	Transmit/Receive negative, IN port. Connect to magnetics PHY TX0.				
	34	TX0+	I/O	Transmit/Receive positive, IN port. Connect to magnetics PHY TX0.				
	35	CT0_Tx	-	Connect to center tap of IN port magnetics PHY Tx.				
	36	GND	-	Return ground. Internally connected to all GND signals except STO GND.				
	37	STO2-	Т	Safe Torque Off input 2, negative return (opto- isolated, 0V)				
	38	STO2+	I	Safe Torque Off input 2, Apply between both positive input (opto-STO1+, STO2+ and isolated, 18÷40V) STO1-, STO2- 24V DC				
	39	STO1-	I	Safe Torque Off input 1, from SELV/ PELV negative return (opto- isolated, 0V) PWM output operation				
	40	STO1+	I	Safe Torque Off input 1, positive input (opto- isolated, 18÷40V)				

	Pin	Name	Туре	Description				
	1	LH1	1	Linear Hall 1 input				
	2	LH2	I	Linear Hall 2 input				
	3	LH3	1	Linear Hall 3 input				
	4	FDBK	I	Analogue input, 12-bit, 0-5V. Reads analogue feedback (tacho), or general purpose				
	5	REF	Т	Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input				
	6	Hall 3	1	Digital input Hall 3 sensor				
	7	Hall 2	÷	Digital input Hall 2 sensor				
	8	Hall 1		Digital input Hall 1 sensor				
	0	Hall I	<u> </u>	Return ground. Internally connected to all GND				
	9	GND	-	signals except STO GND.				
	10	IN5		12-36V general-purpose digital PNP/NPN input				
	11	IN4		12-36V general-purpose digital PNP/NPN input				
	12	IN1		12-36V general-purpose digital PNP/NPN input				
	13	IN0		12-36V general-purpose digital PNP/NPN input				
	14	IN2/LSP	I	12-36V digital PNP/NPN input. Positive limit switch input				
	15	IN3/LSN	Т	12-36V digital PNP/NPN input. Negative limit swi input				
	16	OUT3	0	5-36V general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable				
	17	OUT2	0	5-36V general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable				
	18	OUT5	0	5-36V general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable				
	19	OUT4	0	5-36V general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable				
	20	OUT1	0	5-36V general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable				
	21	OUT0	0	5-36V general-purpose digital output, 1.5A PNP/ 2 NPN, software selectable				
72	22	Z1+	<u> </u>	Incr. encoder1 Z single-ended, or Z+ diff. input,				
	23	Z1-	1	Incr. encoder1 Z- diff. input				
	24	B1+/Cos+	I	Incr. encoder1 B single-ended, or B+ diff. input, or analogue encoder Cos+ diff. input				
	25	B1-/Cos-	I.	Incr. encoder1 B- diff. input, or analogue encoder Cos- diff. input				
	26	A1+/Sin+	T	Incr. encoder1 A single-ended, or A+ diff. input, or analogue encoder Sin+ diff. input				
	27	A1- /Sin-	I.	Incr. encoder1 A- diff. input, or analogue encoder Sin- diff. input				
	28	Z2+	I	Incr. encoder2 Z+ diff. input; has 120Ω resistor between pins 28 and 29 Incr. encoder2 Z- diff. input; has 120Ω resistor				
	29	Z2-	1	between pins 28 and 29				
	30	B2-/Dir- /CLK-/MA-	I/O	Incr. encoder2 B- diff. input, or Dir, or Clock- for SSI, or Master- for BiSS; has 120Ω resistor between pins 30 and 31				
	31	B2+/Dir+/ CLK+/MA+	I/O	Incr. encoder2 B+ diff. input, or Dir+-, or Clock+ for SSI, or Master+ for BiSS; has 120Ω resistor between pins 30 and 31				
	32	A2+/Pulse+ / Data+/SL+	I	Incr. encoder2 A+ diff. input, or Pulse+, or Data+ for SSI, or Slave+ for BiSS; has 120Ω resistor between pins 32 and 33				
	33	A2- /Pulse-/ Data-/SL-	I	Incr. encoder2 A- diff. input, or Pulse-, or Data- for SSI, or Slave- for BiSS; has 120Ω resistor between pins 32 and 33				
	34	Reserved	-	Reserved. Do not use				
	35	Reserved	-	Reserved. Do not use				
	36	Reserved	-	Reserved. Do not use				
	37	Reserved	-	Reserved. Do not use				
	38	+5V _{OUT}	0	5V output supply for I/O usage				
	39	-V _{LOG}	1	Negative terminal of the logic supply input: 9 to $36V_{DC}$ from SELV/ PELV type power supply.				
	40	+V _{LOG}	I	Positive terminal of the logic supply input: 9 to $36V_{DC}$ from SELV/ PELV type power supply.				

