

Motion

Programming
using

EasyMotion
Studio

User Manual

 Technosoft 2022

TECHNOSOFT

Motion Programming
using

EasyMotion Studio
User Manual

P091.034.ESM.UM.03.11

Technosoft S.A.
Avenue des Alpes 20

CH-2000 NEUCHATEL
Switzerland

Tel.: +41 (0) 32 732 5500
Fax: +41 (0) 32 732 5504

contact@technosoftmotion.com
www.technosoftmotion.com

http://www.technosoftmotion.com/

© Technosoft 2011 I ESM User Manual

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all
parties must rely upon their own skill and judgment when making use of it. Technosoft does not
assume any liability to anyone for any loss or damage caused by any error or omission in the
work, whether such error or omission is the result of negligence or any other cause. Any and all
such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any
form or by any means, electrical or mechanical including photocopying, recording or by any
information-retrieval system without permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

About This Manual
This book is a technical reference manual for the EasyMotion Studio software.

In order to operate any Technosoft drive, you need to pass through 3 steps:

 Step 1 Hardware installation

 Step 2 Drive setup using Technosoft EasySetUp or EasyMotion Studio software for
drive commissioning

 Step 3 Motion programming using one of the options:

 A CANOpen or EtherCAT master
 The drive built-in motion controller executing a Technosoft Motion Language (TML)

program developed using Technosoft EasyMotion Studio software
 A TML_LIB motion library for PCs (Windows or Linux)
 A TML_LIB motion library for PLCs
 A distributed control approach which combines the above options, like for example

a host calling motion functions programmed on the drives in TML

This manual covers Steps 2 and 3 in detail. For detailed information regarding the first step, refer
to the specific documentation of each drive.

Notational Conventions
This document uses the following conventions:

TML – Technosoft Motion Language

Faxx – firmware versions with A = 0, 1, 2, 3, 4 or 9; Examples: F005K, F120B,F900H

FBxx – firmware versions with B = 5, 6, 7, 8; Examples: F500B, F600C, F800I
Intelligent drive – a drive with an embedded motion controller capable to execute high-
level motion language programs
Intelligent motor – a motor with an embedded intelligent drive

© Technosoft 2011 II ESM User Manual

SI units – International standard units (meter for length, seconds for time, etc.)
IU units – Internal units of the drive

Related Documentation
Help of the EasySetUp software – describes how to use EasySetUp to quickly setup

any Technosoft drive for your application using only 2 dialogues. The output of
EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or
saved on a PC file. At power-on, the drive is initialized with the setup data read from
its EEPROM. With EasySetUp it is also possible to retrieve the complete setup
information from a drive previously programmed. EasySetUp includes a firmware
programmer with allows you to update your drive firmware to the latest revision.
EasySetUp can be downloaded free of charge from Technosoft web page

CANopen Programming (part no. P091.063.UM.xxxx) – explains how to program the
Technosoft intelligent drives using CANopen protocol. Describes the associated
DS-301 communication profile and CiA-402 device profile.

CANopen over EtherCAT Programming (part no. P091.064.UM.xxxx) – explains how
to program the Technosoft intelligent drives with EtherCAT interface using
CANopen over EtherCAT protocol. Presents the CiA-402 associated drive profile
and object dictionary.

Help of the EasyMotion Studio software – describes how to use the EasyMotion Studio
to create motion programs using in Technosoft Motion Language (TML). EasyMotion
Studio platform includes EasySetUp for the drive/motor setup, and a Motion
Wizard for the motion programming. The Motion Wizard provides a simple,
graphical way of creating motion programs and automatically generates all the TML
instructions. With EasyMotion Studio you can fully benefit from a key advantage of
Technosoft drives – their capability to execute complex motions without requiring an
external motion controller, thanks to their built-in motion controller. A demo version
of EasyMotion Studio (with EasySetUp part fully functional) can be
downloaded free of charge from Technosoft web page

TML_LIB v2.0 (part no. P091.040.v20.UM.xxxx) – explains how to program in C,
C++,C#, Visual Basic or Delphi Pascal a motion application for the Technosoft
intelligent drives using TML_LIB v2.0 motion control library for PCs. The TML_lib
includes ready-to-run examples that can be executed on Windows or Linux (x86
and x64).

TML_LIB_LabVIEW v2.0 (part no. P091.040.LABVIEW.v20.UM.xxxx) – explains how to
program in LabVIEW a motion application for the Technosoft intelligent drives using
TML_LIB_Labview v2.0 motion control library for PCs. The TML_Lib_LabVIEW
includes over 40 ready-to-run examples.

TML_LIB_S7 (part no. P091.040.S7.UM.xxxx) – explains how to program, in a PLC
Siemens series S7-300 or S7-400, a motion application for the Technosoft
intelligent drives using TML_LIB_S7 motion control library. The TML_LIB_S7 library
is IEC61131-3 compatible.

© Technosoft 2011 III ESM User Manual

TML_LIB_CJ1 (part no. P091.040.CJ1.UM.xxxx) – explains how to program, in a PLC
Omron series CJ1, a motion application for the Technosoft intelligent drives using
TML_LIB_CJ1 motion control library. The TML_LIB_CJ1 library is IEC61131-3
compatible.

TML_LIB_X20 (part no. P091.040.X20.UM.xxxx) – explains how to program, in a PLC
B&R series X20, a motion application for the Technosoft intelligent drives using
TML_LIB_X20 motion control library. The TML_LIB_X20 library is IEC61131-3
compatible.

TechnoCAN (part no. P091.063.TechnoCAN.UM.xxxx) – presents TechnoCAN protocol
– an extension of the CANopen communication profile used for TML commands

If you Need Assistance …

If you want to … Contact Technosoft at …

Visit Technosoft online

World Wide Web: http://www.technosoftmotion.com/

Receive general information
or assistance (see Note)

Ask questions about product
operation or report suspected
problems (see Note)

Make suggestions about,
or report errors in
documentation.

World Wide Web: http://www.technosoftmotion.com/

Email: contact@technosoftmotion.com

Fax: (41) 32 732 55 04

Email: hotline@technosoftmotion.com

Mail: Technosoft SA

 Buchaux 38

 CH-2022 Bevaix, NE

 Switzerland

http://www.technosoftmotion.com/
http://www.technosoftmotion.com/
mailto:hotline@technosoftmotion.com

© Technosoft 2011 IV ESM User Manual

This page is empty

© Technosoft 2011 V ESM User Manual

Contents

Read This First ... I

1. Overview ... 1

1.1. Getting Started with EasyMotion Studio ... 1

2. Project Management .. 9

2.1. Project File Concept ... 9

2.2. Memory Setting .. 12

2.3. Axis Selection ... 14

2.4. Application - Setup ... 15

2.5. Application - Motion .. 17

2.5.1. Homing Modes ... 20
2.5.2. Homing Modes Edit .. 21
2.5.3. Functions .. 22
2.5.4. Functions Edit ... 23
2.5.5. Interrupts .. 24
2.5.6. Interrupts Edit ... 25
2.5.7. CAM Tables .. 26
2.5.8. CAM Tables Edit .. 28

3. EasyMotion Studio Workspace ... 30

3.1. Menu Bar .. 31

3.1.1. Project Menu .. 31
3.1.2. Application Menu .. 32
3.1.3. Application | Setup Menu .. 33
3.1.4. Application | Motion Menu .. 33
3.1.5. Communication Menu ... 35
3.1.6. View Menu.. 36
3.1.7. Logger .. 37

© Technosoft 2011 VI ESM User Manual

3.1.8. Control Panel ... 38
3.1.9. Help .. 40

3.2. Toolbar ... 41

4. Evaluation Tools .. 43

4.1. Data Logger ... 43

4.1.1. Data Logger ... 43
4.1.2. Data Logger - Start ... 44
4.1.3. Data Logger - Plot Options ... 45
4.1.4. Data Logger - Plot Setup .. 47
4.1.5. Data Logger - Variables .. 49
4.1.6. Data Logger - Other Options .. 51

4.2. Control Panel ... 54

4.2.1. Control Panel ... 54
4.2.2. Control Panel - Show Value.. 61
4.2.3. Control Panel - Scope .. 63
4.2.4. Control Panel - Double Scope .. 65
4.2.5. Control Panel - Y(X) Scope Object ... 67
4.2.6. Control Panel - Gauge .. 69
4.2.7. Control Panel - Slider ... 71
4.2.8. Control Panel - Input .. 73
4.2.9. Control Panel - Bit Value .. 74
4.2.10. Control Panel - User Defined TML Sequence Object............................... 75
4.2.11. Control Panel - Label... 76
4.2.12. Control Panel - Output ... 77
4.2.13. Control Panel Properties ... 77

4.3. Command Interpreter ... 78

4.4. Binary Code Viewer ... 81

4.5. Memory View ... 83

5. Communication .. 84

5.1. Communication Setup .. 84

© Technosoft 2011 VII ESM User Manual

5.1.1. RS-232 Communication Setup ... 86
5.1.2. RS-232 Communication Troubleshoots .. 88
5.1.3. RS-485 Communication Setup ... 89
5.1.4. RS-485 Communication Troubleshoots .. 92
5.1.5. CAN-bus Communication Setup ... 93
5.1.6. CAN-bus Communication Troubleshoots .. 96
5.1.7. Ethernet Communication Setup .. 97
5.1.8. Ethernet Communication Troubleshoots ... 100
5.1.9. Set/change the IP settings using the DeviceInstaller 101
5.1.10. Set/change the IP settings using the serial port of the PC 102
5.1.11. Set/change the IP settings using the Ethernet port 105
5.1.12. User implemented serial driver example .. 108
5.1.13. User Implemented Serial Driver Setup .. 113
5.1.14. User Implemented Serial Driver Troubleshoots 116
5.1.15. Advanced Communication Setup .. 117

5.2. Communication Protocols .. 121

5.2.1. Message Structure. Axis ID and Group ID .. 123
5.2.2. Serial communication. RS-232 and RS-485 protocols 126
5.2.3. CAN-bus communication. TechnoCAN protocol 135
5.2.4. CAN-bus communication. TMLCAN protocol .. 148

6. Application Programming ... 155

6.1. Motion Programming – drives with built-in Motion Controller 155

6.1.1. Motion Programming Toolbars.. 159
6.1.2. Motion Trapezoidal Profile .. 165
6.1.3. Motion S-Curve Profile ... 168
6.1.4. Motion PT ... 169
6.1.5. Motion PVT... 173
6.1.6. Motion External .. 177
6.1.7. Motion Electronic Gearing .. 180
6.1.8. Motion Electronic Camming .. 185
6.1.9. Motor Commands ... 191
6.1.10. Motion Position Triggers .. 194
6.1.11. Motion Homing .. 196

© Technosoft 2011 VIII ESM User Manual

6.1.12. Motion Contouring ... 198
6.1.13. Motion Test ... 201
6.1.14. Events Dialogue .. 203
6.1.15. Jumps and Function Calls ... 217
6.1.16. I/O General I/O (Firmware FAxx) ... 219
6.1.17. I/O General I/O (Firmware FBxx) ... 222
6.1.18. Assignment & Data Transfer - Setup 16-bit variable 225
6.1.19. Assignment & Data Transfer - Setup 32-bit variable 227
6.1.20. Assignment & Data Transfer - Arithmetic Operations 229
6.1.21. Assignment & Data Transfer - Data Transfer Between Axes 232
6.1.22. Send data to host .. 235
6.1.23. Assignment & Data Transfer - Miscellaneous .. 237
6.1.24. TML Interrupt Settings ... 239
6.1.25. Free text .. 246

6.2. Motion Programming – multi-axis Motion Controller 247

6.2.1. Motion Programming Toolbars ... 250
6.2.2. Motion Linear Interpolation ... 255
6.2.3. Motion Vector Mode ... 258
6.2.4. Motion Trapezoidal Profiles .. 261
6.2.5. Motion S-Curve Profiles .. 264
6.2.6. Motion External ... 267
6.2.7. Motor Commands .. 270
6.2.8. Motion Homing .. 273
6.2.9. Motion Test .. 275
6.2.10. Events Dialogue ... 277
6.2.11. Jumps and Function Calls .. 292
6.2.12. I/O General I/O Motion Controller .. 294
6.2.13. Slave Management ... 297
6.2.14. Assignment & Data Transfer - Multiple Axis .. 299
6.2.15. Importing G-code files ... 301
6.2.16. G-code supported blocks .. 304

6.3. Technosoft Motion Language ... 311

6.3.1. Basic Concepts .. 311
6.3.2. TML Description ... 331
6.3.3. TML Instruction set ... 479

© Technosoft 2011 IX ESM User Manual

6.3.4. TML Registers .. 783
6.4. Internal Units and Scaling Factors .. 829

6.5. EEPROM Programmer ... 829

6.5.1. EEPROM Programmer ... 829
6.5.2. EEPROM Programmer File Format .. 834

7. Technical Support via Internet .. 836

7.1. Net Slave Component .. 836

7.2. Description of topics used on Net Slave Component 837

7.3. How to operate the Net Slave Component ... 839

8. Appendix A : TML Instructions List .. 842

9. Appendix B : TML Data List ... 851

 Technosoft 2022 1 ESM User Manual

1. Overview

1.1. Getting Started with EasyMotion Studio

EasyMotion Studio is an integrated development environment for the setup and motion
programming of Technosoft intelligent drives and motors. The output of the EasyMotion Studio is
a set of setup data and a motion program, which can be downloaded to the drive/motor EEPROM
or saved on your PC for later use.

EasyMotion Studio includes a set of evaluation tools like the Data Logger, the Control Panel and
the Command Interpreter which help you to quickly develop, test, measure and analyze your
motion application.

EasyMotion Studio works with projects. A project contains one or several Applications.

Each application describes a motion system for one axis. It has 2 components: the Setup data
and the Motion program and an associated axis number: an integer value between 1 and 255. An
application may be used either to describe:

1. One axis in a multiple-axis system

2. An alternate configuration (set of parameters) for the same axis.

In the first case, each application has a different axis number corresponding to the axis ID of the
drives/motors from the network. All data exchanges are done with the drive/motor having the
same address as the selected application. In the second case, all the applications have the same
axis number.

The setup component contains all the information needed to configure and parameterize a
Technosoft drive/motor. This information is preserved in the drive/motor EEPROM in the setup
table. The setup table is copied at power-on into the RAM memory of the drive/motor and is used
during runtime.

The motion component contains the motion sequences to do. These are described via a TML
(Technosoft Motion Language) program, which is executed by the drives/motors built-in motion
controller.

Step 1 Create a new project

EasyMotion Studio starts with an empty window from where you can create a new project or open
a previously created one.

 Technosoft 2022 2 ESM User Manual

When you start a new project, EasyMotion Studio automatically creates a first application.
Additional applications can be added later. You can duplicate an application or insert one defined
in another project.

Press New button to open the “New Project” dialogue. Set the axis
number for your first application equal with your drive/motor axis ID. The initial value proposed is
255 which is the default axis ID of the drives/motors. Press New button and select your
drive/motor type. Depending on the product chosen, the selection may continue with the motor
technology (for example: brushless motor, brushed motor, 3 phase stepper), the control mode (for
example open-loop or closed-loop) and type of feedback device (for example: incremental
encoder, SSI encoder)

 Technosoft 2022 3 ESM User Manual

Validate your selection with a mouse click. EasyMotion Studio opens the Project window where
on the left side you can see the structure of a project. At beginning both the new project and its
first application are named “Untitled”. The application has 2 components: S Setup and M Motion
(program).

 Technosoft 2022 4 ESM User Manual

Step 2 Establish communication

If you have a drive/motor connected with your PC, now its time to check the communication. Use
menu command Communication | Setup to check/change your PC communication settings.
Press the Help button of the dialogue opened. Here you can find detailed information about how
to setup your drive/motor and the connections. Power on the drive/motor, then close the
Communication | Setup dialogue with OK. If the communication is established, EasyMotion Studio
displays in the status bar (the bottom line) the text “Online” plus the axis ID of your drive/motor
and its firmware version. Otherwise the text displayed is “Offline” and a communication error
message tells you the error type. In this case, return to the Communication | Setup dialogue,
press the Help button and check troubleshoots.

Remark: When first started, EasyMotion Studio tries to communicate with your drive/motor via
RS-232 and COM1 (default communication settings). If your drive/motor is powered and
connected to your PC port COM1 via an RS-232 cable, the communication can be automatically
established.

 Technosoft 2022 5 ESM User Manual

Step 3 Setup drive/motor

In the project window left side, select “S Setup”, to access the setup data for your application.

Press View/Modify button . This opens 2 setup dialogues: for Motor
Setup and for Drive setup through which you can configure and parameterize a Technosoft
drive/motor. In the Motor setup dialogue you can introduce the data of your motor and the
associated sensors. Data introduction is accompanied by a series of tests having as goal to check
the connections to the drive and/or to determine or validate a part of the motor and sensors
parameters. In the Drive setup dialogue you can configure and parameterize the drive for your
application. In each dialogue you will find a Guideline Assistant, which will guide you through the
whole process of introducing and/or checking your data.

 Technosoft 2022 6 ESM User Manual

Press the Download to Drive/Motor button to download your setup
data in the drive/motor EEPROM memory in the setup table. From now on, at each power-on, the
setup data is copied into the drive/motor RAM memory which is used during runtime. It is also
possible to save the setup data on your PC and use it in other applications. Note that you can
upload the complete setup data from a drive/motor.

To summarize, you can define or change the setup data of an application in the following ways:

• create a new setup data by going through the motor and drive dialogues

• use setup data previously saved in the PC

• upload setup data from a drive/motor EEPROM memory

Step 4 Program motion

In the project window left side, select “M Motion”, for motion programming.

 Technosoft 2022 7 ESM User Manual

One of the key advantages of the Technosoft drives/motors is their capability to execute complex
motions without requiring an external motion controller. This is possible because Technosoft
drives/motors include both a state of art digital drive and a powerful motion controller.

Programming motion on a Technosoft drive/motor means to create and download a TML
(Technosoft Motion Language) program into the drive/motor memory. The TML allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of TML functions

o TML interrupts generated on pre-defined or programmable conditions (protections
triggered, transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

With TML, you can really distribute the intelligence between the master and the drives/motors in
complex multi-axis applications. Thus, instead of trying to command each step of an axis
movement, you can program the drives/motors using TML to execute complex tasks and inform
the master when these are done. Thus for each axis the master task may be reduced at: calling
TML functions (with possibility to abort their execution if needed) and waiting for a message,
which confirms the execution. If needed, the drives/motors may also be programmed to send
periodically information messages to the master so it can monitor a task progress.

In order to help you create a TML program, EasyMotion Studio includes a Motion Wizard. This
offers you the possibility to program all the motion sequences using high level graphical dialogues
which automatically generate the corresponding TML instructions. With Motion Wizard you can
develop motion programs using almost all the TML instructions without needing to learn them.

