

Top view; Pins facing downward; All dimensions are in mm ; Header pitch of $\mathrm{J} 1 \& \mathrm{~J} 2$ is 1.27 mm and for J 3 is 2.54 mm . Drawing not to scale.
The free area around the mounting holes (free of components or other copper features) has a 5.5 mm diameter.

Motor - sensor configurations					
Sensor Motor	PMSM	BLDC	DC BRUSH	$\begin{aligned} & \text { STEP } \\ & (2-\mathrm{ph}) \end{aligned}$	$\underset{(3 \text {-ph })}{\text { STEP }}$
Incr. Encoder	(5)		(5)	(5)	
Incr. Encoder + Dig. Hall	(5)	(5)			
Linear Halls	(5)				
Digital Hall control only	(5)				
Analog Sin/Cos encoder	(5)	(5)	(5)	(5)	
SSI / BiSS-C/ EnDAT/ TAMAGAWA/ Panasonic/ Nikon/ Sanyo Denki	(5)	(5)	(5)	(5)	
Tacho			(5)		
Open-loop (no sensor)				(5)	(5)

- Features

- Motion controller and drive in a single compact unit based on MotionChip ${ }^{\text {TM }}$ technology
- Universal solution for control of rotary and linear brushless, brushed and 2 or 3-phase step motors
- Advanced motion control capabilities (PVT, S-curve, electronic cam)
- Motor supply: 11-50V; Logic SELV/ PELV supply: 9-36V; STO SELV/ PELV supply: $18-40 \mathrm{~V}$
- Motor output current:
- Nominal: 10Arms / 14.1A amplitude;
- Peak: 28.3ARms / 40A amplitude.
- Operating ambient temperature: $0-40^{\circ} \mathrm{C}$ (over $40^{\circ} \mathrm{C}$ with derating)
- NTC/PTC analogue Motor Temperature sensor input
- Communication interfaces:
- USB
- LV-TTL UART (RS-232 with external transceiver)
- dual 100Mbps EtherCAT® ports
- Feedback Devices (dual-loop support)
$1^{\text {st }}$ feedback devices supported:
- Incremental encoder interface (single ended or differential)
- Analogue sin/cos encoder interface (differential $1 \mathrm{~V}_{\mathrm{pp}}$)
- Digital Hall sensor interface (single-ended and open collector)
- Linear Hall sensors interface
$22^{\text {nd }}$ feedback devices supported:
- Incremental encoder interface (differential)
- SSI / BiSS-C/ EnDAT/ TAMAGAWA/ Panasonic/ Nikon/ Sanyo Denki encoder interface
- Pulse \& direction reference (single-ended or differential) capability
- STO: 2 safe torque-off inputs, safety integrity level (SIL3/Cat3/PLe) acc. to EN61800-5-1; -2/ EN61508-3; -4/ EN ISO 13849-1.
- $6 \times$ digital inputs, $12-36 \mathrm{~V}, \mathrm{PNP} / \mathrm{NPN}$ software selectable: $2 \times \mathrm{f}$ for limit switches or general-purpose, $4 \times$ general-purpose
- $5 \times$ digital outputs, $5-36 \mathrm{~V}: 0.4 \mathrm{~A}$ NPN / 0.3A PNP, polarity software selectable: Ready, Error or general-purpose
- $1 \times$ dedicated motor brake or general-purpose output (OUTO): 2A NPN / 1.5A PNP, polarity software selectable
- 2 x analogue inputs software selectable: 12-bit 0-5V: Reference, Feedback or general-purpose
- Commissioning (set-up) possible through RS232, FoE (file-overEtherCAT®), EoE (Ethernet-over-EtherCAT®)
- EtherCAT® connection between multiple MZ drives: direct 1:1 without any series components
- EtherCAT® connection to standard RJ45: requires external magnetics (may be integrated into RJ45)
- $255 \mathrm{~h} / \mathrm{w}$ addresses selectable by h / w pins configuration
- $16 \mathrm{k} \times 16$ SRAM memory for data acquisition
- $24 \mathrm{k} \times 16 \mathrm{E}^{2} \mathrm{ROM}$ to store setup data, TML motion programs, cam tables and other user data
Document template: P099-TQT 564.0001