Name First edition		Document template: P099.TQT.564.0001	Last edition	Visa:
ALN June 5, 2024			June 5, 2024	
$\overline{}$	·	Title of document	N° document	
TE (S)	CHNOSOFT	iPOS8015 MZ-CAT	P022.036.E122.DSH.01A	
		PRODUCT DATA SHEET		Page: 3 of 6

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified): VLOG = 24 VDC; VMOT = 80VDC; FPWM = 20kHZ

Supplies start-up / shutdown sequence: -any-

Load current (sinusoidal amplitude) = 21.2 Å

Operating Condition			Min.	Тур.	Max.	Units	
Ambient temperatur	re		0		40 ¹	°C	
Ambient humidity		Non-condensing	0		90	%Rh	
Altitude / pressure ²		Altitude (vs. sea level)	-0.1	0 ÷ 2.5	2	Km	
· ·		Ambient Pressure	0 ²	0.75 ÷ 1	10.0	atm	
Storage Condition			Min.	Тур.	Max.	Units	
Ambient temperatur	re		-40		100	°C	
Ambient humidity Ambient Pressure		Non-condensing	0		100 10.0	%Rh atm	
		Not powered; applies to	Ū		±0.5	kV	
ESD capability (Hur body model)	nan	any accessible part					
<u> </u>	•	Original packaging		T	±15	kV	
Mechanical Mount Airflow	ing		Min.	Тур.	Max. tion ³ , close	Units	
AITIOW	Ret	ween adjacent drives	30	rai convec			
Spacing required	_	ween drives and nearby					
for vertical	wal		30			mm	
mounting	Bet	ween drives and roof-top	20			mm	
		ween adjacent drives	4			mm	
Spacing required	Bet wal	ween drives and nearby	5			mm	
mounting Spa ren		ace needed for drive	10			mm	
		noval	-				
Incortion force		ween drives and roof-top	15	10	0	mm	
Insertion force Extraction force		ng recommended mating	8	12 10	8	N N	
	_	unted	0		nt capabili		
Heat sink		mounted	r		utput curre		
Environmental Ch	aract	eristics	Min.	Тур.	Max.	Units	
Size (Length x	1		64	4 x 43.8 x	15.7	mm	
Width x Height)	Glo	bal size	~2.	52 x 1.72	x 0.62	inch	
Weight			~34 g				
Cleaning agents		cleaning is recommended	Only Water- or Alcohol- based				
Protection degree		cording to IEC60529, UL508	IP20 -				
Logic Supply Inpu			Min.	Тур.	Max.	Units	
		minal values	9		36	V _{DC}	
		Absolute maximum values, Irive operating but outside			40	VDC	
		aranteed parameters	8		40	V DC	
Supply voltage		solute maximum values,			40		
		tinuous	-0.6		42	VDC	
	con	111111111111111111111111111111111111111					
	_	solute maximum values,	1		. 4E	V	
	Abs		-1		+45	V	
	Abs sur	solute maximum values,	-1	150	+45	V	
Supply current	Abs sur +VL +VL	solute maximum values, ge (duration ≤ 10 ms) [†] $\alpha_{G} = 12V$ $\alpha_{G} = 24V$	-1	100	+45	-	
	Abs sur +VL +VL +VL	solute maximum values, $ge (duration \le 10ms)^{\dagger}$ ge = 12V ge = 24V ge = 40V	-1		+45	-	
Utilization	Abs sur +VL +VL +VL Acc	solute maximum values, ge (duration ≤ 10 ms) [†] $_{OC} = 12V$ $_{OC} = 24V$ $_{OC} = 40V$ $_{OC} = 40V$ $_{OC} = 004$	-1	100 80	+45 	-	
Utilization Category	Abs <u>sur</u> +V _L +V _L +V _L (IPI	solute maximum values, $ge (duration \le 10ms)^{\dagger}$ ge = 12V ge = 24V ge = 24V ge = 40V herefore the two sets of two		100 80 D	C-1	mA	