The Motion Wizard is automatically activated when you select “M Motion” in the project window
left side. When activated, Motion Wizard adds a set of toolbar buttons in the project window just
below the title. Each button opens a programming dialogue. When a programming dialogue is
closed, the associated TML instructions are automatically generated. Note that, the TML

 Technosoft 2022 8 ESM User Manual

instructions generated are not a simple text included in a file, but a motion object. Therefore with
Motion Wizard you define your motion program as a collection of motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can
very easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex
functions

As a starting point, push for example the leftmost Motion Wizard button – Trapezoidal profiles,
and set a position or speed profile. Then press the Run button. At this point the following
operations are done automatically:

• A TML program is created by inserting your motion objects into a predefined template

• The TML program is compiled and downloaded to the drive/motor

• The TML program execution is started

For learning how to send commands from your host/master, check the Application | Binary Code
Viewer. This tool helps you to quickly find how to send TML commands using one of the
communication channels and protocols supported by the drives/motors. Using this tool, you can
get the exact contents of the messages to send as well as of those expected to be received as
answers.

Step 5 Evaluate motion application performances

EasyMotion Studio includes a set of evaluation tools like the Data Logger, the Control Panel and
the Command Interpreter which help you to quickly measure and analyze your motion application.

Step 6 Create an EEPROM image file for programming in production

Once you have validated your application, you can create with the menu command Application |
Create EEPROM Programmer File a software file (with extension .sw) which contains all the
data to write in the EEPROM of your drive/motor. This includes both the setup data and the
motion program. The .sw file can be programmed into a drive/motor, using the EEPROM
Programmer tool, which comes with EasyMotion Studio but may also be installed separately. The
EEPROM Programmer was specifically designed for repetitive fast and easy setup and
programming of Technosoft drives/motors in production.

See also:

EasyMotion Studio Workspace

 Technosoft 2022 9 ESM User Manual

2. Project Management

2.1. Project File Concept

EasyMotion Studio works with projects. A project contains one or several Applications.

Each application describes a motion system for one axis. It has 2 main components: the Setup
data and the Motion program and an associated axis number: an integer value between 1 and
255. Applications for Technosoft Motion Controller contain also a third component Axis
Selection.

An application may be used either to describe:

1. One axis in a multiple-axis system

2. An alternate configuration (set of parameters) for the same axis.

In the first case, each application has a different axis number corresponding to the axis ID of the
drives/motors from the network. All data exchanges are done with the motion controller/intelligent
drive or motor having the same address as the selected application. In the second case, all the
applications have the same axis number.

The setup component contains all the information needed to configure and parameterize a
Technosoft drive/motor. This information is preserved in the drive/motor EEPROM in the setup
table. The setup table is copied at power-on into the RAM memory of the drive/motor and is used
during runtime.

The motion component contains the motion sequences to do. These are described via a TML
(Technosoft Motion Language) program, which is executed by the built-in motion controller.

In case of motion controller applications the Axis Selection allows multi-axes system description.
The information is used by the motion controller to configure and command the slave axes.

When you start a new project, EasyMotion Studio automatically creates a first application.
Additional applications can be added later. You can duplicate an application or insert one defined
in another project.

 Technosoft 2022 10 ESM User Manual

When you select an application from the left side selection tree, the Application General
Information view opens on the right, summarizing the basic data:

• Application ID: contains an array of characters you can create to quickly identify an
application. The application ID is set in the setup component, the Drive Setup dialogue at
Drive Info. The application ID is saved in the drive/motor EEPROM with the setup data

• Axis number: must match the axis Axis ID of the associated motion controller/intelligent
drive or motor.

• Memory Settings: shows how the associated motion controller/intelligent drive or motor
memory is used and allows you to modify the space reserved for different sections to
match your application needs

• Drive

o Product ID: displays the drive/motor execution/order code. Technosoft writes it in a
reserved area of the EEPROM.

o Firmware ID: shows the firmware required by the selected configuration. The actual
firmware on the drive/motor must have the same number and a revision letter equal
or higher.

 Technosoft 2022 11 ESM User Manual

o Setup ID: displays the setup configuration

o E2ROM: shows the size of the drive/motor E2ROM memory.

o RAM: shows the size of drive/motor RAM memory.

• Motor: displays the name of the motor used

o Type: presents the motor type: brushless, brushed, stepper: rotary or linear

• Sensors: presents the sensors used for the load and motor position and for the motor
speed (when these sensors are present)

o Load Position: type of position sensor for the load.

o Motor Position: type of position sensor for the motor

o Motor Speed: type of speed sensor for the motor

On the selection tree, for each application selected, you can access the 2 main components: the
Setup data and the Motion program. The application tree for motion controller contains also the
Axis Selection.

Continue with:

Application – Setup

Application – Motion

See also :

EasyMotion Studio Workspace

 Technosoft 2022 12 ESM User Manual

2.2. Memory Setting

The Memory Settings dialogue allows you to customize the memory space reserved for different
sections of your application as well as where the TML program is loaded and executed. The
memory settings refer to 2 types of memories: RAM and EEPROM.

The RAM memory has an area reserved for PVT / PT buffer followed by a customizable area.
This is typically used for the Logger data acquisitions and to store the cam tables during runtime.
It may also be used to temporary store TML programs.

The EEPROM memory has an area reserved for the setup table preceded by a customizable
area. This is used to store the TML programs and the cam tables.

The exact amount of EEPROM memory is specific for each drive/motor.

In the CAM Tables section, you can adjust the space reserved for the cam tables selected to be
used in your application. The cam tables are first downloaded into the EEPROM memory and at
runtime are copied into the RAM memory. Therefore, the cam tables’ space is reserved in both
RAM and EEPROM memories. You can find how much of the space reserved is really occupied
by the cam tables from the CAM Tables View which shows you at Buffer Free Space the
remaining space reserved for cam tables.

 Technosoft 2022 13 ESM User Manual

If your application doesn’t use cam tables you can free the space reserved to increase the space
allocated for data acquisition.

In the TML program section, you can choose where to download and execute the TML program.
Typically you download and execute the TML program in the non-volatile EEPROM from, starting
from its first location (4000h) which is checked at power on in the AUTORUN mode.

If your configuration includes an absolute encoder with position read via SSI or EnDat protocols,
the TML program MUST be downloaded into the EEPROM and executed from the RAM. In these
cases, when the TML program executes the ENDINIT command, the EEPROM memory can no
longer be accessed. Therefore, for these configurations, EasyMotion Studio automatically adds to
your TML program a copy sequence which is executed immediately as the TML program starts to
run. The copy sequence, copies your TML program from the EEPROM memory into the RAM
memory and then it passes the control. The whole process is transparent for the user, whose only
obligation is to set the download address in the EEPROM and the run address in the RAM.

For test purposes, you can also download and run the TML programs from the RAM memory.
This option speeds up the download process and may be useful if your TML program is large and
you intend to execute a lot of tests.

See also:

Project Concept

Memory Map

 Technosoft 2022 14 ESM User Manual

2.3. Axis Selection

This view allows you to associate a TML application to a slave axis commanded by the motion
controller. You can define up to 8 slave axis named A to H with the motion controller as one of
them.

The Available list contains all the TML applications defined in the TML project. With “<” button
move in the Selected list those TML applications you intend to use in the multi-axis application.
Use Move Up and Move Down buttons to change the application association in the Selected list
i.e. which application is assigned to a slave axis. With “>” move in the Available list the TML
applications you don’t use now, but may use later.

See also:

Application – Setup

Application – Motion

Motion Project Concept

 Technosoft 2022 15 ESM User Manual

2.4. Application - Setup

In the Setup view you can create a new configuration, load a previously saved setup, upload from
drive/motor, view or change the selected configuration, save or download the configuration.

The setup view is split in 3 sections as follows:

• In the left section you can define or load a setup configuration:

o Create a New drive/motor setup. Opens the “Select Technosoft Product“
dialogue. Select your drive/motor type. Depending on the product chosen, the
selection may continue with the motor technology (for example: brushless motor,
brushed motor) or the control mode (for example stepper – open-loop or stepper
– closed-loop) and type of feedback device (for example: incremental encoder,
SSI encoder).

o Open an existing setup. Loads a drive/motor setup configuration, which was
previously defined and saved on your PC. The command opens the “Select
Drive/Motor Setup" dialogue, allowing you to select a drive/motor setup. Note
that a setup is not a single file, but a collection of files which are saved together in
the same folder. The folder name is the name of the setup. Hence you select a

 Technosoft 2022 16 ESM User Manual

setup by choosing a folder. By default, EasyMotion Studio saves the setup data
in "Setup Files" subdirectory of the EasyMotion Studio main folder

o Upload from Drive/Motor the setup data.

• In the middle section you can view and edit the setup data. You may also load and
convert setup data from a previous versions:

o View/Modify setup. Opens 2 setup dialogues: for Motor Setup and for Drive
setup through which you can configure and parameterize a Technosoft
drive/motor. In the Motor setup dialogue you can introduce the data of your
motor and the associated sensors. Data introduction is accompanied by a series
of tests having as goal to check the connections to the drive and/or to determine
or validate a part of the motor and sensors parameters. In the Drive setup
dialogue you can configure and parameterize the drive for your application.

o Load from a previous version. Converts setup data from a previous version into
the up-to-date version. The command is foreseen to provide migration of setup
data defined long time ago into the latest version for that configuration. The
command has sense only if there are differences between the user interface
opened with the old setup data and that opened for the same configuration (drive,
motor and sensor) with the command New.

• In the right section, you can save the setup data on your PC or download it on the
drive/motor

o Save. Opens “Save Drive/Motor Setup” dialogue where you can select where
to save the setup data. Note that a setup is not a single file, but a collection of
files which are saved together in the same folder. The setup name gives the
name of the associated folder. By default, EasyMotion Studio saves the
setup data in "Setup Files" subdirectory of the EasyMotion Studio main
folder

o Download to Drive/Motor. The command will download the actual setup
data into the drive EEPROM in the setup table.

See also:

Application – Motion

Application – Axis Selection

Motion Project Concept

 Technosoft 2022 17 ESM User Manual

2.5. Application - Motion

In the Motion part of an application, you can program the motion sequences to be executed by
the motion controller (dedicated or built-in intelligent drives/motors).

Programming motion on a Technosoft motion controller or intelligent drive/motor means to create
and download a TML (Technosoft Motion Language) program into the motion
controller/drive/motor memory. The TML allows you to:

• Set independent motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Set 2D/3D coordinate motion modes (Vector Mode, Linear Interpolation)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of TML functions

o TML interrupts generated on pre-defined or programmable conditions (protections
triggered, transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and

• analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Slave axes management from Motion Controller

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

A TML program includes a main section, followed by the subroutines used: functions, interrupt
service routines and homing procedures. The TML program may also include cam tables used
for electronic camming applications.

When you select the “M Motion” part of an application, you access the main section of your
application TML program.

 Technosoft 2022 18 ESM User Manual

You can select the other components of a TML program too. Each has 2 types of access views:

• Definition and/or selection view, with the following purposes:

• Homing Modes: select the homing procedure(s) to use from a list of already defined
procedures.

• Functions: create new TML functions (initially void) and manipulate those defined: delete,
rename, change their order in the program

• Interrupts: choose the TML interrupt service routines you want to view/change their
default implementation

• Cam Tables: create new cam tables loaded from other applications or imported from text
files and manipulate those defined: select those to be downloaded and their order, delete
or rename.

Remark: The Cam Table are available only in applications developed for intelligent drive/motors.

• Edit view – for editing the contents. There is one edit view for each homing procedure and
cam table selected, for each function defined and each interrupt chosen for view/edit.

 Technosoft 2022 19 ESM User Manual

When you start a new application the edit views of the above components are not present as
there is none defined. After you have defined/selected the first homing procedure(s), function(s),
interrupt(s) or cam table(s), select again the corresponding view in the project window left side
tree. Below it, you’ll see the component(s) defined/created. Choose one and on the right side
you’ll see the corresponding edit view.

In order to help you create a TML program, EasyMotion Studio includes a Motion Wizard which
is automatically activated when you select “M Motion” – the main section view or an edit view for a
homing procedure, function or interrupt service routine. The Motion Wizard adds a set of toolbar
buttons in the project window just below the title bar. Each button opens a programming dialogue.
When a programming dialogue is closed, the associated TML instructions are automatically
generated. Note that, the TML instructions generated are not a simple text included in a file, but a
motion object. Therefore with Motion Wizard you define your motion program as a collection of
motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can
very easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex
functions

See also:

Motion Wizard toolbar buttons for motion programming

EasyMotion Studio Workspace

Homing Modes

Functions

Interrupts

CAM Tables

Application – Setup

Application – Axis Selection

Motion Project Concept

 Technosoft 2022 20 ESM User Manual

2.5.1. Homing Modes

This view allows you to choose the homing procedures associated with the selected application.

Technosoft provides for each intelligent drive/motor a collection of up to 32 homing procedures.
These are predefined TML functions, which you may call after setting the homing parameters.
You may use these homing procedures as they are, or you may modify them according with your
application needs.

In this view you can see all the homing procedures defined for your drive/motor, together with a
short description of how it works. In order to select a homing procedure, check its associated
button. You may choose more then homing procedure, if you intend to use execute different
homing operations in the same application. The selected homing modes appear in the project
window left side selection tree, in the current application, as a sub-tree of the Homing Modes
section. Select a homing procedure from this list. On the right side you’ll see the associated
function in the Homing Procedures Edit. Here you can check and modify the contents of the
selected homing procedure(s).

Remark: Only the selected homing modes are available as options in the Motion – Homing
dialogue.

Once modified, a homing procedure is memorized together with the application. However, if you’ll
create a new application, the homing procedure changes will are not preserved. If you want to

 Technosoft 2022 21 ESM User Manual

preserve them, either create the new application by duplicating that with modified homing
procedures, or load the entire motion from the application with modified homing procedures.

Press the Reload Default button to restore the default homing procedure.

See also:

Homing Modes Edit

Application – Motion

2.5.2. Homing Modes Edit

In the Homing Procedures Edit, you can view and modify the contents of the homing procedure
selected on the left-side tree. This is a standard motion view offering access to all the TML
programming features.

See also:
Motion Wizard toolbar buttons for motion programming
EasyMotion Studio Workspace
Homing Modes
Application – Motion

 Technosoft 2022 22 ESM User Manual

2.5.3. Functions

This view allows you to add and remove the TML functions associated with the selected
application. You may also rename and change the functions download order.

Type in the edit the name, and press the Add button to create a new function. Select a function
from the list and press Rename to change its name, Delete to erase it, Move Up or Move Down
to change its position in the list.

The TML functions defined appear in the project window left side selection tree, in the current
application, as a sub-tree of the Functions section. Select a function from this list. On the right
side you’ll see the function contents in the Functions Edit.

See also:

Functions Edit

Application – Motion

 Technosoft 2022 23 ESM User Manual

2.5.4. Functions Edit

In the Functions Edit, you can view and modify the contents of the TML function selected on the
left-side tree. This is a standard motion view offering access to all the TML programming features.

See also:

Motion Wizard toolbar buttons for motion programming

EasyMotion Studio Workspace

Functions

Application – Motion

 Technosoft 2022 24 ESM User Manual

2.5.5. Interrupts

This view allows you to see, define and modify the TML interrupt service routines (ISR).

Each drive/motor has a default ISR for each of the 12 TML interrupts. In order to use the default
ISR, select Default for all the TML interrupts. If you want to see or modify any of the default ISR,
choose option User defined. The TML interrupts with option User defined appear in the project
window left side selection tree, in the current application, as a sub-tree of the Interrupts section.
Select an interrupt from this list. On the right side you’ll see the ISR contents in the Interrupt Edit.
Here you can check and modify the selected ISR according with your needs.

In can cancel your modifications and to return to the starting point i.e. the default ISR by pressing
Reload Default button. You can also return at any moment to the default ISR by selecting again
the Default option.

Remark: Some of the drive/motor protections may not work properly if the TML Interrupts are
handled incorrectly. In order to avoid this situation keep in mind the following rules:

• The TML interrupts must be kept globally enabled to allow execution of the ISR for those
TML interrupts triggered by protections. As during a TML interrupt execution, the TML
interrupts are globally disabled, you should keep the ISR as short as possible, without
waiting loops. If this is not possible, you must globally enable the interrupts with EINT
command during your ISR execution.

 Technosoft 2022 25 ESM User Manual

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you keep the
original TML commands from the default ISR. Put in other words, you may add your own
commands, but these should not interfere with the original TML commands. Moreover, the
original TML commands must be present in all the ISR execution paths.

See also:

Interrupts Edit

Application – Motion

2.5.6. Interrupts Edit

In the ISR Edit, you can view and modify the contents of the service routine for the TML interrupt
selected on the left-side tree. This is a standard motion view offering access to all the TML
programming features.

See also:

Motion Wizard toolbar buttons for motion programming

EasyMotion Studio Workspace

Interrupts

Application – Motion

 Technosoft 2022 26 ESM User Manual

2.5.7. CAM Tables

This view allows you to specify the cam tables associated with the selected application.

You can:

• Load cam files (with extension .cam) defined in other applications

• Import cam tables from text files with format: 2 columns, one for X, the other for Y,
separated by space or tab

• Add new cam files

Once defined, a cam table can be placed in one of the following two lists: Available or Selected.
Move in the Selected list those cam tables you intend to use in your application. You can have
one or more cam tables, up to the limit of the memory space reserved for cams (the remaining
memory for cam tables is shown by Free Buffer Space indicator). Use Move Up and Move
Down buttons to change the cam tables order in the Selected list i.e. the order in which these
cam tables will be downloaded. Move in the Available list all the cam tables you don’t use now,
but may use later. Use Delete to remove a cam table from the Available list. Select a cam from
either list and change its name with Rename or use [<] or [>] to move it from one list to the
other. Use [<<] or [>>] to move all the cams from one list to the other. By default, all the new
added cam tables are placed in the category Selected.

Remark: Check the application Memory Settings if you want to change the space reserved for
cam tables

 Technosoft 2022 27 ESM User Manual

First time when you run (i.e. press the Run button) a new application, the associated cam tables
from the Selected list are automatically downloaded into the drive/motor together with the motion
application. Later on, the cam tables download is repeated only if these are modified of the
Selected list is changed. There is also a dedicated menu command Application | Motion |
Download CAM Tables, for the cam tables download.

Once defined, all the cams from the Selected list appear in the project window left side selection
tree, in the current application, as a sub-tree of the CAM Tables section. Select a cam table from
this list. On the right side you’ll see graphically the cam profile in the CAM Tables Edit, view,
where you may edit the cam file.