EP	First edition
May 8, 2023	

Alternative: Direct connection

Pin	Name	Type	Description					
$\mathbf{1 , 2}$	GND	-	$\begin{array}{l}\text { Return ground for motor. Internally connected } \\ \text { to all GND signals except STO GND. }\end{array}$					
$\mathbf{3 , 4}$	Cr/B-	O	Chopping resistor / Phase B- for 2-ph steppers	$]$	$\mathbf{5 , 6}$	C/B+	O	Phase C for 3-ph motors, B+ for 2-ph steppers
:---:	:---:	:---:	:---					

Mating Connectors			
When J 3 is plugged into a connector and maximum current should not exceed 12.7A Sine amplitude			
Ref	Producer	Part No.	Description
J1, J2	Harwin	M52-5012045	1x20 contacts, socket 1.27 mm -pitch; 4 pcs needed for one drive
	Samtec	SMS-140-01-L-S	1×40 contacts, socket 1.27 mm -pitch; 2 pcs needed for one drive
		SMS-140-01-G-S	
J3	Mill-Max	$\begin{array}{\|l} \text { 801-47-012-10- } \\ 001000 \end{array}$	1x12 contacts, High-current socket 2.54 mm -pitch accepting 0.635 mm square $\mathrm{pin} ; 1 \mathrm{pc}$ is needed for one drive; the current should not exceed 12.7A
When J3 is soldered directly onto a motherboard and the maximum current can exceed 13A Sine amplitude			
Ref	Producer	Part No.	Description
J1, J2	Harwin	M52-5012045	1x20 contacts, socket 1.27 mm -pitch; 4 pcs needed for one drive
J3	The pins are directly soldered onto a motherboard for increased current capability		

| Name
 EP | First edition
 May 8, 2023 | Document template: P099.TQT.564.0001 | Last edition
 October 31, 2023 |
| :--- | :--- | :--- | :--- | :--- |
| | Title of document | N document
 AS, AN | |
| TECHNOSOFT | PROS4810 MZ-CAT | P022.015.E122.DSH.01K | |