Utilization	Abs <u>sur</u> +V _L +V _L +V _L Acc (IPI it (+V	solute maximum values, ge (duration ≤ 10ms) [†] os = 12V os = 24V os = 24V os = 40V to 60947-4-1 EAK<=1.05*INOM) mot)	Min.	100 80 D Typ.	C-1 Max.	mA	
Utilization Category	Abs sur +V _L +V _L +V _L Acc (IPI it (+V	solute maximum values, $ge (duration \le 10ms)^{\dagger}$ ge = 12V ge = 24V ge = 24V ge = 40V herefore the two sets of two		100 80 D	C-1	mA	
Utilization Category Motor Supply Inpu	Abs <u>sur</u> +V _L +V _L +V _L Acc (IPI it (+V Abs	solute maximum values, ge (duration $\leq 10ms$) [†] $_{06} = 12V$ $_{06} = 24V$ $_{06} = 24V$ $_{06} = 40V$ $_{06} = 40V$ $_{07} = 40V$	Min.	100 80 D Typ.	C-1 Max.	mA Units V _{DC}	
Utilization Category	Abs sur +VL +VL +VL Acc (IPI Acc (IPI Abs driv gua	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Min. 12	100 80 D Typ.	C-1 Max. 82	mA Units V _{DC}	
Utilization Category Motor Supply Inpu	Abs sur +VL +VL +VL Acc (IPI Acc (IPI Abs driv gua	solute maximum values, ge (duration ≤ 10 ms) [†] $_{06} = 12V$ $_{06} = 24V$ $_{06} = 24V$ $_{06} = 40V$ $_{}$ to 60947-4-1 EAK<=1.05*INOM) mon minal values solute maximum values, re operating but outside	Min. 12 11	100 80 D Typ.	C-1 Max. 82 94	mA Units V _{DC} V _{DC}	
Utilization Category Motor Supply Inpu	Abs sur +VL +VL +VL Acc (IPI Acc (IPI it (+V Abs driv gua Abs	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Min. 12	100 80 D Typ.	C-1 Max. 82	mA Units V _{DC}	
Utilization Category Motor Supply Inpu	Abs sur +VL +VL Acc (IPI Abs driv gua Abs sur Idle	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Min. 12 11 -1	100 80 D Typ. 80	C-1 Max. 82 94 95 5	MA	
Utilization Category Motor Supply Inpu Supply voltage	Abs surr +VL +VL +VL Acc (IPI t (+V Nor Abs driv gua Abs surr Idle Opt	solute maximum values, ge (duration ≤ 10ms) [†] $_{OG} = 12V$ $_{OG} = 24V$ $_{OG} = 40V$ $_{OG} = 40V$	Min. 12 11 -1	100 80 D Typ. 80	C-1 <u>Max.</u> <u>82</u> 94 95	MA	
Utilization Category Motor Supply Inpu	Abs surr +Vi +Vi +Vi +Vi +Vi +Vi +Vi +Vi +Vi +Vi	solute maximum values, ge (duration ≤ 10 ms) [†] $_{OG} = 12V$ $_{OG} = 24V$ $_{OG} = 24V$ $_{OG} = 40V$ $_{:to} 60947-4-1$ EAK<=1.05*INOM) mon minal values solute maximum values, ranteed parameters solute maximum values, ge (duration ≤ 10 ms) [†] $_{OG}$	Min. 12 11 -1	100 80 D Typ. 80	C-1 Max. 82 94 95 5 +40	MA	
Utilization Category Motor Supply Inpu Supply voltage	Abs surv +VL +VL +VL Accc (IPH tt (+V Nor Abs driv gua Abs surv Idle Op Abs circ	solute maximum values, ge (duration ≤ 10 ms) [†] $_{OG} = 12V$ $_{OG} = 24V$ $_{OG} = 24V$ $_{OG} = 40V$ $_{S} to 60947-4-1$ EAK<=1.05*INOM) mor) minal values solute maximum values, re operating but outside tranteed parameters solute maximum values, ge (duration ≤ 10 ms) [†] errating solute maximum value, short uit condition $_{T}$	Min. 12 11 -1	100 80 D Typ. 80	C-1 Max. 82 94 95 5	MA	
Utilization Category Motor Supply Inpu Supply voltage Supply current	Abs surn +VI +VI +VI +VI (IPf (IPf Abs driv Abs surn Idle Op Abs circ (du	solute maximum values, $ge (duration \le 10ms)^{\dagger}$ ge = 12V ge = 24V ge = 24V	Min. 12 11 -1	100 80 D Typ. 80	C-1 Max. 82 94 95 5 +40	MA	