When you create a new cam table, you must:

• Type its name in the edit field and press the Add button

• Select the cam table from the left side selection tree and edit or import the points

See also:

CAM Tables Edit

Application – Motion

 Technosoft 2022 28 ESM User Manual

2.5.8. CAM Tables Edit

In the CAM Tables Edit, you can view, modify, export or import a cam table. All these operations
refer to the selected cam on the left-side tree.

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y
is the cam output i.e. the slave position. The X points are expressed in the master internal position
units, while the Y points are expressed in the slave internal position units. Both X and Y points
32-bit long integer values. The X points must be positive (including 0) and equally spaced at: 1, 2,
4, 8, 16, 32, 64 or 128 i.e. having the interpolation step a power of 2 between 0 and 7. The
maximum number of points for one cam table is 8192.

As the X points are equally spaced, these are completely defined by only 2 data: the Master start
value or the first X point and the Interpolation step providing the distance between the X points.

When you create a new cam table, you may either import or edit its points.

 Technosoft 2022 29 ESM User Manual

Press the Import… button to import the cam table points from a simple text file (.txt), with 2
columns, first the X points and the column with Y points. A tab or a space must separate the
columns.

In order to edit a cam table:

• Set the first X point value in Master start value

• Set a value between 0 and 7 in Interpolation step 2^

• Set the first Y value and press the Insert button. Repeat these operations until you define
all the cam Y points.

Remark: The X points are automatically calculated and displayed as you introduce the Y points.

To navigate between the cam table points use [≤<] , [>≥] buttons. Use Remove or Update to
delete or change the currently selected cam table point.

You may also Export a cam table in the same text file format (.txt) used for import. When the
project is saved, for each application, the associated cam files (.cam.) are saved in the application
folder.

See also:

CAM Tables

Motion – Electronic Camming

Application – Motion

 Technosoft 2022 30 ESM User Manual

3. EasyMotion Studio Workspace

Menu Bar

The Menu Bar is the toolbar at the top of the screen that contains all EasyMotion Studio menu
commands.

When EasyMotion Studio creates a new project, besides the Project window, it opens also the
Logger and 3 predefined Control Panel windows (1_Motion Status and 2_Drive IO and
3_Drive Status).

Toolbar

The buttons in the toolbar represent commonly used EasyMotion Studio commands.

Status bar

In the status bar you will find the following information:

• The communication status:

o ”Online” if the communication between the drive/motor associated with to the
selected and EasyMotion Studio is established

o “Offline” if the EasyMotion Studio can’t communicate with the drive/motor associated
to the selected application.

• Axis ID – the axis ID of the selected application if the communication between the
drive/motor and EasyMotion Studio is established

• Product ID – the product ID of the drive/motor associated to the selected application

• Firmware ID – the version of the firmware found on the drive/motor

• Setup ID – the identification code for the setup configuration used in the selected
application

• The coordinates of the mouse pointer in the data logger graphs. This information is
available only when the Data Logger is selected.

 Technosoft 2022 31 ESM User Manual

See also:

Motion Programming Toolbars

Application – Motion

Functions Edit

Interrupts Edit

3.1. Menu Bar

The Menu Bar is the toolbar that contains all EasyMotion Studio menu commands:

3.1.1. Project Menu

New. Use this command to create a new project. The "New Project" menu dialog will open.

Open. Use this command to open an already defined Motion System project that was previously
saved and closed. An "Open EasyMotion Studio project" dialogue will open, allowing you to
select a project name

Close. Use this command to close the current project.

Save. In order to save the changes done to the current project use this command.

Save As….Use this command to save the current project with a appropriate name. The “Save
Project” window opens, allowing you to create a new folder where the project will be saved.

Archive. Use this command in order to compress all the files of a project. This command creates
a unique file, having the name of the project and the suffix .m.zip.

Restore. An .m.zip file, saved by default in the /Archives subdirectory, can be copied into a
different location (another computer), and then re-opened using this command. This will simplify
the process of project transfer from one location to another, as the project consists from more
files, which must be restored into specific sub-directories, in relation to the applications included in
the project.

Print. to generate a printed image of some of the project windows (as logger, TML source code),
select the respective window, and use this command.

 Technosoft 2022 32 ESM User Manual

Print Preview. Use this menu command in order to preview the plot before printing

Print Setup. The command opens a dialogue where you configure the printer used by
EasyMotion Studio

A list of the last projects opened.

Exit. In order to quit the EasyMotion Studio use this menu command.

3.1.2. Application Menu

New…Use this command in order to add a new application to your current project.

Duplicate. Use this command to duplicate the currently active application. This command creates
an identical application in the project, asking you for a different application name. The duplicate
operation copies all the contents of the directory associated to the copied application, and create
the new one in the current project. This operation is useful if you want to modify an existing
application, while keeping the original one unchanged. Selecting one application or another will
allow you to execute and compare the two applications in a straightforward manner.

Insert… Using you can include an already defined application from a different project. This
command opens a dialog that allows you to select the application to be copied. The import
operation copies all the contents of the directory associated to the copied application, and create
a new one in the current project. You can rename the application in order to change its name.

Edit….. This command opens the Application Attributes dialogue that allows you to rename the
currently active application and/or to change the Axis ID.

Delete. You can delete the currently active application using this command.

Setup

Motion

Run. Use this menu command to start you application.

Axis On. This command enables the PWM signals of the drive/motor associated to the selected
application.

Axis Off. This command disables the PWM signals of the drive/motor associated to the selected
application.

Reset. Use this command to reset the drive/motor associated to the selected application.

Show slave errors. This command displays the errors reported by the slave axes to a multi-axes
Motion Controller.

 Technosoft 2022 33 ESM User Manual

Binary Code Viewer The “Binary Code Viewer” is a tool included in EasyMotion Studio which
offers you a quick way to find the binary code that must be sent / will be received by your host
processor, when communicating with a Technosoft drive.

Create EEPROM Program File. The option Motion and Setup creates a .sw file with complete
information including setup data, TML programs, cam tables (if present) and the drive/motor
configuration ID. The option Setup Only produces a .sw file identical with that produced by
EasySetUp i.e. having only the setup data and the configuration ID.

Export to TML_LIB. With this command you export the setup information, of the selected
application, for use with TML_LIB. The setup information will be stored in two files setup.cfg and
variables.cfg.

3.1.3. Application | Setup Menu

New… Create a new drive/motor setup using this command. A new window “Select Technosoft
Product “will open in which you need to select the template on which the new motion application
will be based. The collection of EasyMotion Studio templates is organized for different
configurations, based on the different types of Technosoft drives, and the associated types of
motors that can be driven by these drives.

Open… Use this menu command for opening an already defined drive/motor setup that was
previously saved and closed. A “Select Drive/Motor Setup" dialogue will open, allowing you to
select a drive/motor setup name. By default, EasyMotion Studio saves each motion project as a
separate directory having the same name as the project itself, in the "Setup Files" subdirectory of
the EasyMotion Studio program directory.

Upload from Drive/Motor. Use this command to upload the setup from the drive/motor.

Import from a Previous Version… Converts setup data from a previous version into the up-to-
date version. The command is foreseen to provide migration of setup data defined long time ago
into the latest version for that configuration.

Edit/New. Using this menu command will open the drive setup window and motor setup window.
In these windows you can view or change the drive and motor settings.

Download to Drive/Motor. Use this command to download the setup to drive/motor.

Save As…Use this command to save the setup on the disk. A “Save Drive/Motor Setup” window
will open in which you can create a new folder for the setup to be saved in.

3.1.4. Application | Motion Menu

 Technosoft 2022 34 ESM User Manual

Build. Using this command you compile and link the TML program, the result is a file with out
extension ready to be downloaded to the drive/motor.

Download CAM Tables. Use the command to download on the drive/motor EEPROM the cam
tables defined for the selected application.

Download Program. The command downloads on the drive/motor the out file created for the
selected application. The out file is created using the command Build.

Load from Another Application… This command allows you to load the motion section defined
in a different application. All motion section components (motion sequences, functions, ISR or
homing sequence) of the current application are overwritten by this command.

Import Sequence… This command allows you to load/insert motion objects previously saved in
*.msq files. These are appended below the current position e.g. the immediately after the selected
motion object.

Export Sequence… Use this command to save a part of your program (one or more motion
object) in a separate motion file .The operation saves the selected motion objects in a file with
extension *.msq.

Import G-Code file… This command allows you to convert G-Code sequences into TML motion
language instructions for a multi-axis Motion Controller.

Edit. Use this command after select a motion sequence to change its parameters. The dialogue
associated with the selected motion sequence opens.

Insert. Reserved for future developments.

View Generated TML Code… This command allows you to view the TML Code generated for the
motion sequences selected in the Motion Wizard dialogue.

Duplicate. This command duplicates the selected motion sequence.

Move Up. This command moves up the selected motion sequence.

Move Down. This command moves down the selected motion sequence.

Delete. This command allows you to delete the selected motion sequence.

Group. This command allows you to group a number of motion sequences in a new object
containing all the selected motion objects

Ungroup. Use this command to restore the motion objects list instead of the group object.

Enable For debugging, you have the possibility to remove motion sequences (one or more motion
objects) from the motion program like commenting lines in a text program. Use this menu
command to uncomment (enable) the selected motion sequences.

Disable .Use this command to comment (disable) the selected motion sequences.

 Technosoft 2022 35 ESM User Manual

Add Function. This command creates a new function (named “Untitled”) and the “Function
Window” will open. In this window you can insert the motion sequences to be executed when the
function is called.

Delete Function. This command deletes the currently selected function.

3.1.5. Communication Menu

Setup… The “communication setup” dialogue will open which allows you to select the
communication type between RS-232, RS-485 and CAN-bus with several PC to CAN interface
boards, to choose the desired baud rate and to setup the communication parameters.

Refresh Select the command if during operation the communication is interrupted (for example if
the drives power is turned off) in order to restore communication

Work Offline When this option is selected the EasyMotion Studio doesn’t attempt to
communicate with the drives/motors associated to the defined applications.

Show Info In Output View | The menu command allows selecting the information listed in the
output view. The output view is showed/hided from menu View | Output.

None – when you select this option no information is presented in Output view.

Errors – use this option to view errors occurred during communication. Errors due to
programming error, detected during program build, are automatically listed in Output View.

Warnings – when this option is selected in the Output view appears the warning messages of
the selected communication channel.

Traffic – when this option is selected in the Output view are listed all messages send or
received by EasyMotion Studio.

Unrequested messages – use this option to list messages send automatically by the drive
connected to the PC.

EEPROM Write Protection. From this menu you access the options related to EEPROM write
protection feature. You have the following options:

Do not protect EEPROM after download – when this option is selected the EEPROM is not
protected

Write protect last ¼ of EEPROM after download – when this option is selected the last
quarter of the EEPROM is write protected after the download of setup data or TML program

Write protect last ½ of EEPROM after download – when this option is selected the last half
of the EEPROM is write protected after the download of setup data or TML program

 Technosoft 2022 36 ESM User Manual

Write protect entire EEPROM after download – when this option is selected the entire
EEPROM is write protected after the download of setup data or TML program

Scan Network. Use this command to detect online drives/motors, members of a CAN network.
The drives/motors detect are listed in the Output View along with their axis ID and firmware
version.

3.1.6. View Menu

Project. Use this command to visualize the “Project Window”

Command Interpreter. Use this command to visualize the “Command Interpreter Window”

Logger. Use this command to visualize the “Logger Window”

Multi-Axis Logger. Use this command to visualize the “Multi-Axis Logger Window”

Control Panel. Use this command to show/hide the “Control Panel” windows defined for the
selected application. By default there are 3 control panels defined. Check the windows you want
to show/hide from the list.

• 1_Motion Status

• 2_Drive IO

• 3_Drive Status

Memory The command opens the Memory Window, within you can view/modify the drive/motor
memory contents.

Remark: This is a feature is a very low level function, it is NOT recommended to modify memory
contents without a deep knowledge of the use made by the Technosoft drive of each memory
location you intend to modify.

Output. Use this command to visualize the “Output Window”. From Communication | Show Info
In Output View menu you select what information is presented in the window.

Refresh The command refreshes the content of Memory window. It’s available only when the
Memory window is active.

Toolbar. Use this command to hide/show the EasyMotion Studio toolbar.

Status bar. Use this command to hide/show the status bar from the bottom of EasyMotion Studio
window.

View graph plot. Previously saved plots from Logger or during controllers tuning can be opened
from this menu command.

 Technosoft 2022 37 ESM User Manual

3.1.7. Logger

Variables… This menu command opens the dialogue from where you manage the plotted
variables.

Plot Setup… This menu command allows you to select and group on specific graphic subplots
the variables which will be stored during the motion execution through the data logging procedure.

Plot Options… This menu command allows you to set the graphical parameters of all the
variables selected to be plotted in any of the four subplots of Logger View, as colors, line width
and pattern, background, axes colors, grid options and measurement units.

Arrange | From this menu entry you can define the position of the subplots on the Logger View.
The command is effective if more than one subplot are defined

Auto: use a default disposal of the subplots, depending on their number (2, 3 or 4).

Horizontal: the plot window is divided in horizontal regions for sub-plotting. The subplots are
displayed in a row, from left to right, on the graphic window.

Vertical: the plot window is divided in vertical regions for sub-plotting. The subplots are
displayed one below the other

Zoom | This menu commands allows you to select fixed zoom areas of the first subplot on the
Logger View

Zoom In: zoom-in the graphical image of the first subplot.

Zoom Prev: zoom-out one step the graphical image of the first subplot.

Zoom Out: zoom-out back to the initial graphical image of the first subplot.

Start Use this menu command to start storing data onto the drive/motor memory.

Upload Data. Use this menu command to get the data from the drive/motor memory and display
them in the logger window.

Stop Data Upload. Use this menu command to stop the logged data uploading process

Import… Use this menu command in order to load a pre-defined logger configuration into a
special format file. Thus, all logger settings, including selected variables, pre-defined sub-plots
contents, and other preferences (colors, etc), can be loaded, replacing the actual logger settings.

Export…Use this menu command in order to save the actual logger configuration into a special
format file. Thus, all logger settings, including selected variables, pre-defined sub-plots contents,
and other preferences (colors, etc), can be saved on that file

 Technosoft 2022 38 ESM User Manual

Save graph as… This menu command allows saving the selected graph into Technosoft plot files
format, with extension TPT. A dialog is opened which ask the user to indicate the name of the file.
The saved file may be opened using the menu command View | View Plot Graph…

Export to WMF. This menu command will be used to save the actual graphic window contents to
a file on the system disk, into a standard format, the Windows Metafile Format (or WMF). A
special dialog is opened, similar to the Export… one, which asks the user to indicate the name of
the metafile file (its default extension is “.WMF”). The saved file may then be imported in other
Windows applications that have adequate graphic filters and recognize the metafile format. Thus,
the graphics may be included in other documents; more text may be added to the plots, colors
and other features may be changed

Export to ASCII. This menu command will be used to save the actual values of all the uploaded
variables values, on a file on the system disk, into a standard ASCII text format. A special dialog
is opened, similar to the Export… one, which asks you to indicate the name of the ASCII file (its
default extension is “.txt”). The saved file may then be examined, and also read and imported in
different other programs as Excel, Word, etc.

Print… The command opens the dialogue from where you can print the selected plot

Print Preview With this command you can preview the plot before printing

Print Setup…The command opens a dialogue where you configure the printer used by
EasyMotion Studio

3.1.8. Control Panel

Start. Use this menu command to start the control panels of an application. From this moment, all
the contents of all the objects contained in the visible control panels of that application will be
updated and displayed on the screen.

Stop. Use this menu command in order to stop the update of information on the control panels of
the application. Note that this command will delete all the information associated to that control
panel

Customize. Use this menu command in order to be able to customize a control panel. A special
toolbar will be displayed, containing all the possible objects, which can be added in a control
panel. You’ll be able to add, remove and parameterize all the objects of a control panel. Note that
during the parameterization stage, all the control panels are stopped.

Rename… A name must be given to a control panel at the moment of its loading from an external
file, or at its creation. This name is displayed in the window bar of the panel. You can change this
name using this menu command.

Export to File. Use this menu command in order to save a defined control panel on an external
file. This will allow you to load and use this control panel in a different application.

 Technosoft 2022 39 ESM User Manual

Edit Active Item… Choosing this menu command will open its specific parameterization dialog.
This dialogue is automatically opened when a new object is defined.

Align to | Use this menu command in order to align all the objects which are selected, at left,
right, top or bottom. Note that the reference position is taken from the LAST selected object in the
currently selected objects.

Left - align the selected objects along their left side

Right - align the selected objects along their right side

Top - align the selected objects along their top edges

Bottom - align the selected objects along their bottom edges

Space evenly | Use this menu command in order to equally space all the objects which are
selected, horizontally (across) or vertically (down). Note that the reference position is taken from
the selected objects placed in the extremes of the currently selected objects.

Across. Use this menu command to space objects evenly between the leftmost and the
rightmost control selected.

Down. Use this menu command to space objects evenly between the topmost and the
bottommost object selected.

Make same | You can manually resize an object by using the specific resize mouse cursors and
the mouse left-button. If more objects are selected, this menu commands allows you to make the
same width, height or size (both width and height) for all these objects. Note that there are some
limits when trying to resize some of the objects. Note that the reference size is taken from the
LAST selected object in the currently selected objects.

Width - size objects with the same width as the dominant object;

Height - size objects with the same height as the dominant object;

Size - size objects with both the same height and the same width as the dominant object.

Send to back. Use this menu command to send to back the selected items.

Send to front. Use this menu command to send to front the selected items.

Add Control Panel… Use this menu command to define a new control panel.

Add Control Panel from file… Use this menu command to add into your current application
control panels defined in another application (e.g. associated with another setup file).

Delete Control Panel | Use this menu command to delete a control panel.

• 1_Motion Status

• 2_Drive IO

• 3_Drive Status

• Other Control Panels created

 Technosoft 2022 40 ESM User Manual

3.1.9. Help

Help Topics

Getting Started

About EasyMotion Studio… – The menu command opens a dialogue with information about
EasyMotion Studio version

Enter registration info…
Check Updates – From this menu command you launch the update utility.

 Technosoft 2022 41 ESM User Manual

3.2. Toolbar

The buttons in the toolbar represent commonly used EasyMotion Studio commands.

 New. Use this icon to create a new project. The "New Project" menu dialog will open.

 Open. Use this icon to open an already defined motion project that was previously saved and
closed. The "Open EasyMotion Studio project" dialogue will open, allowing you to select a
project name.

 Save. In order to save the changes done to the current project use this icon. If the current
project has not be named a “Save Project” window will open, allowing you to create a new folder
where the project will be saved.

 Print. Use this icon in order to print the motion sequences from active window select some
printing parameters such as the printer, the paper size and orientation.