Pin	Name	Type	Description
1	LH1	1	Linear Hall 1 input
2	LH2	1	Linear Hall 2 input
3	LH3	1	Linear Hall 3 input
4	FDBK	1	Analogue input, 12-bit, 0-5V. Reads analogue feedback (tacho), or general purpose
5	REF	1	Analogue input, 12-bit, 0-5V. Reads analog reference, or general-purpose analogue input
6	Hall 3	1	Digital input Hall 3 sensor
7	Hall 2	1	Digital input Hall 2 sensor
8	Hall 1	1	Digital input Hall 1 sensor
9	GND	-	Return ground. Internally connected to all GND signals except STO GND.
10	IN5	1	12-36V general-purpose digital PNP/NPN input
11	IN4	I	12-36V general-purpose digital PNP/NPN input
12	IN1	1	12-36V general-purpose digital PNP/NPN input
13	INO	1	12-36V general-purpose digital PNP/NPN input
14	IN2/LSP	1	12-36V digital PNP/NPN input. Positive limit switch input
15	IN3/LSN	1	12-36V digital PNP/NPN input. Negative limit switch input
16	OUT3	0	5-36V general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable
17	OUT2	0	$5-36 \mathrm{~V}$ general-purpose digital output, $0.3 \mathrm{~A} \mathrm{PNP/} 0.4 \mathrm{~A}$ NPN, software selectable
18	OUT5	0	$5-36 \mathrm{~V}$ general-purpose digital output, $0.3 \mathrm{~A} \mathrm{PNP/}$ 0.4A NPN, software selectable
19	OUT4	0	$5-36 \mathrm{~V}$ general-purpose digital output, 0.3A PNP/ 0.4A NPN, software selectable
20	OUT1	0	$5-36 \mathrm{~V}$ general-purpose digital output, $0.3 \mathrm{~A} \mathrm{PNP/}$ 0.4A NPN, software selectable
21	OUTO	0	$5-36 \mathrm{~V}$ general-purpose digital output, 1.5A PNP/ 2A NPN, software selectable
22	Z1+	1	Incr. encoder1 Z single-ended, or Z+ diff. input,
23	Z1-	1	Incr. encoder1 Z- diff. input
24	B1+/Cos+	1	Incr. encoder1 B single-ended, or B+ diff. input, or analogue encoder Cos+ diff. input
25	B1-/Cos-	1	Incr. encoder1 B- diff. input, or analogue encoder Cos- diff. input
26	A1+/Sin+	1	Incr. encoder1 A single-ended, or A+ diff. input, or analogue encoder Sin+ diff. input
27	A1-/Sin-	1	Incr. encoder1 A- diff. input, or analogue encoder Sindiff. input
28	Z2+	I	Incr. encoder2 Z+ diff. input; has 120Ω resistor between pins 28 and 29
29	Z2-	1	Incr. encoder2 Z- diff. input; has 120Ω resistor between pins 28 and 29
30	$\begin{aligned} & \text { B2-/Dir- } \\ & \text { /CLK-/MA- } \end{aligned}$	I/O	Incr. encoder2 B- diff. input, or Dir--, or Clock- for SSI, or Master- for BiSS; has 120Ω resistor between pins 30 and 31
31	$\begin{aligned} & \text { B2+/Dir+/ } \\ & \text { CLK+/MA+ } \end{aligned}$	1/0	Incr. encoder2 B+ diff. input, or Dir+-, or Clock+ for SSI, or Master+ for BiSS; has 120Ω resistor between pins 30 and 31
32	A2+/Pulse+ / Data+/SL+	1	Incr. encoder2 A+ diff. input, or Pulse+, or Data+ for SSI, or Slave+ for BiSS; has 120Ω resistor between pins 32 and 33
33	A2- /Pulse-/ Data-ISL-	1	Incr. encoder2 A- diff. input, or Pulse-, or Data- for SSI, or Slave- for BiSS; has 120Ω resistor between pins 32 and 33
34	Reserved	-	Reserved. Do not use
35	Reserved	-	Reserved. Do not use
36	Reserved	-	Reserved. Do not use
37	Reserved	-	Reserved. Do not use
38	$\underline{+5 V_{\text {out }}}$	0	5 V output supply for I/O usage
39	-VLog	1	Negative terminal of the logic supply input: 9 to $36 V_{D C}$ from SELV/ PELV type power supply.
40	+ $\mathrm{V}_{\text {Log }}$	1	Positive terminal of the logic supply input: 9 to $36 \mathrm{~V}_{\text {DC }}$ from SELV/ PELV type power supply.

Name First edition EP May 8, 2023	Document template: P099.TQT.564.0001	Last edition October 31, 2023	Visa: AS, AN
-5 TECHNOSOFT	Title of document iPOS4810 MZ-CAT PRODUCT DATA SHEET	$\begin{aligned} & \hline \mathrm{N}^{\circ} \text { document } \\ & \text { P022.015.E122.DSH.01K } \end{aligned}$	Page: 3 of 7

Electrical characteristics

All parameters measured under the following conditions (unless otherwise specified):

- $\quad \mathrm{V}_{\text {Log }}=24 \mathrm{VDC} ; \mathrm{V}_{\text {мот }}=48 \mathrm{VDC}$; $\mathrm{F}_{\text {pwm }}=20 \mathrm{kHZ}$
- Supplies start-up / shutdown sequence: -any-
- Load current (sinusoidal amplitude) $=14.1 \mathrm{~A}$