Utilization Category Motor Supply Inpu Supply voltage Supply current Utilization	Abs sur +Vi +Vi +Vi Acc (IPF (IPF Acc (IPF (IPF Acc (IPF (IPF (IPF (IPF (IPF (IPF (IPF (IPF (IPF (IPF)) (IPF (IPF)) (IPF (IPF)) (IPF) (IPF) (IPF)) (IPF) (IPF) (IPF)) (IPF) (IPF) (IPF)) (IPF) (IPF)) (IPF) (IPF)) (IPF) (IPF)) (I	solute maximum values, ge (duration ≤ 10ms) [†] $_{coc} = 12V$ $_{coc} = 24V$ $_{coc} = 40V$ $_{coc} = 4$	Min. 12 11 -1	100 80 D Typ. 80 1 ±20	C-1 Max. 82 94 95 5 +40	MA	
Utilization Category Motor Supply Inpu Supply voltage Supply current Utilization Category	Abs sur, +Vi, +Vi, +Vi, Acc (IPI tt (+V Abs driv gua Abs sur, Abs circ (du Acc (IPI	solute maximum values, $ge (duration \le 10ms)^{\dagger}$ ge = 12V ge = 24V ge = 24V	Min. 12 11 -1 -40	100 80 D Typ. 80 1 ±20	C-1 <u>Max.</u> 82 94 95 <u>5</u> +40 45 C-3	MA Units V _{DC} V _{DC} V MA A	
Utilization Category Motor Supply Inpu Supply voltage Supply current	Abs surn +VL +VL +VL +VL +VL Acc (IPI (IPI	solute maximum values, ge (duration ≤ 10ms) [†] $_{coc} = 12V$ $_{coc} = 24V$ $_{coc} = 40V$ $_{coc} = 4$	Min. 12 11 -1	100 80 Typ. 80 1 ±20 D Typ.	C-1 Max. 82 94 95 5 +40 45	MA	
Utilization Category Motor Supply Inpu Supply voltage Supply current Utilization Category Supply Output (+5	Abs surn +VL +VL +VL +VL +VL Acc (IPI (IPI	solute maximum values, ge (duration ≤ 10 ms) [†] $_{00} = 12V$ $_{00} = 24V$ $_{00} = 24V$ $_{00} = 40V$ $_{10} = 40V$ $_{10} = 100$ $_{10} = 100$ minal values solute maximum values, ge (duration ≤ 10 ms) [†] $_{10} = 100$ $_{10} = 1000$ $_{10} = 1000$ $_{10} $	Min. 12 11 -1 -40 Min.	100 80 D Typ. 80 1 ±20	C-1 Max. 82 94 95 5 +40 45 C-3 Max.	MA Units VDC VDC VDC VDC VDC VDC	
Utilization Category Motor Supply Inpu Supply voltage Supply current Utilization Category Supply Output (+5 Output voltage	Abs surn +VL +VL +VL +VL +VL Acc (IPI (IPI	solute maximum values, ge (duration ≤ 10 ms) [†] $_{00} = 12V$ $_{00} = 24V$ $_{00} = 24V$ $_{00} = 40V$ $_{10} = 40V$ $_{10} = 100$ $_{10} = 100$ minal values solute maximum values, ge (duration ≤ 10 ms) [†] $_{10} = 100$ $_{10} = 1000$ $_{10} = 1000$ $_{10} $	Min. 12 11 -1 -40 Min. 4.95	100 80 D Typ. 80 1 ±20 D Typ. 5.11 450 NOT β	C-1 82 94 95 5 +40 45 C-3 Max. 5.25 rotected	MA	
Utilization Category Motor Supply Inpu Supply voltage Supply voltage Utilization Category Supply Output (+5 Output voltage Output voltage	Abs surr +Vi +Vi +Vi +Vi +Vi +Vi +Vi +Vi +Vi +Vi	solute maximum values, ge (duration ≤ 10 ms) [†] $_{00} = 12V$ $_{00} = 24V$ $_{00} = 24V$ $_{00} = 40V$ $_{10} = 40V$ $_{10} = 100$ $_{10} = 100$ minal values solute maximum values, ge (duration ≤ 10 ms) [†] $_{10} = 100$ $_{10} = 1000$ $_{10} = 1000$ $_{10} $	Min. 12 11 -1 -40 Min. 4.95	100 80 D Typ. 80 1 ±20 D Typ. 5.11 450 NOT β	C-1 Max. 82 94 95 5 +40 45 C-3 Max. 5.25	MA Units VDC VDC VDC VDC VDC VDC	