 View Project. Use this icon to visualize the “Project Window”

 Command Interpreter. Use this icon to visualize the “Command Interpreter”

 View Logger. Use this icon to visualize the “Logger” window

 View Multi-Axis Logger. Use this icon to visualize the “Multi-Axis Logger” window

 View Control Panel. Use this icon to visualize the “Control Panel” windows. Check the
windows you want to be open from the existing list.

 Edit/View Setup. Using this menu command will open the drive setup window and motor
setup window. In these windows you can view or change the drive and motor settings.

 Technosoft 2022 42 ESM User Manual

 Import Setup from Drive/Motor. Use this icon to upload an existing setup from the
drive/motor.

 Download Setup to Drive/Motor. Use this icon to download the setup to drive/motor.

 Run. Use this icon to download and run your application.

 Axis On. Enable PWM signals.

 Axis Off. Disable PWM signals.

 Reset Active Drive/Motor. Send a reset command to the selected drive/motor.

 Start Logger. Use this toolbar icon to start storing data onto the drive/motor memory. The
button is active only when the logger window is active.

 Upload Logger. Use this button to upload data from drive/motor. The button is active only
when the logger is started.

 Stop Logger Upload. Use this button to stop the upload of data from drive/motor. The button
is active only when data from the drive is uploaded.

 Start Control Panel. Use this button to start the selected control panels.

 Stop Control Panel. Use this button to stop the selected control panels. The button becomes
active when the control panels are started.

 Refresh Communication. Use this button to reestablish communication with the drive/motor.

 Help. Opens the help page associated with the active window.

 Technosoft 2022 43 ESM User Manual

4. Evaluation Tools

4.1. Data Logger

4.1.1. Data Logger

The Data Logger is an advanced graphical analysis tool, allowing you to do data acquisitions on
any variable of your drive / motor and plot the results.

In order to set up / manage the data logger module, simply select the View | Logger menu

command (alternatively, use the associated toolbar icon).

Once the Logger window is opened, you have access to its associated menu by clicking on the
right mouse button when positioned in the logger window. This opens the Logger pop-up menu.
This menu has the following menu sub-commands:

Variables / Plot Setup... / Plot Options... / Arrange/ Zoom/ Start / Upload Data / Stop Data
Upload / Import… / Export… / Export to WMF / Export to ASCII / Print… / Print Preview /
Print Setup…

Depending on the state of the Logger, some of these menu sub-commands will be enabled or
not, hence you can execute only the allowed operations for a given situation.

 Technosoft 2022 44 ESM User Manual

4.1.2. Data Logger - Start

Start the logger

Use the Logger | Start menu command (or the associated toolbar icon) to start a data
acquisition for the selected variables. Data is saved in the drive/motor RAM memory. In
EasyMotion Studio, if the logger window is opened, the data acquisition is started automatically
when you press the Run button.

Each time when you execute a Logger | Start command, the data acquisition is restarted and will
overwrite the previously stored data. Once the buffer is full, the data storage process is stopped.

Upload Data

Use the Logger | Upload Data menu command (or the associated toolbar icon) to get the
data from the drive/motor memory and display them in the logger window.

Stop Data Upload

Use the Logger | Stop Data Upload menu command (or the associated toolbar icon) to stop
the logged data uploading process

See also:

Data Logger Utility

 Technosoft 2022 45 ESM User Manual

4.1.3. Data Logger - Plot Options

The Logger | Plot Options… menu command allows you to set the graphical parameters of all
the variables selected to be plotted in any of the four subplots of Logger View, as colors, line
width and pattern, background, axes colors, grid options and measurement units.

The list of variables that will be stored during the data logging must be defined using the Logger |
Variables… menu command. Once this list defined, you may use the Logger | Plot Setup dialog
in order to select the corresponding variables and distribute them on the graphics subplots for
further visualization.

With the plot variables selected in the Logger | Plot Setup dialog, you may open the Logger Plot
Options dialog in order to examine / modify the predefined graphic attributes associated to the
curves, axes, etc.

The dialog contains the complete list of the variables selected to be stored for each of the
possible four subplots that may be defined. For each subplot, any variable to be plotted on it may
be selected from the list grouped under the title Curves.

You may switch between the subplots using the corresponding tabs associated to each subplot.
By default, each subplot tab is named as Subplot options if no name was given to the curve.
Otherwise, if that name was defined, it is used as the tab name. (You may freely define each of
the subplot names in the Logger | Plot Setup dialog).

For each subplot, you may select any of the variables from the Curves list. Once a variable is
selected (outlined) in the list, its graphical attributes are displayed and may be examined and/or
modified by you.

 Technosoft 2022 46 ESM User Manual

Thus, you may modify:

• The curve color, using the Color drop-down list of available colors (up to 28 colors may be
used);

• The curve style, using the Style drop-down list of available line styles (up to 5 line styles may
be used);

• The curve width, using the Width drop-down list of available line widths (1 to 4 line widths
may be used)

You can change in the Measure Units drop-down list the units in which to display the variables
stored.

The background color may be defined for each subplot, using the Background Color drop-down
list (up to 28 colors may be used).

The axis color may be defined for each subplot, using the Axis Color drop-down list (up to 28
colors may be used).

The grid option for each subplot may be set/reset using the Grid check button.

You may also define the X-axis label and measurement unit, by editing the X-Axis edit control
field and respectively, by selecting the measurement unit from the associated drop-down list of
possible units.

Use the Default button to reset all the selected measurement units for the curves.

Use the OK button to effectively apply the defined settings and exit back to the Logger View, by
closing the Logger - Plot Options dialog.

Use the Cancel button to cancel all the defined settings and exit back to the Logger View, by
closing the Logger - Plot Options dialog.

See also:

Data Logger Utility

 Technosoft 2022 47 ESM User Manual

4.1.4. Data Logger - Plot Setup

The Logger | Plot Setup… menu command allows you to select and group on specific graphic
subplots the variables which will be stored during the motion execution through the data logging
procedure. Up to four subplots may be defined.

The list of variables, which will be stored during the data logging, must be defined using the
Logger | Variables… menu command. Once this list defined, you may accede the Logger - Plot
Setup dialog in order to select the corresponding variables and distribute them on the graphics
subplots for visualization.

The dialog contains the complete list of the curves selected to be stored, in the top of it. For each
subplot, the curves to be plotted on it may be chosen from the complete list of stored variables,
grouped under the title Available Curves.

You may switch between the subplots using the corresponding tabs associated to each subplot.
By default, each subplot tab is named as Subplot setup. You may freely define each of the

 Technosoft 2022 48 ESM User Manual

subplot names. The Subplot Title edit box contains the actual (if it was defined) subplot title. You
may define or modify it at any time by editing this edit control.

Each subplot has an associated list of the selected curves to be displayed on that subplot,
grouped under the name of Subplot Axis. The list may be updated by you by adding to /
removing from it curves from the Available Curves list.

A variable may be added to the subplot curves list by selecting it in the Available Curves list, with
a left-button mouse click (the selected variable becomes outlined), and by pressing on one of the
Add to the list buttons: press to add it as the Y axis curve, or press the button to
add it as the X axis curve.

When adding a new variable to the subplot curves list, by having at the same time a selected
(outlined) curve in the Subplot Axis list, the added variable will automatically replace the previous
one from the Subplot Axis list, corresponding to the Y or X axis selected to be replaced.

A curve may be removed from the subplot curves list by selecting it in the Subplot Axis list, with
a right-button mouse click (the selected curve becomes outlined), and by pressing the Remove
from the list button .

Always, the variable Acquisition Time exists in the Available Curves list. Usually, you will select
some other variable to be added to the Subplot Axis list. When the first variable is selected and
added to that list as a Y axis curve, the program automatically inserts by default, as the X-axis,
the Acquisition Time variable .

The variables may be related to the left or to the right vertical axis of the subplot. Usually, the
variables are introduced as related to the left vertical axis . If you want to change this
setting to the right vertical axis, you need to double-click the vertical axis symbol, which will
commute to the right vertical axis symbol . (A similar double-click on this symbol will
reverse again the vertical axis to the left one).

If you want to use a special X-axis coordinate, different that the time variable (in order to visualize
the dependence between two variables), you must select the desired X-axis variable in the
Available Curves list, and add it to the Subplot Axis list using the Add to X axis button .
The newly selected variable will replace the time variable as the X-axis coordinate.

By default, the vertical axes do not have a name. You may freely define for each of the subplots
names for the two vertical axes. The Labels group contains the actual (if it was defined) subplot
Left axis and Right axis names. You may define or modify them at any time by editing the
corresponding edit control.

Use the OK button to effectively apply the defined settings and exit back to the Logger View, by
closing the Logger - Plot Setup dialog.

Use the Cancel button to cancel all the defined settings and exit back to the Logger View, by
closing the Logger - Plot Setup dialog.

See also:

 Technosoft 2022 49 ESM User Manual

Data Logger Utility

4.1.5. Data Logger - Variables

Use this dialogue to select the variables to acquire for plotting. You can select any variable. All the
variables selected will be saved into the drive/motor memory at some predefined moments. The
total number of acquisitions points (“Acquisitions No” value) depends on the drive/motor memory
available for data logging storage. Also in this dialog you can select the data logging moments.
The data logging process may be: triggered by user, done in position/speed control loop
(default), or into the current loop. You can select to acquire data at each sampling loop or from n
to n samplings.

From this dialogue you can:

• Select where to perform the data logging (“Data logger active in” box):

• Triggered by user (available only for some products)

• in the Position/Speed control loop (slow sampling loop) - default

• in the Current control loop (fast sampling loop). To be used with care, since it can
impose to the processor a too big overhead, and thus can affect the behavior of the
motion system.

• See the location and size of the data acquisition buffer (“Acquisition Buffer” box),
depending on the memory available in your system. The memory location and size can’t be
changed directly, they result from the memory setting dialogue.

 Technosoft 2022 50 ESM User Manual

• Define the number of points to store (“Acquisition Number” parameter). Note that the
maximum value of this parameter is related to the size of the data acquisition buffer, as well
as to the number of variables in the list. The “Free buffer space” value can be used to
estimate the remaining amount of memory available for data logging.

• Choose the interval of data logging (“Save logged data at every” box). You can select if
the data logging will be performed at each x control loops.

• Manage the list of variables to be stored. You can:

• add variables to the list. Select the variable from New Variable drop-down list and press
“Add” button.

• delete variables from the list. Select the variable and use the “Delete” button to delete a
variable selected in the list, or the “Delete All” button to delete all the variables from the
list.

See also:

Data Logger Utility

Memory Settings

 Technosoft 2022 51 ESM User Manual

4.1.6. Data Logger - Other Options

Arrange (Auto, Horizontal, vertical)

The Arrange menu command allows you to define the position of the subplots on the Logger
View. The command is effective if more than one subplot are defined. The following options are
available:

• Auto: use a default disposal of the subplots, depending on their number (2, 3 or 4).

• Horizontal: the plot window is divided in horizontal regions for sub-plotting. The subplots are
displayed in a row, from left to right, on the graphic window.

• Vertical: the plot window is divided in vertical regions for sub-plotting. The subplots are
displayed one below the other.

Zoom (In, Prev, Out)

The Zoom menu command allows you to select fixed zoom areas of the selected subplot on the
Logger View. The following options are available:

• In: zoom-in the graphical image of the first subplot

• Prev: zoom-out one step the graphical image of the first subplot

• Out: zoom-out back to the initial graphical image of the first subplot

In order to freely zoom any graphical image, you may use the mouse to select a part of the
current subplot, allowing the zooming of the selected region. The selection is done by pressing
the left mouse button and dragging the zoom cursor on the display surface (the movement is
bound to the area of the subplot). On the release of the mouse button, the selected region is
expanded to the dimension of the entire subplot. Successive zooms may be applied to any of the
subplots.

Note that, when moving the mouse cursor, you can see, at the bottom of the graphic window, the
coordinates on the left and right axes of the current cursor position on the screen. Thus,
measurements may be done on the plots. If no region is selected for zooming, the plot is
unchanged.

Double-click the left mouse button, with the mouse in the graphical area of a subplot, in order to
zoom-out one level back from the currently displayed image.

Import…

Use the " Logger | Import…" menu command in order to load a pre-defined logger configuration
into a special format file. Thus, all logger settings, including selected variables, pre-defined sub-

 Technosoft 2022 52 ESM User Manual

plots contents, and other preferences (colors, etc), can be loaded, replacing the actual logger
settings. This feature is useful in order to easily select a pre-defined preferred logger environment.
Such files can be created by saving an already defined logger context, using the “Logger |
Export…” menu command (see next paragraph).

Note that the command also loads the plotted variables graphs, as existing when the .lgs file was
saved. Use the “Logger | Upload Data” menu command to load from the drive the current values
for the selected variables.

Export…

Use the " Logger | Export…" menu command in order to save the actual logger configuration
into a special format file. Thus, all logger settings, including selected variables, pre-defined sub-
plots contents, and other preferences (colors, etc), can be saved on that file. This feature is useful
in order to save pre-defined preferred logger environments. Such files can be latter-on loaded in
order to re-create the same logger context, using the “Logger | Import…” menu command (see
previous paragraph).

Note that the command also saves the actual plotted variables graphs. Use the “Logger | Upload
Data” menu command to load from the drive the current values for the selected variables.

Export to ASCII

The Export to ASCII menu command will be used to save the actual values of all the uploaded
variables values, on a file on the system disk, into a standard ASCII text format. A special dialog
is opened, similar to the Export… one, which asks you to indicate the name of the ASCII file (its
default extension is “.txt”). The saved file may then be examined, and also read and imported in
different other programs as Excel, Word, etc. The file will contain:

• on the first line, the number n of saved curves, and the number m of saved points for each
curve, separated by the TAB character

• on the next m lines, n values for the saved curves on each line, separated by TAB
characters. Each line contains variables values corresponding to a data logger X-axis instant
(time sampling)

Export to WMF

The Export to WMF menu command will be used to save the actual graphic window contents to a
file on the system disk, into a standard format, the Windows Metafile Format (or WMF). A special
dialog is opened, similar to the Export… one, which asks the user to indicate the name of the
metafile file (its default extension is “.WMF”). The saved file may then be imported in other
Windows applications that have adequate graphic filters and recognize the metafile format. Thus,

 Technosoft 2022 53 ESM User Manual

the graphics may be included in other documents; more text may be added to the plots, colors
and other features may be changed.

Print…
The Print… menu command opens a dialogue which allows you to print the represented graphics.

Print Preview
The Print Preview menu command opens a new window allowing you to see how the graphics
will look after the print.

Print Setup

The Print Setup command opens a dialogue with settings related to the printer, paper size and
orientation.

See also:

Data Logger Utility

 Technosoft 2022 54 ESM User Manual

4.2. Control Panel

4.2.1. Control Panel

The Control Panel is a tool enabling you to define specific control panels where you can send
commands and visualize status variables.

Each Technosoft product comes with a set of pre-defined control panels. Using the “Customize”
option, you can define new control panels or modify the existing ones according with your
application specific.

Handling the control panels

Displaying the control panels

Use the “View | Control Panel” command menu, in order to see the list of the currently defined
control panels. Click on a list item in order to alternatively change its display status (show or hide).

The “Control Panel” menu

All of menu commands are displayed and can be used when you click the right-mouse button,
while over a control panel window.

Adding pre-defined control panels to an application

 Technosoft 2022 55 ESM User Manual

Use the “Control Panel | Add Control Panel from file …” menu command to add into your
current application control panels defined in another application (e.g. associated with another
setup file).

Adding new control panels to an application

Use the “Control Panel | Add Control Panel” menu command to define a new control panel
(see next paragraphs how to customize a control panel).

Deleting control panels from an application

Use the “Control Panel | Delete Control Panel” menu command in order to delete a control
panel.

Activating the control panels of an application

Use the “Start Control Panel” button or the “Control Panel | Start” menu command to start
the control panels of an application. From this moment, all the contents of all the objects
contained in the visible control panels of that application will be updated and displayed on the
screen.

Important notes:

1. The update rate depends on the communication speed between the PC and your
drive/motor and on the number of different variables that must be read from the
drive/motor in order to be displayed. In order to keep the update rate high, try to activate
only those control panels, which are needed at one moment. Thus you’ll avoid over-
charging this process and slowing down too much the update rate.

2. The display rate of the objects is individually selectable, at their definition (see next
paragraphs, the customization procedure of control panels)

Stopping the control panels of an application

Use the “Stop Control Panel” button or the “Control Panel | Stop” menu command in order
to stop the update of information on the control panels of the application.

Note that this command will delete all the information associated to that control panel. If you want
to preserve the control panel, use the “Control Panel | Export to File…” menu command, before
deleting the control panel. The delete operation acts only at the level of the application, but does
not affect the control panels saved on files.

 Technosoft 2022 56 ESM User Manual

Customizing a control panel

Use the “Control Panel | Customize” menu command in order to be able to customize a control
panel. A special toolbar will be displayed, containing all the possible objects, which can be added
in a control panel. You’ll be able to add, remove and parameterize all the objects of a control
panel. Note that during the parameterization stage, all the control panels are stopped. See the
“Control Panel Objects” paragraph for more details regarding the objects, which can be used in
a control panel, and their parameter setting.

Renaming a control panel

A name must be given to a control panel at the moment of its loading from an external file, or at its
creation. This name is displayed in the window bar of the panel. You can change this name using
the “Control Panel | Rename” menu command.

Note that this name is valid at the level of the application, and does not affect the name of the
control panel file that was eventually used to load the control panel into the application.

Saving a control panel

Use the “Control Panel | Export to File…” menu command in order to save a defined control
panel on an external file. This will allow you to load and use this control panel in a different
application.

Deleting a control panel

Use the “Control Panel | Delete” menu command in order to delete the currently selected control
panel from the application.

Note that if you previously saved this control panel using the “Control Panel | Export to File…”
menu command, this command will only delete the control panel from the application, while the
saved file will remain unchanged. This will allow you to re-load the control panel again, using the
“Control Panel | Add Control Panel from file …” menu command.

In case that you didn’t saved the control panel, using the “Control Panel | Delete” menu
command will completely lose the information defined in it.

Control Panel Customization

A control panel can be freely defined and/or customized by you. Specific basic control panel
templates can be saved and included in other EasyMotion Studio applications, as preferred by
you. When you start creating a new control panel, using the “Control Panel | Add Control
Panel” menu command, a new, empty control panel window is opened. At the same time, the

 Technosoft 2022 57 ESM User Manual

specific control panel objects toolbar is also displayed. This toolbar is also displayed when you
use the “Control Panel | Customize” menu command.

While in the customization mode, all control panels are stopped and can be modified. Use again
the “Control Panel | Customize” menu command to end the customization and return in the
normal operation mode of the control panels.