Operating Conditions			Min.	Typ.	Max.	Units
Ambient temperature			0		40^{1}	${ }^{\circ} \mathrm{C}$
Ambient humidity		Non-condensing	0		90	\%Rh
Altitude / pressure ${ }^{2}$		Altitude (vs. sea level)	-0.1	$0 \div 2.5$	${ }^{2}$	Km
		Ambient Pressure	0^{2}	$0.75 \div 1$	10.0	atm
Storage Conditions			Min.	Typ.	Max.	Units
Ambient temperature			-40		100	${ }^{\circ} \mathrm{C}$
Ambient humidity		Non-condensing	0		100	\%Rh
Ambient Pressure			0		10.0	atm
ESD capability (Human body model)		Not powered; applies to any accessible part			± 0.5	kV
		Original packaging			± 15	kV
Mechanical Mounting			Min.	Typ.	Max.	Units
Airflow Spacing required for vertical mounting			natural convection ${ }^{3}$, closed box			
	Between adjacent drives		30			mm
	Between drives and nearby walls		30			mm
	Between drives and roof-top		20			mm
Spacing required for horizontal mounting	Between adjacent drives		4			mm
	Between drives and nearby walls		5			mm
	Space needed for driveremoval		10			mm
	Between drives and roof-top		15			mm
Insertion force	Using recommended matingconnectors			12	8	N
Extraction force			8	10		N
Environmental Characteristics			Min.	Typ.	Max.	Units
Size (Length x Width \times Height)	Global size		$64 \times 43.6 \times 13.7$			mm
			$\sim 2.52 \times 1.72 \times 0.54$			inch
Weight	Dry cleaning is recommended		~ 21			g
Cleaning agents			Only Water- or Alcohol- based			
Protection degree	According to IEC60529, UL508		IP20			-
Logic Supply Input (+ $\mathrm{V}_{\text {LoG }}$)			Min.	Typ.	Max.	Units
Supply voltage	Nominal values		9		36	$V_{D C}$
		olute maximum values, operating but outside ranteed parameters	8		40	V_{DC}
		olute maximum values, inuous	-0.6		42	Voc
		olute maximum values, e (duration $\leq 10 \mathrm{~ms})^{\dagger}$	-1		+45	V
Supply current	+V ${ }_{\text {L }}$	$\mathrm{O}_{\mathrm{G}}=12 \mathrm{~V}$		150		mA
	+ $\mathrm{V}_{\text {L }}$	OG $=24 \mathrm{~V}$		100		
	+V	dic $=40 \mathrm{~V}$		80		
Motor Supply Input (+ $\mathrm{V}_{\text {mot }}$)			Min.	Typ.	Max.	Units
Supply voltage	Nominal values		11		50	$V_{D C}$
		olute maximum values, operating but outside ranteed parameters	9		52	V ${ }_{\text {d }}$
	$\begin{aligned} & \text { Abs } \\ & \text { con } \\ & \hline \end{aligned}$	olute maximum values, inuous	-0.6		54	$V_{\text {dc }}$
		olute maximum values, e (duration $\leq 10 \mathrm{~ms}$) ${ }^{\dagger}{ }^{-1}$	-1		57	\checkmark
Supply current	Idle			1	5	mA
	Operating		-40	± 10	+40	A
		olute maximum value, short it condition $\text { ation } \leq 10 \mathrm{~ms})^{\dagger}$			43	A
Supply Output (+5V)			Min.	Typ.	Max.	Units
Output voltage	Current sourced $=250 \mathrm{~mA}$		4.95	5.11	5.25	V
Output current			360	450		mA
Short-circuit			NOT protected			
Over-voltage			NOT protected			
ESD protection	Hum	an body model	± 1			kV
Isolation PE (earth) - GND					± 250	V

${ }^{1}$ Operating temperature at higher temperatures is possible with reduced current and power ratings ${ }^{2}$ iPOS4810 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