Motor Outputs (A	V/A+, B/A-, C/B+, Cl		Min.	Тур.	Max.	Units	
	PMSM motors sin	usoidal			21.2		
Nominal current	amplitude	and DMC				-	
with heat sink4	PMSM motors sine DC/BLDC motors				15 18.3		
	PMSM motors sin					A	
Nominal current	amplitude	0301001			12	-	
without heat sink	PMSM motors sin	usoidal RMS			8.5		
	DC/BLDC motors				10.4		
Peak current	maximum 12.5 s		-40		+40	A	
Short-circuit prote				70		А	
Short-circuit prote			1.5		3.3	μS	
On-state voltage	Nominal output						
drop	including typic			0.15		V	
Voltage efficiency	connector contact	resistance		100		%	
Off-state leakage				100 ±0.5	±1	mA	
OII-State leakage		FPWM		±0.5	ΞI		
	Recommended	20 kHz	400				
	value, for current	40 kHz	200				
	ripple max. ±5%	60 kHz	150			μН	
	of full range; +V _{MOT} = 80 V	80 kHz	100				
Motor inductance (phase-to-phase)	+ V MOT = 00 V	100 kHz	80				
(priase-to-priase)	Minimum value,	20 kHz	150		-		
	limited by short-	60 kHz	50			1	
	circuit	40 kHz	40			μH	
	protection;	80 kHz	20			4	
	+V _{MOT} = 80 V	100 kHz	10				
	Recommended	20 kHz	330				
Motor electrical time-constant	value for ±5%	40 kHz	170				
(L/R)	current measurement	60 kHz 80 kHz	140 80			μs	
	error	100 kHz	66				
Current							
measurement	FS = Full Scale ac	curacy	-9.3	+/- 3.4	+9.3	%FS	
	s (Hall1, Hall2, Hall	3)	Min.	Тур.	Max.	Units	
Mode compliance			TTL	/ CMOS	/ Open-co	llector	
Default state	Input floating			Logic	HIGH		
Delault state	(Wiring disconnect	ted)		-	Logic HIGH		
	Logic "LOW"			0	0.8		
	Logic "HIGH"		2	5			
Input voltage	Floating voltage (Not connected)			4.4		V	
	Absolute maxim	num, surge					
		ium, suige	-10		+15		
	(duration ≤ 1s) [†]				4.0		
Input current	Logic "LOW"; Pull Logic "HIGH"; Int	to GND			1.2	mA	
input current	pull-up to +5		0	0	0	ШA	
Minimum pulse wi			2			μs	
ESD protection	Human body mode	əl	±5			kV	
Linear Hall Input	s (LH1, LH2, LH3)	-	Min.	Тур.	Max.	Units	
Input voltage	Operational range		0	0.5÷4.5	4.9	V	
U	Absolute maximum	values,	-7		+7		
la nutura karan	continuous		-7		+/		
Input voltage	Absolute maximum,	surge			+14	V	
	+ -		14		+14	1	
	$(duration \le 1s)^{T}$	-	-11				
Input current	$(duration \le 1s)^{T}$ Input voltage 0+5	V	-11 0		0.2	mA	
Input current Interpolation	$\frac{(\text{duration} \le 1\text{s})}{\text{Input voltage } 0+5}$				0.2		
Interpolation Resolution	$(duration \le 1s)$		0		0.2 11	bits	
Interpolation Resolution Frequency	(duration ≤ 1s) Input voltage 0+5 Depending on softw	are settings	0		0.2	bits kHz	
Interpolation Resolution Frequency ESD protection	$\frac{(\text{duration} \le 1\text{s})}{\text{Input voltage } 0+5}$	are settings	0		0.2 11	bits	
Interpolation Resolution Frequency ESD protection Digital Inputs	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model	vare settings	0	Тур.	0.2 11	bits kHz	
Interpolation Resolution Frequency ESD protection Digital Inputs (IN0, IN1, IN2/LS)	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5	vare settings	0 0 ±1		0.2 11 1 Max.	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5	vare settings 5, IN6)⁵	0 0 ±1	P	0.2 11 1 Max.	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (IN0, IN1, IN2/LS)	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5	vare settings 5, IN6)⁵	0 0 ±1	P	0.2 11 1 Max.	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin	vare settings 5, IN6)⁵	0 0 ±1	P	0.2 11 1 Max.	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin disconnected)	vare settings 5, IN6)⁵	0 ±1 Min.	F	0.2 11 1 Max. PNP c LOW	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin- disconnected) Logic "LOW" Logic "HIGH" Hysteresis	rare settings 5, IN6) ⁵ g	0 ±1 Min.	F Logi	0.2 11 1 Max. NP c LOW 2.2	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin- disconnected) Logic "LOW" Logic "HGH" Hysteresis Floating voltage (no	g bt connected)	0 ±1 Min. -10 6.3 1.2	P Logi 0 24	0.2 11 1 Max. NP c LOW 2.2 36 2.8	bits kHz kV	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance Default state	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin- disconnected) Logic "LOW" Logic "HGH" Hysteresis Floating voltage (nor Absolute maximum	g bt connected) , continuous	0 ±1 Min. -10 6.3	F Logi 0 24 2.4	0.2 11 1 Max. NP c LOW 2.2 36	bits kHz kV Units	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance Default state	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin disconnected) Logic "LOW" Logic "HIGH" Hysteresis Floating voltage (nd Absolute maximum	g bt connected) , continuous	0 ±1 Min. -10 6.3 1.2 -10	F Logi 0 24 2.4	0.2 11 1 Max. NP c LOW 2.2 36 2.8 +39	bits kHz kV Units	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance Default state	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin disconnected) Logic "LOW" Logic "HIGH" Hysteresis Floating voltage (no Absolute maximum Absolute maximum (duration ≤ 1s) [†]	g t connected) , surge	0 ±1 Min. -10 6.3 1.2	F Logi 0 24 2.4	0.2 11 1 Max. NP c LOW 2.2 36 2.8	bits kHz kV Units	
Interpolation Resolution Frequency ESD protection Digital Inputs (INO, IN1, IN2/LSI Mode compliance Default state	(duration ≤ 1s) Input voltage 0+5 Depending on softw Human body model P, IN3/LSN, IN4, IN5 Input floating (wirin disconnected) Logic "LOW" Logic "HIGH" Hysteresis Floating voltage (nd Absolute maximum	g t connected) , surge	0 ±1 Min. -10 6.3 1.2 -10	F Logi 0 24 2.4	0.2 11 1 Max. NP c LOW 2.2 36 2.8 +39	bits kHz kV Units	