Several types of visualization or setting objects can be included in a control panel, and positioned
/ sized as preferred. Each object will be associated to one or more TML variable(s) (for display-
type objects) or TML parameter (for setting objects). Depending on their types, specific
parameters can be defined.

Selecting objects in a control panel. Click on an object from the control panel in order to select
it. Press the left-mouse button and drag the mouse in order to select more objects simultaneously.
Currently selected object(s) are highlighted, and specific operations can be done related to them
(see below). Alternatively, press the CTRL key and click the left-button of the mouse in order to
select one by one the objects. Note that the LAST selected object is the dominant object, and
alignments and resizing are referred to it.

Editing an object in a control panel. Double-clicking an object, using the Control Panel | Edit

Active Item… menu command, or the corresponding icon , will open its specific
parameterization dialog. This dialogue is automatically opened when a new object is defined. See
next paragraph for details related to the parameterization of each type of control panel object.

Deleting an object in a control panel. Use the DEL key in order to delete the currently selected
objects from a control panel.

Duplicating objects in a control panel. Use the Control Panel | Duplicate Selected Items
menu command in order to create a copy of all the objects which are selected in that moment.
The newly created objects have the same characteristics and parameters as the original ones.

Moving objects in a control panel. Once one or more objects are selected in a control panel,
drag them by pressing the mouse left-button and moving the mouse. The objects will move all
together, keeping the same distance between them.

Aligning objects in a control panel. Use the “Control Panel | Align to …” menu command or
the corresponding icons, in order to align all the objects which are selected, at left, right, top or
bottom. Note that the reference position is taken from the LAST selected object in the currently
selected objects. To align objects:

• Select the objects you want to align by holding down the CTRL key and clicking the
mouse’s left button on the appropriate object window

• Make sure the correct dominant object (the last selected object) is selected.

• The final position of the group of objects depends on the position of the dominant object.

 Technosoft 2022 58 ESM User Manual

Use Align Left button from the toolbar to align the selected objects along their left side.

Use Align Right button from the toolbar to align the selected objects along their right side.

Use Align Top button from the toolbar to align the selected objects along their top edges.

Use Align Bottom button from the toolbar to align the selected objects along their bottom
edges.

Spacing objects in a control panel. Use the Control Panel | Space evenly… menu command
or the corresponding icons, in order to equally space all the objects which are selected,
horizontally (across) or vertically (down). Note that the reference position is taken from the
selected objects placed in the extremes of the currently selected objects.

Choose Space Evenly Across button from the local toolbar to space objects evenly between
the leftmost and the rightmost control selected.

Choose Space Evenly Down button from the local toolbar to space objects evenly between
the topmost and the bottommost object selected.

Resizing objects in a control panel. You can manually resize an object by using the specific
resize mouse cursors and the mouse left-button. If more objects are selected, the Control Panel |
Make Same… menu commands or the corresponding icons, allows you to make the same width,
height or size (both width and height) for all these objects. Note that there are some limits when
trying to resize some of the objects. Note that the reference size is taken from the LAST selected
object in the currently selected objects.

Choose Make Same Size Width button from the local toolbar to size objects with the same
width as the dominant object;

Choose Make Same Size Height button from the local toolbar to size objects with the same
height as the dominant object;

Choose Make Same Size Both button from the local toolbar to size objects with both the
same height and the same width as the dominant object.

Superposing objects in a control panel. In order to create some special visual appearance
effects, you can totally or partially superpose objects in a control panel. In this case, it is important
to control the relative position of the objects. Use the Control Panel | Send to Back or Control
Panel | Bring to Front menu commands or the corresponding icons.

Choose Send to Back button from the local toolbar to send to back the selected items.

Choose Send to Back button from the local toolbar to send to front the selected items.

 Technosoft 2022 59 ESM User Manual

Control Panel Objects

This section contains the description of the different objects that can be defined in a control panel.
In the customization mode, you can freely add / remove objects to a control panel. Simply drag
and drop an object from the toolbar containing the object symbols, and place it on the control
panel area. Objects are user-resizable. For each of these objects, as already mentioned, there is
associated a variable / parameter, I/O port number or data memory location or an
expression can be defined, to be evaluated before being displayed. They can be selected at the
moment when the control panel is defined.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by TML: integer, long or fixed and address is the memory
location address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an Expression are:

 variable_name [unit]

variable_name

type@address

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

Note that for all the objects used to display the value of a variable, the variable can be selected
from the current list of variables.

In the “Axis ID” edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from

 Technosoft 2022 60 ESM User Manual

different drives / motors connected into a network. The default axis ID is as set in Comm Setup
e.g. the axis ID set in Communication |Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

Value Object

Scope Object

Dual Chanel Scope Object

Y(X) Dual Chanel Scope Object

Gauge Object

Cursor Object

Input Port Viewer Object

Output Port Setting Tool Object

Viewer of a Bit of a Variable Object

User Defined TML Sequence Object

Label Object

 Technosoft 2022 61 ESM User Manual

4.2.2. Control Panel - Show Value

 It’s used to visualize the value of one TML variable or data memory contents.

In the Variable field select the desired one from the current list of variables or insert a memory
location.

A data memory location must be specified with the following format: type@address where type
represents a data type supported by TML: integer, long or fixed and address is the memory
location address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be
selected at the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

 Technosoft 2022 62 ESM User Manual

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

Control Panel Utility

 Technosoft 2022 63 ESM User Manual

4.2.3. Control Panel - Scope

 It’s used to visualize one variable. Note that, because the update rate of these values is
somehow limited (depending on the communication speed between the PC and the drive, and on
the functionality of the Windows environment), the evolution of fast changing variables cannot be
correctly visualized. You cannot visualize AC currents or voltages, for example. Use this tool for
slow varying or steady state regime analysis. Otherwise, use the Logger utility.

…

In the Variable field select the desired one from the current list of variables or insert a memory
location.

 Technosoft 2022 64 ESM User Manual

A data memory location must be specified with the following format: type@address where type
represents the data type supported by TML: integer, long or fixed and address is the memory
location address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be
selected at the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time period can be set in the “Time period” field.

See also:

The Control Panel Utility

 Technosoft 2022 65 ESM User Manual

4.2.4. Control Panel - Double Scope

 It’s used to visualize two variables on the same area. Note that, because the update rate
of these values is somehow limited (depending on the communication speed between the PC and
the axis, and on the functionality of the Windows environment), the evolution of fast changing
variables cannot be correctly visualized. You cannot visualize AC currents or voltages, for
example. Use this tool for slow varying or steady state regime analysis. Otherwise, use the
Logger utility.

In the Variable field select the desired one from the current list of variables or insert a memory
location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by TML: integer, long or fixed and address is the memory
location address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

 Technosoft 2022 66 ESM User Manual

Select Expression to define a formula to be evaluated before being displayed. They can be
selected at the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time period can be set in the “Time period” field.

See also:

The Control Panel Utility

 Technosoft 2022 67 ESM User Manual

4.2.5. Control Panel - Y(X) Scope Object

 This object is similar to the Dual-channel scope (Double Scope Object) except that you
visualize one variable as function of another variable on the same area.

In the Variable field select the desired one from the current list of variables or insert a memory
location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by TML: integer, long or fixed and address is the memory
location address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be
selected at the moment when the control panel is defined.

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 Technosoft 2022 68 ESM User Manual

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time period can be set in the “Time period” field.

See also:

The Control Panel Utility

 Technosoft 2022 69 ESM User Manual

4.2.6. Control Panel - Gauge

Gauge is used to indicate the value of a variable and its variation in time

 Horizontal gauge: used to indicate the value of a variable and its variation in time.
Disposed on horizontal direction.

 Vertical gauge: used to indicate the value of a variable and its variation in time. Disposed
on vertical direction.

In the Variable field select the desired one from the current list of variables or insert a memory
location.

A data memory location must be specified with the following format: type@address where type
represents the data type supported by TML: integer, long or fixed and address is the memory
location address expressed in hexadecimal form.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be
selected at the moment when the control panel is defined.

 Technosoft 2022 70 ESM User Manual

The Expression can be built using following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

In the Min and Max edit field you can specify the minimum and the maximum values you wish to
visualize.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

 Technosoft 2022 71 ESM User Manual

4.2.7. Control Panel - Slider

This cursor object is used to change the value of a parameter.

 Horizontal cursor: is disposed on horizontal direction.

 Vertical cursor: is disposed on vertical direction.

In the Variable field select the desired one from the current list of variables or insert a memory
location.

A data memory location must be specified with the following format: type@address where type
represents a data type supported by TML: int, long or fixed and address is the memory location
address expressed in hexadecimal form. Type is optional if it’s not specified data is interpreted as
integer.

Example: fixed@0x0903 the memory contents from addresses 0x0903 and 0x904 are
interpreted as a fixed data.

Select Expression to define a formula to be evaluated before being displayed. They can be
selected at the moment when the control panel is defined. The Expression can be built using
following operators:

“+” - addition

“-“ - subtraction

“*” - multiply

“/” - division

“^” - power

 Technosoft 2022 72 ESM User Manual

“(“ and “)” - parentheses

The operands used for editing of an expression are:

 variable_name [unit]

variable_name

number

Example: 100.5 + 5 * (Position_Command [rot] - 10.0)

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

Select the measurement unit in “Unit” section, corresponding to the selected variable type.

Adjust the number of decimals by choosing in “Precision” section one of the values from the
scroll list, for a convenient representation depending on values range. Note that if the selected
measurement unit is “IU” (Internal Units), the decimals parameter is not used. Also for IU
representations, hexadecimal format can be selected.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

 Technosoft 2022 73 ESM User Manual

4.2.8. Control Panel - Input

 It’s used to display the status of an input port.

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

The input number (IN#) can be selected from the current list of input ports.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

 Technosoft 2022 74 ESM User Manual

4.2.9. Control Panel - Bit Value

 It’s used to display the status of a bit of one TML variable or data memory contents.

The variable can be selected from the current list of variables.

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

The bit number will be selected from Bit Position .

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

 Technosoft 2022 75 ESM User Manual

4.2.10. Control Panel - User Defined TML Sequence Object

 It’s a button having associated a TML instructions sequence, user-defined.

You can freely define these instructions. Pressing the button will send the associated TML
commands to the Technosoft drive.

See also:

The Control Panel Utility

 Technosoft 2022 76 ESM User Manual

4.2.11. Control Panel - Label

 It’s an object defining a text or a color-filled rectangle.

Define a text the main edit field.

Choose the font attributes (type, color, size, etc.) by pressing the Font… button.

Check Border if you want that the text window to be bordered.

You can check Filled and choose the background color by pressing the Background Color….

Use such objects in order to create more specific control panels, with a better graphical
appearance.

See also:

The Control Panel Utility

 Technosoft 2022 77 ESM User Manual

4.2.12. Control Panel - Output

 It’s used to set the status of an output port.

In the Axis ID edit field of each object, you can select the Axis ID of the axis from where the
variable will be read/set. This will allow you to visualize in one control panel variables from
different drives / motors connected into a network. The default Axis ID is “as set in Comm Setup”
e.g. the Axis ID selected in the Communicate with field from Communication | Setup dialogue.

The output number (OUT#) can be selected from the current list of output ports.

The title of the object window (displayed in the object window title bar) can be specified in Title
section. By default, if you don’t specify a title, the variable name will be assumed instead.

For display purposes, display time intervals can be selected in the “Read value at every” field.

See also:

The Control Panel Utility

4.2.13. Control Panel Properties

Use this dialog to define / change the name of the current Control Panel.

 Technosoft 2022 78 ESM User Manual

4.3. Command Interpreter

The Command Interpreter allows you to send on-line TML commands to your drive/motor. You
can use this tool to set/get TML data: registers, parameters and variables or to display memory
locations.

You can open the Command Interpreter using the "View | Command Interpreter" menu

command, or by selecting the associated toolbar icon .

In EasySetUp the TML commands are sent to the drive/motor for which the setup is performed.
This is the drive/motor selected in Communication | Setup to communicate with.

In EasyMotion Studio, the TML commands are sent to the drive/motor with the same axis ID as
the axis number of the selected application.

To find the value of a TML data, type in the question mark character "?" followed by the TML data
name and press the [Enter] key. The command interpreter displays the TML data type and
address as type@address and its value in decimal and hexadecimal format.

TML> ?apos<Enter>

APOS (long@0x0228) = 1345754 (0x001488DA)

TML>

Remark: Through this method you can find the type and address of any TML data, including the
user-defined variables you create in an EasyMotion Studio application. Note that user-defined
variables are accessible only after you compile your application.

 Technosoft 2022 79 ESM User Manual

To set the value of a TML data, type its name followed by equal and the value, then press the
[Enter] key.

TML> var_i1=0<Enter>

With Command Interpreter you can also perform the following operations related with the
drive/motor EEPROM or RAM memory:

• Fill with a value all the TML program memory locations between a start address and stop
address.

TML>fillmemory 0x4000, 0x4010, 0xABCD<Enter>

TML>

• Fill with a value all the TML data memory locations between a start address and stop
address.

TML>filldatamemory 0x8000, 0x8010, 0x0101<Enter>

TML>

• Set a TML program memory location with specified value

TML>setmemory 0x4000, 0x0001<Enter>

TML>

• Set a TML data memory location with specified value

TML>setdatamemory 0x8000, 0x0001<Enter>

TML>

• Show all the TML program memory locations contents between a start address and stop
address

TML>showmemory 0x4000, 0x4010<Enter>

4000: ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

4008: ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

4010: ABCD

TML>

• Show all the TML data memory locations contents between a start address and stop
address

TML>showdatamemory 0x8000, 0x8010<Enter>

 Technosoft 2022 80 ESM User Manual

8000: 0101 0101 0101 0101 0101 0101 0101 0101

8008: 0101 0101 0101 0101 0101 0101 0101 0101

8010: 0101

TML>

Remarks:

• The Command Interpreter memory operations are intended mainly for test and
debugging. Do not use then for normal operation. Note that uncontrolled change of
memory locations may lead to unexpected results.

• For TML program or data memory addresses ranges see Memory Map.

The Command Interpreter keeps a history with all commands sent. You can navigate between
them with arrow keys UP and DOWN and select one to execute again. When the Command
Interpreter window is closed the commands history is reset.

You can access the Command Interpreter menu, by clicking on the right button mouse inside its
window. The menu options are:

• Undo/Redo – reverses the last edit changes done on the current command line /
reverses the Undo action

• Cut/Copy/Paste – cuts selected text and puts it the on clipboard/copies selected text and
puts it in the clipboard/inserts text from clipboard at the insertion point in the command
line

• Toggle Bookmark – activates/deactivates a bookmark at the insertion point. To navigate
between bookmarks use key F2.

See also:

Memory Map

 Technosoft 2022 81 ESM User Manual

4.4. Binary Code Viewer

The Binary Code Viewer offers you a quick way to program your host for exchanging messages
with a Technosoft drive/motor. Through this tool, you can find how to encapsulate a TML
command for all the communication types and the supported protocols. You get the both the
contents of the messages you have to send and the expected answers from the drive/motor, if it is
the case.

First select the communication Protocol between: serial RS 232, serial RS 485, CAN-bus with
TMLCAN, CAN-bus with TechnoCAN or no protocol, just the binary code of the TML commands
and answers.

At Sender select the Axis ID of the message sender. In the case of RS-232, the sender is always
your Host, as 2 drives/motors may not be connected between them using RS-232. If you select
RS-485, TMLCAN or TechnoCAN, the sender can be an Axis/Host (another Axis or your Host)
or None. Option None, means non-requested messages sent by the drive/motor, containing a
specific TML data. You can simulate these messages with a ?? query followed by the returned
TML data name and by selecting None. If you select TML, you can find the binary code for TML
commands sent from both the Host or another axis, which in the case of RS-232 plays the role of
an Relay Axis (see Communication Protocols for details)

Remark: Though theoretically possible, activation of non-requested messages is not
recommended for the RS-485 where the host must control the communication to avoid conflicts.

At Destination choose either an Axis of a Group of axes. In the first case, set the axis ID of the
receiver. In the second case, select a group from 1 to 8 or set group number to 0 for a broadcast
message.

 Technosoft 2022 82 ESM User Manual

In the case of query messages asking the drive/motor to return a TML data, you can introduce the
returned value in hexadecimal format in the Type here (hexa) edit box. This helps you to quickly
identify the position of the returned data in the message received.

You can simulate 2 types of query or Type B messages (see Communication Protocols for
details):

• A “GiveMeData: request, by typing at Source Code a question mark ? followed by a TML data
name (for example ?apos to read the actual position). In this case the answer is a “TakeData”
message

• A “GiveMeData2” request, by typing at Source Code a double question mark ?? followed by a
TML data name (for example ??aspd to read the actual speed). In this case the answer is a
“TakeData2” message

On CAN-bus, a “GiveMeData2” request may be sent to a group of drives/motors. For the returned
answer you can Select an axis from the group.

Remarks:

• If a “GiveMeData2” request is sent to a group, the “TakeData2” answers are prioritized
function of the respondents’ axis ID: the drive/motor with the lowest axis ID has the highest
priority.

• The “GiveMeData” request is intended only for a single axis. If in a CAN-bus network,
“GiveMeData” is sent to a group, all the returned answers have the same CAN identifier and
therefore can’t be differentiated, causing an error.

• On RS-485, the query messages can’t be sent to group, as the answers will overlap.

For simulating Type A messages, which do not request to return a data, simply type the TML
instruction at Source code. For example to set a position command CPOS of 2000 encoder
counts, type cpos=2000.

After you have introduced one or more commands, press to arrow button “>” to generate the
code.

At Binary code sent you’ll see the binary code (in hexadecimal format), which must be sent by
your host. When RS-232 and RS-485 are selected, the code displayed represents the bytes you
have to send via the serial asynchronous port of your host. When TMLCAN is used, the first 8
hexadecimal numbers represent the 29-bit identifier of the CAN message (the 3MSB of the 32-bit
value are zero) and the remaining bytes represent, the CAN message data: byte 0, byte 1, etc.
When TechnoCAN protocol is chosen, the first 3 hexadecimal numbers represents the 11-bit
identifier of the CAN message (the MSB of the 12-bit value is zero).

At Binary code received you’ll see the answer sent by the drive/motor.

 Technosoft 2022 83 ESM User Manual

Remark: On RS-232 and RS-485 each message sent to one axis is confirmed with an
acknowledge byte 4Fh. Therefore, in a query message, you’ll see first the 4Fh byte as
confirmation for the reception of the data request, followed by the contents of the answer
message. On RS-485, the 4Fh acknowledge byte is not sent if the command is sent to a group.

See also:

Communication protocols

4.5. Memory View

In Memory window you can view/modify the contents of the Technosoft drive’s/motor’s memory
from where the TML program runs.

The window is opened selecting the View | Memory menu command or the associated toolbar
icon. You can refresh the displayed data by selecting the menu command View | Refresh button
or F12 key.