Motor Outputs (A/A+, B/A-, C/B+, CR/B-)			Min.	Typ.	Max.	Units
Nominal current	PMSM motors sinusoidal amplitude				14.1	A
	PMSM motors sinusoidal RMS				10	$\mathrm{A}_{\text {RMS }}$
	DC/BLDC motors continuous				12.2	A
Peak current	maximum 1.56 s		-40		+40	A
Short-circuit protection threshold			± 43		± 43	A
Short-circuit protection delay				3.3		$\mu \mathrm{s}$
On-state voltage drop	Nominal output current; including typical mating connector contact resistance			0.15		V
Voltage efficiency				100		\%
Off-state leakage current				± 0.5	± 1	mA
Motor inductance (phase-to-phase)	Recommended value, for current ripple max. $\pm 5 \%$ of full range; $+\mathrm{V}_{\text {мот }}=36 \mathrm{~V}$	$\mathrm{F}_{\text {PWM }}$				$\mu \mathrm{H}$
		20 kHz	400			
		40 kHz	200			
		60 kHz	150			
		80 kHz	100			
		100 kHz	80			
	Minimum value, limited by shortcircuit protection;$+\mathrm{V}_{\text {Мот }}=36 \mathrm{~V}$	20 kHz	150			$\mu \mathrm{H}$
		60 kHz	50			
		40 kHz	40			
		80 kHz	20			
		100 kHz	10			
Motor electrical time-constant (L/R)	Recommended value for $\pm 5 \%$ current measurement error	20 kHz	330			
		40 kHz	170			
		60 kHz	140			$\mu \mathrm{s}$
		80 kHz	80			
		100 kHz	66			
Current measurement	FS = Full Scale accuracy		-9.3	+/-3.4	+9.3	\%FS
Digital Hall Inputs (Hall1, Hall2, Hall3)			Min.	Typ.	Max.	Units
Mode compliance			TTL / CMOS / Open-collector			
Default state	Input floating (Wiring disconnected)		Logic HIGH			
Input voltage	Logic "LOW"			0	0.8	V
	Logic "HIGH"		2	5		
	Floating voltage (Not connected)			4.4		
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$		-10		+15	
Input current	Logic "LOW"; Pull to GND				1.2	mA
	Logic "HIGH"; Internal $4.7 \mathrm{~K} \Omega$ pull-up to +5		0	0	0	
Minimum pulse width			2			$\mu \mathrm{s}$
ESD protection	Human body model		± 5			kV
Linear Hall Inputs (LH1, LH2, LH3)			Min.	Typ.	Max.	Units
Input voltage	Operational range		0	$0.5 \div 4.5$	4.9	V
Input voltage	Absolute maximum values, continuous		-7		+7	V
	Absolute maximum, surge (duration $\leq 1 s)^{\dagger}$		-11		+14	
Input current	Input voltage 0... +5 V		0		0.2	mA
Interpolation Resolution	Depending on software settings				11	bits
Frequency			0		1	kHz
ESD protection	Human body model		± 1			kV
Digital Inputs(IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5, IN6)			Min.	Typ.	Max.	Units
Mode compliance ${ }^{\text {a }}$			PNP			
Default state	Input floating (wiring disconnected)		Logic LOW			
Input voltage	Logic "LOW"		-10	0	2.2	V
	Logic "HIGH"		6.3	24	36	
	Hysteresis		1.2	2.4	2.8	
	Floating voltage (not connected)			0		
	Absolute maximum, continuous		-10		+39	
	Absolute maximum, surge ${\text { (duration } \leq 1 \mathrm{~s})^{\dagger}}$		-20		+40	
Input current	Logic "LOW"; pulled to GND			0		mA
				8	10	

${ }^{3}$ In case of forced cooling (conduction or ventilation) the spacing requirements may drop substantially down to zero as long as the ambient temperature is kept below the maximum operating limit
The digital inputs and outputs are software selectable as PNP or NPN

$\begin{array}{\|l\|l\|} \hline \text { Eame } \\ \text { Nepe } \end{array}$	First edition May 8, 2023	Document template: P099.TQT. 564.0001
	NOSO	Title of document iPOS4810 MZ-CAT PRODUCT DATA SHEET