⁴ It is mandatory to mount the iPOS8015 MZ on a metallic support using the provided mounting holes. To achieve the rated current capability, the heat sink temperature must not exceed **75°C**.
⁵ The digital inputs and outputs are software selectable as PNP or NPN

¹Operating temperature at higher temperatures is possible with reduced current and power ratings ² iPOS8015 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency. ³ In case of forced cooling (conduction or ventilation) the spacing requirements may drop substantially down to zero as long as the ambient temperature is kept below the maximum encenting limit.

		PRODUCT DATA SHEET		Page: 4 of 6
	CHNOSOFT	iPOS8015 MZ-CAT	P022.036.E122.DSH.01A	
^		Title of document	N° document	
ALN	June 5, 2024		June 5, 2024	
Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa:

Mode complia	ance		NPN			
Default state		Input floating (wiring disconnected)		Logic HIGH		
		Logic "LOW"		0	2.2	
			0.0	-		
		Logic "HIGH"	6.3	24	36	
		Hysteresis	1.2	2.4	2.8	
Input voltage		Floating voltage (not connected)		15		V
		Absolute maximum, continuous	-10		+39	
		Absolute maximum, surge $(duration \le 1s)^{\dagger}$	-20		+40	
		Logic "LOW"; Pulled to GND		8	10	
Input current		Logic "HIGH"; Pulled to +24V	0	0	0	mA
Input frequen	ICV	Logic HIGH, Fulled to +24V	0	0	10	kHz
Minimum pulse			6			μs
ESD protection		Human body model	±5			kV
Encoder1 In		+, B1-, Z1/Z1+, Z1-)	Min.	Тур.	Max.	Units
Single-ended		Leave negative inputs	TTI		Open-coll	octor
compliance		disconnected	116	/ CIVIOS /		ECIUI
Input voltage,		Logic "LOW" Logic "HIGH"	1.8		1.6	
single-ended A/A+. B/B+	mode	Floating voltage (not	1.0			V
A/A+, B/B+		connected)		3.3		
Input voltage,		Logic "LOW"			1.2	
single-ended		Logic "HIGH"	1.4			V
Z/Z+		Floating voltage (not connected)		4.7		
Input current,		Logic "LOW"; Pull to GND		5.5	6	
single-ended	mode	Logic "HIGH"; Internal 2.2K Ω	0	0	0	mA
A/A+, B/B+, Z Differential m		pull-up to +5 For full RS422 compliance,				
compliance	loue	see ¹	TIA/EIA-42		A-422-A	
Input voltage,		Hysteresis	±0.06	±0.1	±0.2	V
differential mode		Common-mode range (A+ to GND, etc.)	-7		+7	v
Input impeda	nce,	A1+ to A1-, B1+ to B1-		1		kΩ
differential		Z1+ to Z1-		1		K12
		Single-ended mode, Open- collector / NPN	0		5	MHz
Input frequen	icy	Differential mode, or Single- ended driven by push-pull (TTL / CMOS)	0		10	MHz
		Single-ended mode, Open- collector / NPN	1			μs
Minimum puls width	se	Differential mode, or Single- ended driven by push-pull	50			ns
		(TTL / CMOS) Absolute maximum values,				
Input voltage, pin to GND	, any	continuous Absolute maximum, surge	-7		+7	V
		$(duration \le 1s)^{\dagger}$	-11		+14	
ESD protection		Human body model	±1			kV
Digital Output (OUT1. OUT)		OUT3/Ready, OUT4, OUT5) ²	Min	Тур.	Max.	Units
Mode complia	ance				P 24V	
		blied (+V _{LOG} floating or to GND)			(floating)	
state N	Normal c	operation		0	: "High"	1
		IGH"; output current = 0.3A	V _{LOG} -1.0 V _{LOG} -2.0		-	
A 1 A 1	0	OW"; output current = 0, no load		open-colle	ector	
Output L voltage	_ogic "H	IGH", external load to GND	\square	0		V
	Absolute	maximum, continuous	-0.3		V _{LOG} +0.3	1
/ †	Absolute	maximum, surge (duration \leq 1s)	-0.5		V _{LOG} +0.5	1
t,	oaic "H	IGH", source current, continuous			0.3	A
Output	-	IGH", source current, pulse ≤ 5 s			0.3	A
current	-		 ,			-
L Minimum puls		OW", means High-Z	3	1.5	20	μA μs
ESD H		oody model	±15			kV
protection '		,			1	