Remark: As this feature is a very low level function, it is NOT recommended to modify memory
contents without a deep knowledge of the use made by the Technosoft drive/motor of each
memory location you intend to modify

See also:

Memory Settings

 Technosoft 2022 84 ESM User Manual

5. Communication

5.1. Communication Setup

The communication settings from this dialogue define how EasyMotion Studio is using your PC
serial port or a communication interface board. The dialogue allows you to select the
communication type between your PC and your Technosoft drives/motors. You can choose
between: serial RS-232, serial RS-485, CAN-bus or Ethernet and setup in each case the
communication parameters. With the exception of the RS-232, all the other options require a
specific interface. For CAN-bus, the communication settings depend on the interface used.
Therefore the Channel Type list includes all the CAN-bus interfaces supported.

Remark: If your PC is equipped with another CAN-bus interface, contact Technosoft to check for
compatibility with one of the interfaces supported

When several drives/motors are connected in a CAN-bus network you have to specify the CAN-
bus communication protocol used. This option is also available for serial RS-232 and Ethernet,
when the drive/motor connected to the host acts as retransmission relay (see Communication
Protocols). At CAN Protocol you can choose either TMLCAN (CAN 2.0B, 29-bit identifier) or
CANopen or TechnoCAN (CAN2.0A, 11-bit identifier).

Remark: When the CANopen or TechnoCAN (CAN2.0A, 11-bit identifier) protocol is selected the
Axis IDs, of the drives/motors and of the PC, are interpreted as modulo 32.

Through this dialogue you also specify the Axis IDs for your PC or in the case of RS-232 or
Ethernet the Axis ID of the drive/motor connected with your PC. Each time you close EasyMotion
Studio, the communication settings are saved. Next time when you open the EasyMotion Studio,
the last settings you have set are restored.

 Technosoft 2022 85 ESM User Manual

Important Note:

Only a part of the Technosoft products supports all communication types. Make sure you select a
communication type supported by your product!

Remark: If you get a communication error message, select “Communication | Refresh”
command or press the associated button from the toolbar to restore the communication.

Note that when using serial RS-232 or RS-485 communication, EasyMotion Studio automatically
sets the drives/motors with the baud rate selected in this dialogue. If a drive/motor is reset (power
supply is temporary turned off), the serial communication with your PC may no longer work. This
happens if the drive/motor default baud rate after reset (9600 baud) differs from that set in
EasyMotion Studio. Use “Communication | Refresh” command to restore the communication.
This starts the automatic baud rate detection, followed by the baud rate change to the value set in
EasyMotion Studio.

See also:

RS-232 Communication Setup

RS-232 Communication Troubleshoots

RS-485 Communication Setup

RS-485 Communication Troubleshoots

CAN-bus Communication Setup

CAN-bus Communication Troubleshoots

Ethernet Communication Setup

Ethernet Communication Troubleshoots

User Implemented Serial Driver Setup

User Implemented Serial Driver Troubleshoots

Advanced Communication Setup

 Technosoft 2022 86 ESM User Manual

5.1.1. RS-232 Communication Setup

Steps to follow:

1. Setup the drive/motor for RS-232 communication

2. Set EasyMotion Studio for communication via RS-232 with the drive/motor

Step 1 Setup the drive/motor for RS-232 communication

1. Power-Off your drive/motor

2. In order to use the RS-232 communication, you need to connect your PC with the Technosoft
drive/motor through an RS-232 serial cable. If the drive/motor is equipped with a standard 9-
pin DB9 connector for serial communication, use a 9-wire standard serial cable: male-female,
non-inverting (e.g. one-to-one), else check the drive/motor user manual for cable
connections.

3. If the drive/motor supports also RS-485 communication, set the RS-232/RS-485 switch (or
solder-joint) to the position RS-232.

4. Power-On the drive/motor

Step 2 Set EasyMotion Studio for communication via RS-232 with the drive/motor

1. Select menu command “Communication | Setup”

2. Select at “Channel Type” RS-232 (default).

3. Select the “CAN Protocol” between the drives/motors connected in the CAN-bus network,
the drive/motor connected to PC acting as a retransmission relay (see Communication
Protocols). You can choose either TMLCAN (CAN2.0B, 29-bit identifier) or CANopen or
TechnoCAN (CAN2.0A, 11bit identifier).

 Technosoft 2022 87 ESM User Manual

4. Select at “Port” the serial port of your PC, where you have connected the serial cable. By
default the selected port is COM1

5. Select the desired baud rate from “Baud Rate” list

6. Set the “Axis ID of the drive/motor connected to PC”. The default option is autodetected
enabling EasyMotion Studio to detect automatically the axis ID of the drive connected to the
serial port. If your drive/motor doesn’t support this feature (see remark below) select its axis
ID from the list. The drives/motors axis ID is set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default
axis ID value which is 255.

Remark: When the TechnoCAN communication protocol is used the Axis IDs, of the
drives/motors and of the PC, are interpreted as modulo 32.

7. Press the OK button

If the communication works properly, you’ll see displayed on the status bar (the bottom line) of the
EasyMotion Studio the text “Online”, the axis ID of the drive/motor and the firmware version read
from the drive/motor.

Remark: If your drive/motor firmware number:

• Starts with 1 – examples: F100A, F125C, F150G, etc., or

• Starts with 0 or 9 and has a revision letter below H – examples: F000F, F005D, F900C

you can’t use the axis ID autodetected option.

See also:

RS-232 Communication Troubleshoots

Advanced Communication Setup

Communication Setup

 Technosoft 2022 88 ESM User Manual

5.1.2. RS-232 Communication Troubleshoots

If the serial RS232 communication does not operate properly, EasyMotion Studio will issue an
error message and you’ll see displayed on the status bar (the bottom line) of the EasyMotion
Studio the text “Offline”.

1. If the error message is “Cannot open the selected serial port”, the serial port you have
selected from “Port” does not exist or is used by another device of your PC (mouse, modem,
etc.). Click “Cancel”, reopen Communication | Setup dialogue, select another serial port
and try again.

2. If the error message is “Cannot synchronize the computer and drive/motor baud rates”
click “Cancel”, then check the following:

• Serial cable connections

• Serial cable type, if you use a standard cable. Make sure that the cable is non-inverting
(one-to-one)

• In “Communication | Setup” dialogue, the “Axis ID of the drive/motor connected to
PC is” selection. If you use EasyMotion Studio with a previously bought drive/motor, this
may not support the default option “autodetected”. Select the same axis ID with that of
your drive/motor. The drives/motors axis ID is set at power on using the following
algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the
default axis ID value which is 255.

• Drive hardware settings for RS-232 communication (see RS-232 Setup)

3. If the communication operates usually but gives communication errors from time to time,
check the following:

• If your PC has an earth connection.

• If your drive/motor is linked to earth. For the drives/motors without an explicit earth point,
connect the earth to the ground of the supply/supplies.

• In “Communication | Setup” dialogue click on the Advanced… button and increase the
“Read interval timeout”, “Timeout multiplier” and “Timeout constant” parameters.
Note that these parameters are related to PC serial operation and usually the default
values for these parameters do not need to be modified.

 Technosoft 2022 89 ESM User Manual

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

RS-232 Communication Setup

Advanced Communication Setup

Communication Setup

5.1.3. RS-485 Communication Setup

Steps to follow:

1. Setup the drives/motors for RS-485 communication

2. Mount on your PC an RS-485 interface board or an RS-232/RS-485 converter

3. Install on your PC an RS-485 software driver

4. Build the RS-485 network

5. Set EasyMotion Studio for communication via RS-485 with the drives/motors

Step 1. Setup the drives/motors for RS-485 communication

1. Power-Off the drive/motor

2. Disconnect the RS-232 serial cable if it is connected.

3. Put the RS-232/RS-485 switch (or solder-joint) on position RS-485.

4. Choose a different axis ID for each drive/motor and also different from the axis ID of PC (which
is set by default at 255). The drives/motors axis ID is set at power on using the following
algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis
ID value which is 255.

Remark: If your drive/motor has no hardware switches/jumpers for axis ID setting, you must
program the desired axis ID in the drive/motor setup table. You can do this operation from Easy
Motion Studio – the setup part of an application, where you can select the axis ID to be saved in

 Technosoft 2022 90 ESM User Manual

the drive/motor setup table from the EEPROM. Use the RS-232 communication to download the
setup data.

Step 2. Mount on your PC an RS-485 interface board or an RS-232 / RS-485 converter

Usually, the standard PCs do not provide an RS-485 interface. In order to use EasyMotion Studio
to communicate with your drives/motors via RS-485, you need to mount on your PC an RS-485
interface. This interface can be an add-in board or an RS-232 to RS485/RS-422 converter
connectable to the standard serial ports of the PC.

Technosoft provides, if needed, RS-232 to RS-485 converters as well as other accessories for
RS-485 networking. If you intend to use your own RS-232 to RS-485/RS-422 converter, please
note that this should use the RTS line for transmission control, with the RTS signal active high (+5
to +12V) to enable the PC transmission and disable reception. These conditions are usually met
by most of the RS-232 to RS-485/RS-422 converters. A typical example of an RS-232 to RS-485
converter, you can buy on the shelf is the model IC-485AI from ATEN (http://www.aten-usa.com/)
that can be used either as RS-232 to RS-485 converter or as RS-232 to RS-422 converter. To
use this model as an RS-232 to RS-485 converter, you need to:

• Set the switch DCE/DTE on position DCE

• Set the switch T-ON R-ON / T-RTS R-/RTS / T-RTS R-ON on position T-RTS R-/RTS

• Connect the RS-485 signal +A to converter inputs T+ and R+, the RS-485 signal –B to
converter inputs T- and R- and the RS-485 ground to the converter shield

Remark: If you use a non-isolated converter like model IC-485S from ATEN, connect the RS-
485 ground to the PC serial connector ground

Important: the RS-232 to RS-485 converter must free the RS-485 line immediately after the last
stop bit is transmitted, without other delays.

Step 3. Install on your PC an RS-485 software driver

In order to use an RS-232 to RS-485 converter with RTS control of the PC transmissions, you
need to install on your PC an RS-485 serial driver. This driver should automatically activate the
RTS line during the PC transmissions.

Remark: You can find more information about how to setup and use the RS-485 communication
on the application notes from the Technosoft web page
(http://www.technosoftmotion.com/B2000/AllPages/OEM_PROD_App_Notes_20.htm)

Step 4. Build the RS-485 network

Each drive/motor manual shows how to do the connections in order to build an RS-485 network.

Step 5. Set EasyMotion Studio for communication via RS-485 with the drives/motors

 Technosoft 2022 91 ESM User Manual

1. Select menu command “Communication | Setup”

2. Select at “Channel Type” RS-485

3. Select at “Port” the serial port of your PC, where you have connected the serial cable. By
default COM1 is selected.

4. Select the desired baud rate from “Baud Rate”

5. Select at “Axis ID of PC is” an address for the PC. By default the value proposed is 255.
Attention! Make sure that all the drives/motors from the network have a different address.

6. Press the OK button

If the RS485 interface mounted on PC works properly, you’ll see displayed on the status bar of
the EasyMotion Studio the text “Online” and the axis ID of the PC.

See also:

RS-485 Communication Troubleshoots

Advanced Communication Setup

Communication Setup

 Technosoft 2022 92 ESM User Manual

5.1.4. RS-485 Communication Troubleshoots

If the serial RS485 communication does not operate properly, EasyMotion Studio will issue an
error message and you’ll see displayed on the status bar (the bottom line) of the EasyMotion
Studio the text “Offline”.

1. If the error message is “Cannot open the selected serial port”, the serial port you have
selected from “Port” does not exist or is used by another device of your PC (mouse, modem,
etc.). Click “Cancel”, reopen Communication | Setup dialogue, the PC serial port used for
RS-485 operation and try again.

2. If the error message is “Cannot synchronize the computer and drive/motor baud rates”
click “Cancel”, then check the following:

• RS-485 cable connections, presence of the 120 ohms terminal resistors at the two ends
of the network and the presence of the bias circuit(s) to keep the line level in idle mode

• If you use an RS-232/RS-485 converter with automatic control of transmission, check the
specifications. Usually these devices free the RS-485 lines when a transmission ends,
only after a time equivalent with transmission of another byte. You can’t use these
devices, as the Technosoft drives/motors respond to a data request faster. For correct
operation you should use a device that frees the RS-485 lines immediately after the last
stop bit transmitted

• In EasyMotion Studio project, the “Axis Number” of the selected application. This should
match with the Axis ID of one of the drives from the network. As e general rule, the axis
number of each application must correspond with the axis ID of one drive from the
network. Each drive must have a different axis ID. No drive can have the same axis ID
value as that set as Axis ID of PC.

• Drive/motor hardware settings for RS-485 communication (see RS-485 Setup):

3. If the communication operates usually but gives communication errors from time to time,
check the following:

• Network ground connection. This link is mandatory if the drives/motors don’t have the
same ground

• In Communication | Setup click on the Advanced
…HELP_ADVANCED_COMM_SETUP@Kernel.hlp button and increase the Read
interval timeout, Timeout multiplier and Timeout constant parameters. Note that these
parameters are related to PC serial operation and usually the default values for these
parameters do not need to be modified.

• Try to reduce the baud rate progressively, starting with 115200

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

 Technosoft 2022 93 ESM User Manual

See also:

RS-485 Communication Setup

Advanced Communication Setup

Communication Setup

5.1.5. CAN-bus Communication Setup

Steps to follow:

1. Setup the drives/motors for CAN-bus communication

2. Mount on/connect to your PC a CAN-bus interface board

3. Install on your PC an CAN-bus software driver

4. Build the CAN-bus network

5. Set EasyMotion Studio for communication via CAN-bus with the drives/motors

Step 1. Setup the drives/motors for CAN-bus communication

1. Power-Off the drive/motor

2. Choose a different axis ID for each drive/motor and also different from the axis ID of PC
(which is set by default at 255). The drives/motors axis ID is set at power on using the
following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default
axis ID value which is 255.

Remarks:

• If your drive/motor has no hardware switches/jumpers for axis ID setting, you must
program the desired axis ID in the drive/motor setup table. You can do this operation from
Easy Motion Studio – the setup part of an application, where you can select the axis ID to
be saved in the drive/motor setup table from the EEPROM. Use the RS-232
communication to download the setup data.

• When the TechnoCAN communication protocol is used the Axis IDs, of the drives/motors
and of the PC, are interpreted as modulo 32.

 Technosoft 2022 94 ESM User Manual

Step 2. Mount on your PC a CAN-bus interface board

EasyMotion Studio offers the possibility to choose one of the following PC to CAN-bus interfaces:

• IxxAT PC to CAN interface

• Sys Tec USB to CAN interface

• ESD PC to CAN interface

• LAWICEL CANUSB interface

• PEAK System PCAN-PCI interface

• PEAK System PCAN-ISA

• PEAK System PC/104

• PEAK System PCAN-USB

• PEAK System Dongle interfaces

o Dongle using SPP/EPP protocol

o Dongle with SJA chipset using SPP/EPP protocol

o Dongle Pro with SJA chipset using SPP/EPP protocol

Step 3. Install on your PC a CAN-BUS software driver

In order to use a CAN-bus interface you need to install on your PC the CAN-bus driver for the
chosen interface. For each CAN-bus interface, the producer provides the driver as well as the
installation guidelines. You can find detailed information regarding the above interfaces and their
installation on the following web pages: www.ixxat.com, www.systec-electronic.de, www.peak-
system.com, www.esd-electronics.com and www.canusb.com (Lawicel interface).

Remarks: For the CAN-bus interfaces from PEAK System you must copy the DLL interface
provided in the folder where EasyMotion Studio was installed.

Step 4. Build the CAN-bus network

Each drive/motor manual shows how to do the connections in order to build a CAN-bus network.

Step 5. Set EasyMotion Studio for communication via CAN-bus with the drives/motors

 Technosoft 2022 95 ESM User Manual

1. Select menu command “Communication | Setup”

2. Select at “Channel Type” the CAN-bus option corresponding to your interface. For IXXAT
CAN-bus interface, PEAK PCAN-ISA, PCAN-PC/104 and PEAK PCAN-Dongle interfaces
press “Select Device…” button to choose the hardware model corresponding to your device.

3. Select the “CAN Protocol” used by the PC to communicate with the drives/motors connected
in the CAN-bus network. You can choose either TMLCAN (CAN2.0B, 29-bit identifier) or
CANopen or TechnoCAN (CAN2.0A, 11bit identifier).

4. Depending on the CAN-bus interface used, you have more or less ports available. Select from
“Port” the device where you have connected the CAN-bus

Remark: For Sys Tec USB to CAN interface the port number must be the same with the
device number set with the device configuration utility.

5. Select the CAN-bus interface baud rate from “Baud Rate” drop list

Remark: The baud rate selection refers ONLY to the CAN-bus interface on the PC. It doesn’t
change the CAN baud rate on the drives/motors. The default baud rate on CAN-bus for the
Technosoft drives/motors is 500kbps.

6. Select at “Axis ID of PC is” an address for the PC. By default the value proposed is 255.
Attention! Make sure that all the drives/motors from the network have a different address.
When the CANopen or TechnoCAN communication protocol is used the Axis IDs of the
drives/motors and of the PC are interpreted as modulo 32.

7. Press the OK button

If the CAN interface mounted on the PC works properly, you’ll see displayed on the status bar (the
bottom line) of the EasyMotion Studio the text “Online” and the axis ID of the PC.

See also:

CAN-bus Communication Troubleshoots

Advanced Communication Setup

Communication Setup

 Technosoft 2022 96 ESM User Manual

5.1.6. CAN-bus Communication Troubleshoots

If the CAN-bus communication does not operate properly, EasyMotion Studio will issue an error
message and you’ll see displayed on the status bar (the bottom line) of the EasyMotion Studio the
text “Offline”.

1. If the error message is “Cannot find board with selected Axis ID”, click “Cancel” button,
then check the following:

• CAN Baud rate selected in the Communication | Setup dialogue for the CAN-bus
interface. It should be the same with the drives/motors baud rate, which is set by default
at power on at 500kbps.

• CAN-bus cable connections and the presence of the 120 ohms terminal resistors at the
two ends of the network

• If the CAN-bus supply is on

• In EasyMotion Studio project, the “Axis Number” of the selected application. This should
match with the Axis ID of one of the drives from the network. As e general rule, the axis
number of each application must correspond with the axis ID of one drive from the
network. Each drive must have a different axis ID. No drive can have the same axis ID
value as that set as Axis ID of PC.

• The setup of the CAN-bus interface on your PC

• Drive/motor hardware settings for CAN-bus communication (see CAN-bus Setup)

2. If the error message is “Cannot load interface with PEAK SYS xxxx devices
(PCAN_XXXX.DLL)”, click “Cancel” button, and then copy the file “PCAN_XXXX.DLL” from
the Peak System CD (or other storage media) in the folder where EasyMotion Studio was
installed.