Last edition	Visa:
October 31, 2023	AS, AN

Mode compliance			NPN			
Default state		Input floating (wiring disconnected)	Logic HIGH			
Input voltage		Logic "LOW"		0	2.2	V
		Logic "HIGH"	6.3	24	36	
		Hysteresis	1.2	2.4	2.8	
		Floating voltage (not connected)		15		
		Absolute maximum, continuous	-10		+39	
		Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-20		+40	
Input current		Logic "LOW"; Pulled to GND		8	10	mA
		Logic "HIGH"; Pulled to +24V	0	0	0	
Input frequency			0		10	kHz
Minimum pulse			6			us
ESD protection		Human body model	± 5			kV
Encoder1 Inputs(A1/A1+, A1-, B1/B1+, B1-, Z1/Z1+, Z1-)			Min.	Typ.	Max.	Units
Single-ended mode compliance		Leave negative inputs disconnected	TTL / CMOS / Open-collector			
Input voltage, single-ended mode $A / A+, B / B+$		Logic "LOW"			1.6	V
		Logic "HIGH"	1.8			
		Floating voltage (not connected)		3.3		
Input voltage, single-ended mode Z/Z+		Logic "LOW"			1.2	V
		Logic "HIGH"	1.4			
		Floating voltage (not connected)		4.7		
Input current, single-ended mode $A / A+, B / B+$, Z/Z+		Logic "LOW"; Pull to GND		5.5	6	mA
		Logic "HIGH"; Internal 2.2K Ω pullup to +5	0	0	0	
Differential mode compliance		For full RS422 compliance, see ${ }^{1}$	TIA/EIA-422-A			
Input voltage, differential mode		Hysteresis	± 0.06	± 0.1	± 0.2	V
		Common-mode range ($\mathrm{A}+$ to GND, etc.)	-7		+7	
Input impedance, differential		A1+ to A1-, B1+ to B1-		1		k Ω
		Z1+ to Z1-		1		
Input frequency		Single-ended mode, Opencollector / NPN	0		5	MHz
		Differential mode, or Singleended driven by push-pull (TTL / CMOS)	0		10	MHz
Minimum pulse width		Single-ended mode, Opencollector / NPN	1			$\mu \mathrm{s}$
		Differential mode, or Singleended driven by push-pull (TTL / CMOS)	50			ns
Input voltage, any pin to GND		Absolute maximum values, continuous	-7		+7	V
		Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-11		+14	
ESD protec	tion	Human body model	± 1			kV
Digital Outputs (OUT1, OUT2/Error, OUT3/Ready, OUT4, OUT5) ${ }^{2}$			Min	Typ.	Max.	Units
Mode compliance			PNP 24V			
Default state	Not supplied (+V Log floating or to GND)		High-Z (floating)			
	Norm	aperation	Logic "High"			
Output voltage	Logic	"HIGH"; output current = 0.3A		Loo-1.0	$\mathrm{V}_{\text {LoG }}-2.0$	V
	Logic	"LOW"; output current $=0$, no load	open-collector			
	Logic	"HIGH", external load to GND		0		
	Absolu	ute maximum, continuous	-0.3		$\mathrm{V}_{\mathrm{LOG}}+0.3$	
	$\begin{aligned} & \text { Absolt } \\ & \dagger \end{aligned}$	te maximum, surge (duration ≤ 1 s)	-0.5		$\mathrm{V}_{\text {Log }}+0.5$	
Output current	Logic	"HIGH", source current, continuous			0.3	A
	Logic	"HIGH", source current, pulse $\leq 5 \mathrm{~s}$			0.4	A
	Logic	"LOW", means High-Z			20	$\mu \mathrm{A}$
Minimum pulse width			3	1.5		$\mu \mathrm{s}$
ESD protection	Huma	n body model	± 15			kV