Mode compliance NPN 24V						
Default	Not supplied (+VLOG floating or to GND)		High-Z (floating)			
state	Normal operation		Hi	(floating) gh-Z 1.3		
Output voltage	Logic "LOW"; output current = 0.4A		0.6	1.3		
	Logic "HIGH"; output current = 0, no load open-collect		ctor			
	Logic "HIGH", external load to +VLOG		VLOG		V	
	Absolute maximum, continuous	-0.3		V _{LOG} +0.3		
	Absolute maximum, surge (duration \leq 1s) [†]	-0.5		V _{LOG} +0.5		
	Logic "LOW", sink current, continuous			0.4	А	
Output current	Logic "LOW", sink current, pulse ≤ 5 s			0.5	А	
	Logic "HIGH", means High-Z			20	μA	
Minimum p	ulse width	5	1.8		μs	
ESD protection	Human body model	±15			kV	

OUT0 – Brake or general-purpose digital output² Min. Typ. Max. Units

Mode complia	nce		PNF	24V	
Default state	Not supplied (+VLOG floating or to GND)	High-Z (floating)			
	Normal operation		Logic	"High"	
Output voltage	Logic "HIGH"; output current = 1.5A		$V_{LOG}-0.4$	V _{LOG} -0.7	
	Logic "LOW"; output current = 0, no load	open-collector			
	Logic "HIGH", external load to GND		0		V
	Absolute maximum, continuous	-0.3		V_{LOG} +0.3	
	Absolute maximum, surge (duration $\leq 1s$) [†]	-0.5		V _{LOG} +0.5	
0.14.1	Logic "HIGH", source current, continuous			1.5	A
Output current	' I logic "HIGH" source current pulse	2.0	А		
	Logic "LOW", means High-Z			50	μA
Minimum puls	e width	30	15		μs
ESD protection	Human body model	±15			kV

Mode complia	nce		NPN	124V	
Default state	Not supplied (+V _{LOG} floating or to GND)	High-Z (floating)			
	Normal operation High-Z				
Output voltage	Logic "LOW"; output current = 2.0A		0.2	0.3	
	Logic "HIGH"; output current = 0, no load	open-collector			
	Logic "HIGH", external load to +VLOG		VLOG		V
	Absolute maximum, continuous	-0.3		V_{LOG} +0.3	
	Absolute maximum, surge (duration $\leq 1s$) [†]	-0.5		V _{LOG} +0.5	
	Logic "LOW", sink current, continuous			2.0	A
Output current	Logic "LOW", sink current, pulse ≤ 5 s			2.5	А
	Logic "HIGH", means High-Z			50	μA
Minimum puls	e width	30	10		μs
ESD protection	Human body model	±15			kV

¹ For full RS-422 compliance, 120Ω termination resistors must be connected across the differential pairs, as close as possible to the drive input pins

 $^{\rm 2}$ The digital inputs and outputs are software selectable as PNP or NPN

-		PRODUCT DATA SHEET		Page: 5 of 6
TECHNOSOFT		iPOS8015 MZ-CAT	P022.036.E122.DSH.01A	
		Title of document	N° document	
ALN	June 5, 2024		June 5, 2024	
Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa:
amerentiai pairs,	as close as possible to the drive input pins	5.		