3. If the error message is “Invalid Parameter”, click “Cancel” and check the CAN-bus interface
selected in the Communication | Setup dialogue. This message occurs when the selected
interface is not installed and/or configured on your PC.

4. If the communication operates usually but gives communication errors from time to time, in
“Communication | Setup” click on Advanced… button and increase the Send message
timeout (when present) and Receive message timeout parameters. Note that for these
parameters, usually, the default values do not need to be modified.

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

CAN-bus Communication Setup

Advanced Communication Setup

Communication Setup

 Technosoft 2022 97 ESM User Manual

5.1.7. Ethernet Communication Setup

Steps to follow:

1. Set the IP address and the network settings of the Ethernet adapter

2. Setup the drive/motor for RS-232 communication with the Ethernet adapter

3. Set EasyMotion Studio for communication via Ethernet

Step 1 Set the IP address and the network settings of the Ethernet adapter

The Ethernet adapter accepts both dynamic and static IP addresses. The DHCP and Auto IP are
enabled by default. Contact your network administrator to obtain the IP address assigned by the
DHCP server.

The IP settings of the Ethernet adapter can be set/changed in 2 3ways:

• using the DeviceInstaller software when the IP address is unknown. The DeviceInstaller
can be downloaded from the Lantronix web page:

• using the serial port of the PC when the IP address is unknown and no Internet
connection is available

• using the Telnet utility when the IP address is known

Step 2 Setup the drive/motor for RS-232 communication

1. Power-Off your drive/motor and the Ethernet adapter

2. Connect the Ethernet adapter with the Technosoft drive/motor through an RS-232 serial
cable. The adapter has the same type of DB9 connector as a PC. Hence the connections are
the same: If the drive/motor is equipped with a standard 9-pin DB9 connector for serial
communication, use a 9-wire standard serial cable: male-female, non-inverting (e.g. one-to-
one), else check the drive/motor user manual for cable connections.

3. If the drive/motor supports also RS-485 communication, set the RS-232/RS-485 switch (or
solder-joint) to the position RS-232.

Step 3. Set EasyMotion Studio for communication via Ethernet

 Technosoft 2022 98 ESM User Manual

1. Select menu command “Communication | Setup”

2. Select at “Channel Type” – IP using XPort interface.

3. Select the “CAN Protocol” between the drives/motors connected in the CAN-bus network,
the drive connected to the Ethernet adapter acting as a retransmission relay (see
Communication Protocols). You can choose either TMLCAN (CAN2.0B, 29-bit identifier) or
CANopen or TechnoCAN (CAN2.0A, 11bit identifier).

4. Set at “Port” the address of the Ethernet adapter using IP address or the URL address

5. Select the desired baud rate for serial communication between the adapter and drive/motor
from “Baud Rate” list

6. Set the “Axis ID of the drive/motor connected to PC”. The default option is autodetected
enabling EasyMotion Studio to detect automatically the axis ID of the drive connected to the
serial port of the Ethernet adapter. If your drive/motor doesn’t support this feature (see remark
below) select its axis ID from the list. The drives/motors axis ID is set at power on using the
following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default
axis ID value which is 255.

Remark: When the TechnoCAN communication protocol is used the Axis IDs of the
drives/motors and the PC are interpreted as modulo 32.

7. Press the OK button

 Technosoft 2022 99 ESM User Manual

If the communication works properly, you’ll see displayed on the status bar (the bottom line) of the
EasyMotion Studio the text “Online”, the axis ID of the drive/motor and the firmware version read
from the drive/motor.

Remark: If your drive/motor has firmware number:

• Starts with 1 – examples: F100A, F125C, F150G, etc., or

• Starts with 0 or 9 and has a revision letter below H – examples: F000F, F005D, F900C

you can’t use the axis ID autodetected option.

See also:

Ethernet Communication Troubleshoots

Advanced Communication Setup

Communication Setup

 Technosoft 2022 100 ESM User Manual

5.1.8. Ethernet Communication Troubleshoots

If the CAN-bus communication does not operate properly, EasyMotion Studio will issue an error
message and you’ll see displayed on the status bar (the bottom line) of the EasyMotion Studio the
text “Offline”.

1. If the error message starts with “WinSock: ” the error is related to Ethernet communication.
Click “Cancel” button, then check the following:

• UTP cable connections

• If the Ethernet adapter is correctly supplied

• In Communication | Setup dialogue, if the address set at Port is identical with the one
set with Microsoft Telnet Client

2. If the error message doesn’t start with “WinSock: ” the error is related to the serial RS-232
communication. To fix the problem see RS-232 Communication Troubleshoots .

3. If the communication operates usually but gives communication errors from time to time, in
“Communication | Setup” click on Advanced… button and increase the Receive timeout
interval parameter. Note that for this parameter, usually, the default value does not need to
be modified.

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

Ethernet Communication Setup

Advanced Communication Setup

Communication Setup

 Technosoft 2022 101 ESM User Manual

5.1.9. Set/change the IP settings using the DeviceInstaller

Start the DeviceInstaller program

1. Click on the Assign IP icon

2. Enter the hardware address of the XPort™ i.e. 00-20-4A-xx-xx-xx in the hardware field and
click Next

3. Select Assign a specific IP address and click Next

4. Enter the IP address, Subnet mask and Default gateway (the gateway parameter is optional)
you want to assign the XPort™, then click Next

Remark: Contact your network administrator to obtain the values for the adapter IP address,
gateway IP address and for the netmask.

5. Click Assign

 Technosoft 2022 102 ESM User Manual

5.1.10. Set/change the IP settings using the serial port of the PC

The Ethernet adapter is equipped with a standard 9-pin DB9 male connector for serial
communication. Connect your PC with the Ethernet adapter through a 9-wire standard serial
cable: female-female, non-inverting (e.g. one-to-one).

1. From Windows Start, select Programs | Accessories | Communications | HyperTerminal
to launch Microsoft HyperTerminal.

2. Configure the HyperTerminal with 9600 baud, 8-Bit character size, 1 stop bit, no parity and no
flow control.

3. Hold the x key down on your keyboard

4. Power on the Ethernet adapter and wait until the HyperTerminal displays the Press Enter for
Setup Mode message

5. To enter in the setup mode, press Enter within 5 seconds. The adapter basic parameters
are displayed followed by the menu options

 Technosoft 2022 103 ESM User Manual

6. Select 0 and press Enter. You will be prompted to insert the following information:

• IP address of the Ethernet adapter. It must be a unique value in your network

• IP address of your gateway

• Netmask – the number of bits for host part from IP address

• A password for Ethernet adapter configuration via Telnet

Remarks

• Contact your network administrator to obtain the values for the adapter IP address,
gateway IP address and for the netmask.

• To enable automatic assignment of IP address and network settings by a DHCP server,
set the IP address to 0.0.0.0, the gateway to N and netmask 0. In this case you will be
prompted to assign also a DHCP name to the adapter.

7. Select 9 to save the settings and reboot the Ethernet adapter.

 Technosoft 2022 104 ESM User Manual

Ethernet Communication Setup

 Technosoft 2022 105 ESM User Manual

5.1.11. Set/change the IP settings using the Ethernet port

Connect the adapter to the network using an UTP cable equipped with RJ45 connectors.

1. Power On the Ethernet adapter

2. From Windows Start menu, select Run and type telnet to launch Microsoft Telnet Client

3. At its prompt type the following command:

o x.x.x.x 9999

where x.x.x.x is the IP provided with the Ethernet adapter

 9999 is the Ethernet adapter configuration port

4. The following information is displayed

 Technosoft 2022 106 ESM User Manual

5. To enter in the setup mode, press Enter within 5 seconds. The adapter basic parameters
are displayed followed by the menu options

6. Select 0 and press Enter. You will be prompted to insert the following information:

• IP address of the Ethernet adapter. It must be a unique value in your network

• IP address of your gateway

• Netmask – the number of bits for host part from IP address

 Technosoft 2022 107 ESM User Manual

• A password for Ethernet adapter configuration via Telnet

Remarks

• Contact your network administrator to obtain the values for the adapter IP address,
gateway IP address and for the netmask.

• To enable automatic assignment of IP address and network settings by a DHCP server,
set the IP address to 0.0.0.0, the gateway to N and netmask 0. In this case you will be
prompted to assign also a DHCP name to the adapter.

7. Select 9 to save the settings and reboot the Ethernet adapter.

Ethernet Communication Setup

 Technosoft 2022 108 ESM User Manual

5.1.12. User implemented serial driver example

// Defines the entry point for the DLL application.

// Make sure that shdata is a shared section (e.g. for Microsoft linker
you should use: /SECTION:shdata,RWS)

// This way the s_nInstances variable will be globally visible to all
applications using this DLL

#pragma data_seg("shdata")

static int s_nInstances = 0;

#pragma data_seg()

HANDLE g_hSerialPort = INVALID_HANDLE_VALUE;

DWORD g_nBaudRate = 0;

BOOL APIENTRY DllMain(HANDLE /*hModule*/,

 DWORD ul_reason_for_call,

 LPVOID /*lpReserved*/

)

{

 switch (ul_reason_for_call)

 case DLL_PROCESS_ATTACH:

 if (s_nInstances == 0)

 g_hSerialPort = CreateFile("COM1", GENERIC_READ
| GENERIC_WRITE,

 0, // exclusive access

 NULL, // no security attrs

 Technosoft 2022 109 ESM User Manual

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (g_hSerialPort == INVALID_HANDLE_VALUE)

 return false;

 //Initialize serial parameters

 DCB dcb;

 if (!GetCommState(g_hSerialPort, &dcb))

 return false;

 dcb.BaudRate = g_nBaudRate = CBR_9600;

 dcb.ByteSize = 8;

 dcb.Parity = NOPARITY;

 dcb.StopBits = TWOSTOPBITS;

 // Standard flow control

 // setup no hardware flow control

 dcb.fOutxDsrFlow = 0;

 dcb.fDtrControl = DTR_CONTROL_DISABLE;

 dcb.fOutxCtsFlow = 0;

 dcb.fRtsControl = RTS_CONTROL_DISABLE;

 dcb.fDsrSensitivity = false;

 // setup no software flow control

 dcb.fInX = dcb.fOutX = 0;

 dcb.fBinary = true ;

 if (!SetCommState(g_hSerialPort, &dcb))

 return false;

 //Set serial timeouts. ReadData and WriteData
must return

 //in a determined period of time

 COMMTIMEOUTS CommTimeOuts;

 Technosoft 2022 110 ESM User Manual

 CommTimeOuts.ReadIntervalTimeout = 1000;

 CommTimeOuts.WriteTotalTimeoutMultiplier =
CommTimeOuts.ReadTotalTimeoutMultiplier = 700 ;

 CommTimeOuts.WriteTotalTimeoutConstant =
CommTimeOuts.ReadTotalTimeoutConstant = 500 ;

 if(!SetCommTimeouts(g_hSerialPort,
&CommTimeOuts))

 return false;

 }

 else

 //This library does not support connection
sharing between applications

 //If you need it, you must duplicate file
handler from one process to another

 return false;

 }

 s_nInstances++;

 break;

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 break;

 case DLL_PROCESS_DETACH:

 s_nInstances--;

 if (s_nInstances == 0)

 CloseHandle(g_hSerialPort);

 g_hSerialPort = INVALID_HANDLE_VALUE;

 }

 break;

 }

 return true;

}

 Technosoft 2022 111 ESM User Manual

//must have a timeout

bool __stdcall ReadData(BYTE* pData, DWORD dwBufSize, DWORD*
pdwBytesRead)

 return ReadFile(g_hSerialPort, pData, dwBufSize, pdwBytesRead,
NULL) ? true : false;

}

//must have a timeout

bool __stdcall WriteData(const BYTE* pData, DWORD dwBufSize, DWORD*
pdwBytesWritten)

 return WriteFile(g_hSerialPort, pData, dwBufSize, pdwBytesWritten,
NULL) ? true : false;

}

int __stdcall GetBytesCountInQueue() // should be non-blocking, < 0
means error

 COMSTAT comStat;

 DWORD dwComErrors;

 if (!ClearCommError(g_hSerialPort, &dwComErrors, &comStat))

 return -1;

 return comStat.cbInQue;

}

void __stdcall PurgeQueues()

 PurgeComm(g_hSerialPort, PURGE_TXABORT | PURGE_RXABORT |
PURGE_TXCLEAR | PURGE_RXCLEAR);

}

DWORD __stdcall GetCommBaudRate()

 Technosoft 2022 112 ESM User Manual

 return g_nBaudRate;

}

bool __stdcall SetCommBaudRate(DWORD nNewBaudRate)

 if(nNewBaudRate != g_nBaudRate)

 DCB dcb;

 if (!GetCommState(g_hSerialPort, &dcb))

 return false;

 dcb.BaudRate = g_nBaudRate = nNewBaudRate;

 if (!SetCommState(g_hSerialPort, &dcb))

 return false;

 }

 return true;

}

 Technosoft 2022 113 ESM User Manual

5.1.13. User Implemented Serial Driver Setup

Steps to follow:

1. Implement the serial driver accordingly with the tmlcomm.dll interface

2. Setup the drive/motor for RS-232 communication

3. Set EasyMotion Studio for communication via user implemented serial driver with the
drive/motor

Step 1 Implement the serial driver

 In the main function of the dll initialize the communication channel with the serial settings
implemented on the Technosoft drives/motors: 8 data bits, 2 stop bits, no parity, no flow
control and one of the following baud rates: 9600 (default after reset), 19200, 38400,
56600 and 115200.

 Implement the functions for interfacing your communication driver with tmlcomm. This
functions are:

bool __stdcall ReadData(BYTE* pData, DWORD dwBufSize, DWORD*
pdwBytesRead)

bool __stdcall WriteData(const BYTE* pData, DWORD dwBufSize, DWORD*
pdwBytesWritten)

int __stdcall GetBytesCountInQueue()

void __stdcall PurgeQueues()

DWORD __stdcall GetCommBaudRate()

bool __stdcall SetCommBaudRate(DWORD nNewBaudRate)

where:

pData Pointer to buffer from/to the data is read/wrote

dwBufsize Parameter specifying the number of bytes to be read/write from/to serial
port

pdwBytesRead Pointer to the variable that contains the number of bytes read

pdwBytesWritten Pointer to the variable that contains the number of bytes written

nNewBaudRate Variable that contains the new value for serial baud rate

 Technosoft 2022 114 ESM User Manual

 Export the functions from the communication driver using a module-definition (.DEF)
file with the following content:

LIBRARY "virtRS232"

DESCRIPTION 'Example of a virtual serial driver for tmlcomm.dll'

EXPORTS

; Explicit exports can go here

ReadData

WriteData

GetBytesCountInQueue

PurgeQueues

GetCommBaudRate

SetCommBaudRate

Step 2 Setup the drive/motor for RS-232 communication

1. Power-Off your drive/motor

2. In order to use the RS-232 communication, you need to connect your PC with the
Technosoft drive/motor through an RS-232 serial cable. If the drive/motor is equipped
with a standard 9-pin DB9 connector for serial communication, use a 9-wire standard
serial cable: male-female, non-inverting (e.g. one-to-one), else check the drive/motor user
manual for cable connections.

3. If the drive/motor supports also RS-485 communication, set the RS-232/RS-485 switch
(or solder-joint) to the position RS-232.

4. Power-On the drive/motor

 Technosoft 2022 115 ESM User Manual

Step 3 Set EasyMotion Studio for communication via user implemented serial driver with
the drive/motor

1. Select menu command “Communication | Setup”

2. Select User implemented serial driver at “Channel Type”.

3. Select the “CAN Protocol” between the drives/motors connected in the CAN-bus
network, the drive/motor connected to PC acting as a retransmission relay (see
Communication Protocols). You can choose either TMLCAN (CAN2.0B, 29-bit identifier)
or CANopen or TechnoCAN (CAN2.0A, 11bit identifier).

4. Specify at “Port” the communication dll you implemented

5. Select the desired baud rate from “Baud Rate” list

6. Set the “Axis ID of the drive/motor connected to PC”. The default option is
autodetected enabling EasyMotion Studio to detect automatically the axis ID of the drive
connected to the serial port. If your drive/motor doesn’t support this feature (see remark
below) select its axis ID from the list. The drives/motors axis ID is set at power on using
the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the
hardware switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the
default axis ID value which is 255.

Remark: When the TechnoCAN communication protocol is used the Axis IDs, of the
drives/motors and of the PC, are interpreted as modulo 32.

7. Press the OK button

 Technosoft 2022 116 ESM User Manual

If the communication works properly, you’ll see displayed on the status bar (the bottom line) of the
EasyMotion Studio the text “Online”, the axis ID of the drive/motor and the firmware version read
from the drive/motor.

Remark: If your drive/motor firmware number:

• Starts with 1 – examples: F100A, F125C, F150G, etc., or

• Starts with 0 or 9 and has a revision letter below H – examples: F000F, F005D, F900C

you can’t use the axis ID autodetected option.

See also:

User Implemented Serial Driver Example

User Implemented Serial Driver Troubleshoots

Advanced Communication Setup

Communication Setup

5.1.14. User Implemented Serial Driver Troubleshoots

If the serial communication does not operate properly, EasyMotion Studio will issue an error
message and you’ll see displayed on the status bar (the bottom line) of the EasyMotion Studio the
text “Offline”.

1. If the error message is “The specified module could not be found”, the serial driver you
have specified at “Port” does not exist or its path is not properly set. Click “Cancel”, reopen
Communication | Setup dialogue, check your environment variables and try again.

2. If the error message is “Cannot synchronize the computer and drive/motor baud rates”
click “Cancel”, then check the following:

• Serial cable connections

• Serial cable type, if you use a standard cable. Make sure that the cable is non-inverting
(one-to-one)

• In “Communication | Setup” dialogue, the “Axis ID of the drive/motor connected to
PC is” selection. If you use EasyMotion Studio with a previously bought drive/motor, this
may not support the default option “autodetected”. Select the same axis ID with that of
your drive/motor. The drives/motors axis ID is set at power on using the following
algorithm:

a. With the value read from the EEPROM setup table containing all the setup data

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

 Technosoft 2022 117 ESM User Manual

c. If there is no axis ID set by a valid setup table, with the value read from the
hardware switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the
default axis ID value which is 255.

• Drive hardware settings for RS-232 communication (see User Implemented Serial Driver
Setup)

3. If the communication operates usually but gives communication errors from time to time,
check the following:

• If your PC has an earth connection.

• If your drive/motor is linked to earth. For the drives/motors without an explicit earth point,
connect the earth to the ground of the supply/supplies.