Mode compliance		NPN 24V			
Default state	Not supplied (+ $\mathrm{V}_{\text {LoG }}$ floating or to GND)	High-Z (floating)			
	Normal operation	High-Z			
Output voltage	Logic "LOW"; output current $=0.4 \mathrm{~A}$		0.6	1.3	V
	Logic "HIGH"; output current $=0$, no load	open-collector			
	Logic "HIGH", external load to + $\mathrm{V}_{\text {Log }}$		$\mathrm{V}_{\text {Log }}$		
	Absolute maximum, continuous	-0.3		$\mathrm{V}_{\mathrm{LOG}}+0.3$	
	Absolute maximum, surge (duration ≤ 1 s) \dagger	-0.5		$\mathrm{V}_{\mathrm{LOG}}+0.5$	
Output current	Logic "LOW", sink current, continuous			0.4	A
	Logic "LOW", sink current, pulse $\leq 5 \mathrm{~s}$			0.5	A
	Logic "HIGH", means High-Z			20	$\mu \mathrm{A}$
Minimum pulse width		5	1.8		$\mu \mathrm{s}$
ESD protection	Human body model	± 15			kV

OUTO - Brake or general-purpose digital output ${ }^{2}$	Min.	Typ.	Max.	Units

Mode compliance		PNP 24V			
Default state	Not supplied (+VLOG floating or to GND)	High-Z (floating)			
	Normal operation	Logic "High"			
Output voltage	Logic "HIGH"; output current = 1.5A		$\mathrm{V}_{\text {LoG }} 0.4$	VLoG-0.7	V
	Logic "LOW"; output current $=0$, no load	open-collector			
	Logic "HIGH", external load to GND		0		
	Absolute maximum, continuous	-0.3		$\mathrm{V}_{\text {LOG }}+0.3$	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-0.5		V log +0.5	
Output current	Logic "HIGH", source current, continuous			1.5	A
	Logic "HIGH", source current, pulse $\leq 5 \mathrm{~s}$			2.0	A
	Logic "LOW", means High-Z			50	$\mu \mathrm{A}$
Minimum pulse width		30	15		$\mu \mathrm{s}$
ESD protection	Human body model	± 15			kV
Mode compliance		NPN 24V			
Default state	Not supplied (+V ${ }_{\text {LoG }}$ floating or to GND)	High-Z (floating)			
	Normal operation	High-Z			
Output voltage	Logic "LOW"; output current = 2.0A		0.2	0.3	V
	Logic "HIGH"; output current $=0$, no load	open-collector			
	Logic "HIGH", external load to + $\mathrm{V}_{\text {Log }}$		$V_{\text {Log }}$		
	Absolute maximum, continuous	-0.3		$\mathrm{V}_{\text {LOG }}+0.3$	
	Absolute maximum, surge (duration $\leq 1 \mathrm{~s})^{\dagger}$	-0.5		$\mathrm{V}_{\text {Log }}+0.5$	
Output current	Logic "LOW", sink current, continuous			2.0	A
	Logic "LOW", sink current, pulse ≤ 5 s			2.5	A
	Logic "HIGH", means High-Z			50	$\mu \mathrm{A}$
Minimum pulse width		30	10		$\mu \mathrm{s}$
ESD protection	Human body model	± 15			kV

${ }^{1}$ For full RS-422 compliance, 120Ω termination resistors must be connected across the differential pairs, as close as possible to the drive input pins.

Name First edition EP May 8, 2023	Document template: P099.TQT.564.0001	Last edition October 31, 2023	Visa: AS, AN
TECHNOSOFT	Title of document iPOS4810 MZ-CAT PRODUCT DATA SHEET	$\begin{array}{\|l\|} \hline \mathrm{N}^{\circ} \text { document } \\ \text { P022.015.E122.DSH.01K } \end{array}$	Page: 5 of 7