Encoder2 Inputs (A2+/Data+, A2-/Data-, B2+/Clk+, B2-/Clk-, Min. Max. Units Тур. Ž2+, Z2-)1 Differential mode compliance TIA/EIA-422-A ± 0.06 Hysteresis ±0.1 ± 0.2 Differential mode -14 +14 Input voltage V Common-mode range -11 +14 (A+ to GND, etc.) Input A2+, B2+, Z2+ A2-, B2-, Z2impedance, 120 Ω differential Input Differential mode 0 10 MHz frequency Minimum 50 Differential mode ns pulse width Sin-Cos Encoder Inputs Min. Тур. Max. Units (Sin+, Sin-, Cos+, Cos-) Input voltage, Sin+ to Sin-. Cos+ to Cos-1 1 25 VDD differential Operational range -1 25 4 Absolute maximum values, -7 +7 Input voltage, any continuous V pin to GND Absolute maximum, surge -11 +14 (duration \leq 1s) Differential, Sin+ to Sin-, Cos+ to Cos-² 4.2 4.7 kΩ Input impedance Common-mode, to GND 2.2 kΩ Resolution with Software selectable, for one 2 10 bits interpolation sine/cosine period 450 kHz Sin-Cos interpolation 0 Frequency Quadrature, no interpolation 10 MHz 0 ESD protection Human body model kV ±1 Analog 0...5V Inputs (REF, FDBK) Max Min. Тур. Units Operational range 0 5 Absolute maximum values, -12 +18 continuous Input voltage V Absolute maximum, surge ±36 $(duration \le 1s)^{\dagger}$ Input impedance To GND 28 kΩ Resolution 12 bits Integral linearity bits ±2 Offset error ±10 bits ±2 ±1% % FS Gain error ±3% Bandwidth (-3db) Software selectable 0 1 kHz ESD protection Human body mo LV-TTL UART (RS-232 with external Human body model ±5 k٧ Min. Тур. Max. Units transceiver) Absolute maximum, surge -0.3 +3.6Voltage (duration \leq 1s)[†] V level Logic 0 0 0.4 TTL TX Logic 1 24 3.3 Absolute maximum, surge Output -5 +5 (duration \leq 1s)[†] mΑ current -2 +2 Absolute maximum, surge -0.3 +3.6 Voltage (duration \leq 1s)[†] V TTL RX level Logic 0 0 0.4 2.4 Logic 1 3.3 -0.15 +0.15Input current mΑ Bit rate Software selectable 115200 Baud 9600 Short-circuit TTL TX short to GND -No-Do not connect directly to standard RS-232 serial connector! Always power-off the drive supplies before inserting/removing the adapter

Safe torque OFF (STO1+, STO1-, ST	Safe torque OFF (STO1+, STO1-, STO2+, STO2+)				Units
Safety function	According to EN61800-5-2	STO (Safe Torque OFF)			F)
EN 61800-5-1/ -2	Safety Integrity Level	safety integrity level 3 (SIL3)			SIL3)
and EN 61508-5-3/ -4 Classification	PFHD (probability of dangerous failures per hour)	8*10 ⁻¹⁰ hour ⁻¹ (0.8 FIT)			T)
EN1400404	Performance Level		Cat3	/PLe	
EN13849-1 Classification	MTTFM (meantime to dangerous failure)	377 ye			years
Mode compliance	ice PNP				
Default state	Input floating (wiring disconnected)	Logic LOW			
	Logic "LOW"	-20		5.6	V
Input voltage	Logic "HIGH"	18		36	
input voltage	Absolute maximum, continuous	-20		+40	
Input current	Logic "LOW"; pulled to GND		0		mA
Input current	Logic "HIGH", pulled to +Vlog		5	13	ma
Repetitive test	Ignored high-low-high			5	ms
pulses	-			20	Hz
Fault reaction time	From internal fault detection to register DER bit 14 =1 and OUT2/Error high-to-low			30	ms
PWM operation delay	From external STO low-high transition to PWM operation enabled			30	ms
ESD protection	Human body model	±2			kV

Ethernet Por	ts		Min.	Тур.	Max.	Units		
		EtherCAT (CAT (IEC61158-3/4/5/6-12)					
01		Fast Ethernet 100BASE-TX (IEEE802.3u)						
Standard Compliance		Auto-negotiatior	Auto-negotiation for 100Mbps/s full-duplex					
		Auto-c	letect MDI	/MDI-X				
Power over E	44	NOT used by the iPOS8015, requires						
Power over E	themet	separate +Vlog SELV/ PELV supply		ompliant 6 "DC on \$		802.3af		
Isolation	GND0,	Requirement for	500		·	Vrms		
GND1		motherboard PCB routing	1.5			kV _{peak}		
Maximum cable length		2-pair UTP Cat5	100	150		m		
ESD protection Human body model			±4			kV		
supplementar inductance is	y GND lin best ach	een drives is kept to a minir k between the drives. This ieved by using large metal per conductive tape.	link must	have low	inductan	ce. Low		
LED signals			Min.	Тур.	Max.	Units		
LED connecti	~~		Common cathode to GND					
LED connecti	on		Direct, no series resistor					
LED current				0.7	1	mA		
Conformity			Min.	Тур.	Max.	Units		
EU Declaration	2014/35 2011/65 1907/20	/EU (EMC), /EU (LVD), /EU (RoHS), 06/EC (REACH), EC (CE Marking Directive),						

EC 428/2009 (non dual-use item, output frequency limited to 590Hz)

† Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

 1 Feedback#2 differential input pins have internal 120 Ω termination resistors connected across 2 An 120 Ω termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS- signals.

³ "FS" stands for "Full Scale"

Name	First edition	Document template: P099.TQT.564.0001	Last edition	Visa:
ALN	June 5, 2024		June 5, 2024	
<u> </u>		Title of document	N° document	
(5) T	ECHNOSOFT	iPOS8015 MZ-CAT	P022.036.E122.DSH.01A	
		PRODUCT DATA SHEET		Page: 6 of 6