$\begin{aligned} & \text { Safe torque OFF } \\ & \text { (STO1+, STO1-, STO2+, STO2+) } \end{aligned}$		Min.	Typ.	Max.	Units
Safety function	According to EN61800-5-2	STO (Safe Torque OFF)			
EN 61800-5-1/-2 and EN 61508-5-3/ -4 Classification	Safety Integrity Level	safety integrity level 3 (SIL3)			
	PFHD (probability of dangerous failures per hour)	$8^{*} 10^{-10}$	hour ${ }^{-1}$ (0.8 FIT)		
EN13849-1 Classification	Performance Level	Cat3/PLe			
	MTTFM (meantime dangerous failure) to	377			years
Mode compliance		PNP			
Default state	Input floating (wiring disconnected)	Logic LOW			
Input voltage	Logic "LOW"	-20		5.6	V
	Logic "HIGH"	18		36	
	Absolute maximum, continuous	-20		+40	
Input current	Logic "LOW"; pulled to GND		0		mA
	Logic "HIGH", pulled to +Vlog		5	13	
Repetitive test pulses	Ignored high-low-high			5	ms
	-			20	Hz
Fault reaction time	From internal fault detection to register DER bit $14=1$ and OUT2/Error high-to-low			30	ms
PWM operation delay	From external STO low-high transition to PWM operation enabled			30	ms
ESD protection	Human body model	± 2			kV

Ethernet Ports			Min.	Typ.	Max.	Units	
Standard Compliance		EtherCAT (IEC61158-3/4/5/6-12)					
		Fast Ethernet 100BASE-TX (IEEE802.3u)					
		Auto-negotiation for $100 \mathrm{Mbps} / \mathrm{s}$ full-duplex					
		Auto-detect MDI/MDI-X					
Power over Ethernet		NOT used by the iPOS4810, requires separate +Vlog SELV/ PELV supply	compliant to IEEE802.3af mode A "Mixed DC \& Data"				
		NOT compliant to IEEE802.3af mode B "DC on Spares"					
Isolation GND0,GND1			Requirement for motherboard PCB routing	500			$\mathrm{V}_{\text {ms }}$
		1.5				$\mathrm{kV}_{\text {peak }}$	
Maximum cable length		2-pair UTP Cat5	100	150		m	
ESD protection		Human body model	± 4			kV	
When the connections between drives is done directly, without magnetics (nonstandard, not conform to Ethernet IEEE802.3 100BASE-TX), it is imperative that the ground voltage difference between drives is kept to a minimum. The installation must provide a supplementary GND link between the drives. This link must have low inductance. Low inductance is best achieved by using large metal parts, such as a metallic chassis / baseplate, or using copper conductive tape.							
LED signals			Min.	Typ.	Max.	Units	
LED connection			Common cathode to GND				
				ct, no s	ies resi		
LED current				0.7	1	mA	
Conformity			Min.	Typ.	Max.	Units	
EU Declaration							

\dagger Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
${ }^{1}$ Feedback\#2 differential input pins have internal 120Ω termination resistors connected across
${ }^{2}$ An 120Ω termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS- signals.

Name EP	First edition May 8, 2023	Document template: P099.TQT.564.0001	Last edition October 31, 2023	Visa: AS, AN
	HNOS	Title of document iPOS4810 MZ-CAT	$\begin{aligned} & \mathrm{N}^{\circ} \text { document } \\ & \text { P022.015.E122.DSH.01K } \end{aligned}$	

iPOS4810 MZ - Current de-rating with PWM frequency

iPOS481x MZ - Current de-rating with ambient temperature

iPOS4810 MZ - Output Voltage de-rating with PWM frequency

iPOS4810 MZ - Over-current diagram
(No heatsink)

iPOS4810 MZ - De-rating with the altitude

Name First edition EP May 8,2023	Document template: P099.TQT.564.0001	Last edition October 31, 2023	Visa: AS, AN
(5) TECHNOSOFT	Title of document iPOS4810 MZ-CAT PRODUCT DATA SHEET	$\begin{array}{\|l\|} \hline \mathrm{N}^{\circ} \text { document } \\ \text { P022.015.E122.DSH.01K } \end{array}$	Page: 7 of 7