• In “Communication | Setup” dialogue click on the Advanced… button and increase the
“Read interval timeout”, “Timeout multiplier” and “Timeout constant” parameters.
Note that these parameters are related to PC serial operation and usually the default
values for these parameters do not need to be modified.

After you fix the problem, execute menu command “Communication | Refresh” to restore the
communication.

See also:

User Implemented Serial Driver Setup

Advanced Communication Setup

Communication Setup

5.1.15. Advanced Communication Setup

The advanced communication parameters are related to the host/PC operation. Usually, the
default values for these parameters do not need to be modified. You may try to increase these
parameters only if the communication works but gives errors from time to time and you have
already eliminated all the other possible sources of errors.

When RS-232 or RS-485 communication is used, the dialogue displayed is

 Technosoft 2022 118 ESM User Manual

and the parameters have the following significance:

• Read Interval Timeout – specifies the maximum time, in milliseconds, allowed to elapse
between the arrival of two characters on the communications line. During a read operation, the
time period begins when the first character is received. If the interval between the arrivals of
any two characters exceeds this amount, the read operation is completed and any buffered
data is returned. A value of zero indicates that interval time-outs are not used.

• Timeout Multiplier – specifies the multiplier, in milliseconds, used to calculate the total time-
out period for read operations. For each read operation, the requested number of bytes to be
read multiplies this value.

• Timeout Constant – specifies the constant, in milliseconds, used to calculate the total time-
out period for read operations. For each read operation, this value is added to the product of
the Timeout Multiplier member and the requested number of bytes.

Remark: A value of zero for both the Timeout Multiplier and the Timeout Constant members
indicates that total time-outs are not used for read operations.

• Wait after RUN – specifies the time interval, in milliseconds, during which the EasyMotion
Studio will not communicate with a drive/motor, after it sends it a Run command from
EasyMotion Studio.

The default values are: Read interval timeout – 1000 ms, Timeout multiplier – 700 ms,
Timeout constant – 400 ms, Wait after RUN – 0 ms.

When CAN-bus communication is used, the dialogue displayed is

 Technosoft 2022 119 ESM User Manual

and the parameters have the same significance:

• Send message timeout – specifies the maximum time interval, in milliseconds allowed to
send a message. If this time interval elapses without sending the message
EasySetUp/EasyMotion Studio will issue a communication error message. This parameter is
available for IxxAT and ESD PC to CAN interfaces.

• Receive message timeout – specifies the maximum time, expressed in milliseconds, allowed
for an expected message to be received. If this interval elapses without receiving the
message EasySetUp/EasyMotion Studio will issue a communication error message.

• Wait after RUN – same as for RS-232/RS-485

The default values are: Send message timeout – 700 ms, Receive message timeout – 700 ms,
Wait after RUN – 0 ms.

When Ethernet communication is used, the dialogue displayed is

and the parameters significance is similar with the serial RS-232 case.

The default values are: Read interval timeout – 700 ms, Wait after RUN – 0 ms.

Additional communication settings can be added directly in the configuration file kernel.cfg, from
the folder where EasySetUp/EasyMotion Studio is installed. The following options can be added:

• SYNCHRONIZATION_SLEEP_MULTIPLIER – this parameter is multiplied with the time
interval required for synchronization character to be received via RS-232/RS-485. Possible
values for the parameter: between 2 and 2000. The Default value is 2.

• NO_TRIES – specifies how many times EasySetUp/EasyMotion Studio will try to establish the
communication with your drive/motor before issuing error messages. The default value is 3.

• RS485_DTR – determines EasySetUp/EasyMotion Studio to enable/disable the Data
Terminal Ready (DTR) line during communications. The Data Terminal Ready signal is sent
by the PC to RS485 communication device to indicate that the PC is ready to accept incoming
transmission. Possible values for the parameter: 0 (disabled) or 1 (enabled). The default
value is 1 (enabled)

 Technosoft 2022 120 ESM User Manual

• RS485_RTS – determines EasySetUp/EasyMotion Studio to enable/disable the Request To
Send (RTS) line. The Request To Send signals that request permission to transmit data is
sent from PC to RS485 communication device. Possible values for the parameter: 0
(disabled) or 1 (enabled). The default value is 1 (enabled).

In order to add this parameters open the configuration file kernel.cfg with any text editor and at
the end of the file add a new section named [TMLCOMM]. Bellow the section definition, add the
desired parameters in the form parameter_name = parameter_value. Save the file and restart
EasySetUp/EasyMotion Studio.

 Technosoft 2022 121 ESM User Manual

5.2. Communication Protocols

This section describes the communication protocols supported by the Technosoft intelligent drives
/ motors. It presents how the TML instructions are packed into messages, for each type of
communication channel.

This information is particularly useful for those applications where an external device like a host
implements directly one of the Technosoft communication protocols. In this case, the host packs
the binary code of each TML command into a message which is sent, and unpacks each
message received to extract from it the data provided.

Remark: An alternate way to exchange data with the Technosoft drives/motors is via the
TML_LIB libraries. A TML_LIB library is a collection of high-level functions for motion
programming which you can integrate in the host/master application. If the host is an industrial
PC, the TML_LIB library may be integrated in C/C++, Delphi Pascal, Visual Basic or LabVIEW
applications. If the host is a programmable logic controller (PLC), a version of the TML_LIB,
compatible with the PLCopen standard for motion programming, may be integrated in the PLC
IEC 61131-3 application (see Technosoft web page www.technosoftmotion.com for details about
the TML_LIB libraries)

Depending on the drive/motor, you can use two types of communication channels:

• Serial RS-232 or RS-485

• CAN-bus

The serial RS-232 communication channel can be used to connect a host with one drive/motor.
The serial RS-485 and the CAN-bus communication channels can be used to connect up to 32
drives/motors with a host.

Remark: The RS-485 and CAN-bus protocols accept up to 255 nodes. The limitation to 32 nodes
is determined by the hardware, using a conservative approach. If your application has more than
32 axes, contact Technosoft. Depending on your drive/motor and network characteristics, we can
provide you the exact maximum number of axes you may use.

When CAN-bus communication is used, any drive/motor from the network may also be connected
through RS-232 or Ethernet with a host. In this case, this drive/motor:

• Executes the commands received from the host via the RS-232 link

• Executes the commands received from other Technosoft drives via the CAN-bus link

• Acts like a retransmission relay also called relay axis, which:

• Receives via RS-232, commands from host for another axis and retransmits them to
the destination via CAN-bus

• Receives via CAN-bus data requested by host from another axis and retransmits them
to the host via RS-232

 Technosoft 2022 122 ESM User Manual

The relay axis concept enables a host to communicate with all the Technosoft drives/motors from
a CAN-bus network, using a single RS-232 or Ethernet connection with one drive/motor. There is
no need to have a CAN-bus interface on the host, for which the CAN-bus protocol is completely
transparent.

Any drive/motor acts as a relay axis when it is connected both on RS-232 and CAN-bus, without
any particular setup. The only requirement is to setup the address for the host equal with that of
the drive connected via RS-232 (see Message structure. Axis ID and Group ID for details)

IMPORTANT! EasyMotion Studio includes a Binary Code Viewer, which helps you to quickly find
how to send TML commands using one of the communication channels and protocols supported
by the drives/motors. Using this tool, you can get the exact contents of the messages to send as
well as of those expected to be received as answers.

See also:

Message structure. Axis ID and Group ID

Serial communication. RS-232 and RS-485 protocols

CAN-bus communication. TMLCAN protocol

CAN-bus communication. TechnoCAN protocol

 Technosoft 2022 123 ESM User Manual

5.2.1. Message Structure. Axis ID and Group ID

The data exchange on any communication bus and protocol is done using messages. Each
message contains one TML instruction to be executed by the receiver of the message. Apart from
the binary code of the TML instruction attached, any message includes information about its
destination: an axis (drive/motor) or group of axes. This information is grouped in the Axis/Group
ID Code. Depending on the communication bus and the protocol used, the Axis/Group ID Code
and the binary code of the TML instruction attached are encapsulated in different ways.

Information included in a communication message

The first word Axis/Group ID Code identifies the destination axis or the group of axes that must
receive the message. The next words represent the codification of the TML instruction
transmitted.

The Axis/Group ID Code is a 16-bit word with the following structure:

Where:

 Bit 0 – HOST bit. 0 – relay axis, 1 – host. When a host is connected with a drive using
RS-232, the 2 devices must have the same axis ID (bits ID7-ID0 are identical). The HOST bit
makes the difference between the host and the drive connected to the other end. On RS-485, the
host and the drives have different axis ID, the HOST bit has as no significance and must be set to
0.

 Bits 11-4 – ID7-ID0: the 8-bit value of an axis ID or group ID

 Bit 12 – GROUP bit: 0 – ID7-ID0 value is an axis ID, 1 – ID7-ID0 value is a group ID

Depending on the communication bus and protocol used, either the entire 16-bit Axis/Group ID
code is included in a message or only a part of it. This part can be the 10 bits with useful
information: HOST bit, ID7 – ID0 bits and the GROUP bit or a subset of those.

Remark: In the following paragraphs, the terminology Axis ID Code or Group ID Code
designates the above 16-bit word. The terminology Axis ID and Group ID designates the 8-bit
value of an axis or group ID i.e. value of bits ID7 – ID0.

 Technosoft 2022 124 ESM User Manual

The following example describes how the HOST bit is used: Let’s suppose that we have 2 drives
with the axis ID=1 and axis ID=2 (values 1 and 2 represent the value of the bits ID7-ID0)
connected between them via CAN-bus. The host is connected via RS-232 to the drive with axis
ID=1 which acts as a relay axis. The host axis ID (host ID) must also be 1 but with the HOST bit
set. The host sends a data request message to the drive with the axis ID=2. The axis ID code of
this request message is 2 e.g. the destination axis. The message includes the sender axis ID
code e.g. where the drive with ID=2 must send the data requested. The sender axis ID code is the
host address (ID=1 and the HOST bit set). The request message is sent via RS-232 to drive with
axis ID=1. This drive observes that the message destination is another axis (e.g. ID=2) and
resends the message via CAN-bus. The drive with the axis ID=2, will receive the request
message and send the answer via CAN-bus to the sender axis (e.g. host). As the host has the
same address as the relay axis, all the messages sent via CAN-bus and having as destination the
host are received by the relay axis. The relay axis looks at the HOST bit: if the bit is set, then the
message received is sent back via RS-232 to the host. If the HOST bit is not set, then the
message received is executed (it’s destination is the relay axis).

A message can be sent to an axis or to a group of axes. In the first case, the destination is
specified via an Axis ID code. In the second case, the destination is specified via a Group ID
code. Each drive/motor has its own 8-bit Axis ID and Group ID stored in the AAR TML register. If
the destination of a message is specified via an Axis ID code, the message is received only by the
axis with the same 8-bit Axis ID (bits 11-4 from the 16-bit Axis ID code). If the destination of a
message is specified via a Group ID code, each axis compares the 8-bit group ID from the
message with its own group ID. If the two group IDs have at least one group (bit set to 1) in
common, the message is accepted. In the group ID, each bit corresponds to one group:

Definition of the groups

A drive/motor can be programmed to be member of up to 8 groups. It will accept all the messages
sent to any of the groups his is member. For example, if the drive is member of groups 1, 2 and 4,
i.e. its 8-bit Group ID = 11 (00001011b), it will receive all the messages which have in their group
ID value at least one of the bits 0,1 or 3 set to 1.

Remarks:

• A message with axis ID = 0 and will be accepted independently of the receiver axis ID

• A broadcast message has the group ID = 0 and will be accepted by all the axes from the
network, independently of their group ID

 Technosoft 2022 125 ESM User Manual

On each drive/motor, the axis ID is initially set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data.

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default
axis ID value which is 255.

Remark: If the axis ID read from a valid setup table is 0 (option H/W), the axis ID is set with the
value read from the hardware switches/jumpers or in their absence with the default value 255

On each drive/motor, at power on, the group ID is set to 1 i.e. all drives/motors are members of
the group 1. For each drive/motor you can:

• Set/change its group ID using the TML instruction GROUPID

• Add new groups to its group ID using the TML instruction ADDGRID

• Remove groups from its group ID using the TML instruction REMGRID.

Remark: You can read at any moment the actual values of the axis ID and group ID of a
drive/motor from the Axis Address Register AAR

The TML instruction code can have 1 to 5 words. All the TML instructions have at least one word
– the Operation Code. Depending on the type of TML instruction, the operation code may be
followed by 0-4 Data words.

Remark: Use Binary Code Viewer to get the binary code of TML instructions

See also:

Communication protocols – Overview

Serial communication. RS-232 and RS-485 protocols

CAN-bus communication. TMLCAN protocol

CAN-bus communication. TechnoCAN protocol

 Technosoft 2022 126 ESM User Manual

5.2.2. Serial communication. RS-232 and RS-485 protocols

All the Technosoft drives/motors can communicate via RS-232. Some of them also accept RS-
485 as a substitute for RS-232. In the following paragraphs, the terminology serial
communication refers to the features common to both RS-232 and RS-485. The terminology RS-
232 communication or RS-485 communication is used to features that are specific for one or
the other.

The RS-232 communication is point-to point, full duplex, and enables you to link 2 devices. A
typical example is when you connect your PC with a Technosoft drive/motor.

Use the RS-232 communication if you want to:

a) Setup and/or program the motion on one drive/motor using a Technosoft development
platform like EasySetUp or EasyMotion Studio, running on your PC

b) Control a drive/motor, with commands sent via communication from your host

c) Setup and/or program the motion on several drives/motors connected via CAN-bus, where
one is also connected via RS-232 with your PC

d) Control several drives/motors connected via CAN-bus, with commands sent from your host
which is connected via RS-232 with one of them

In cases c) and d), the Technosoft drive/motor connected to the host acts as a relay axis (see
Communication protocols overview for details).

The RS-485 communication is multi-point, half duplex, and enables you to link up to 32
drives/motors in a network. In an RS-485 network, at one moment only one device is allowed to
send data. If two devices start by mistake to transmit in the same time, both transmissions are
corrupted. Therefore for a correct operation, in an RS-485 network it is mandatory to have a
master, which controls the transmission. Put in other words, only the master can initiate a
transmission, while all the other devices from the network may transmit only when the master
asks them to provide some data. Normally you should set as master your host.

Use the RS-485 communication if you want to:

a) Setup and/or program the motion on several drives/motors connected via RS-485 together
with your PC (requires an RS-485 interface or an RS-232/RS-485 adapter on your PC)

b) Control several drives/motors connected via RS-485, with commands sent from your host.
The host is seen as one node of the RS-485 network, and in must act as a master.

Remark: If the absence of a host, you can use any drive as master to control the RS-485
communication. This is possible due to the powerful set of TML commands for multiple axes (see
Motion – Data Transfer Between Axes)

 Technosoft 2022 127 ESM User Manual

Serial communication settings and message encapsulation

The Technosoft drives communicate serially using 8 data bits, 2 stop bits, no parity at the
following baud rates: 9600 (default after reset), 19200, 38400, 56600 and 115200. The messages
exchanged through serial communication are encapsulated in the following format:

Serial message structure – TML Instruction encapsulation

The message length byte contains the total number of bytes of the message minus 2. Put in other
words, the length byte value is the number of bytes of the: Axis/group ID Code (2bytes), the
Operation Code (2 bytes) and the Data words (variable from 0 to 8 bytes). The Checksum byte
is the sum modulo 256 of all the bytes of the message except the checksum byte itself.

Message types on serial communication

The serial communication protocol is based on 3 types of messages imposed by the nature of the
TML commands encapsulated:

• Type A: Messages that don’t require an answer (a return message). These messages
can be sent either by a host or by another drive/motor and contain TML instructions
performing parameter settings, motion programming, motor commands, etc.

• Type B: Messages that require an answer. These messages are sent by a host and
contain one of the on line TML commands. These commands ask to return data, for
example the value of a TML parameter, register, or variable.

• Type C: Messages sent by a drive/motor to a host without being requested by the host.
These messages may be sent either when a specific condition occurs or following the
execution of the TML command SEND (see Messages sent to the host for details)

The next paragraphs present an example of each message type.

 Technosoft 2022 128 ESM User Manual

Example 1 – Type A Message: A host is connected to a drive/motor via RS-232 and sends the
TML instruction “KPP = 5” (set proportional part of the position controller with value 5). The axis
ID of host and of the drive/motor are 255 = 0FFh. The Axis ID code and the TML instruction binary
code are:

Axis ID code + Binary code of TML Instruction KPP = 5 sent to axis 255

Remark: Use Binary Code Viewer to get the binary code of TML instructions

The host must send a serial message with the following contents:

Serial message: TML Instruction KPP = 5 sent to axis 255

The drive/motor will return a byte 0x4F as confirmation that the message was received OK. (See
below the RS-232 and RS-485 protocols description for details)

Remarks:

a) If another drive with axis ID=1 is connected via CAN-bus with the drive having axis
ID=255 and the host wants to sent the same TML instruction “KPP = 5” to axis 1, the
Axis ID Code becomes 0010h instead of 0FF0h.

b) If the host is connected via RS-485 with a drive, the 2 devices must have different axis ID
values. For example if the host axis ID = 255 and the drive ID = 1, the message is the
same as in remark a)

Example 2 – Type B Message: A host is connected to a drive via RS-232 and wants to get the
value of the KPP (proportional term of the position controller) parameter from the drive. KPP
address in TML data memory is 025Eh. The ID of the host and the drive/motor are 255 = 0FFh.
The host sends a “GiveMeData” request and the drive/motor answers with a “TakeData”
message. Let’s suppose that the KPP value returned by the drive/motor is 288 (120h).

Remark: Use Command Interpreter to get TML data addresses.

 Technosoft 2022 129 ESM User Manual

A “GiveMeData” request message for a TML data includes the following information:

“GiveMeData” request for a TML data – Message description

The “TakeData” answer message includes the following information:

“TakeData” answer - Message description

In the particular case of this example, the axis ID code and the binary code of “GiveMeData” are:

Axis ID code + Binary code of “GiveMeData” request for KPP value sent to axis 255

The axis ID code and the binary code of ”TakeData” are:

Axis ID Code + Binary code of “TakeData” with KPP value from axis 255

The host must send a “GiveMeData” request message with the following contents:

Serial message: “GiveMeData” request for KPP value sent to axis 255

 Technosoft 2022 130 ESM User Manual

The drive/motor will return a byte 0x4F as confirmation that the message was received OK (See
below the RS-232 and RS-485 protocols description for details), then the “TakeData” answer
message with the following contents:

Serial message: “TakeData” with KPP value from axis 255

Remarks:

a) If another drive with axis ID=1 is connected via CAN-bus with the drive having axis ID=255
and the host wants to get KPP value from axis 1, the Axis ID Code becomes 0010h instead
of 0FF0h in the “GiveMeData” message. The “Take Data” message also will have 0010h in
instead of 0FF0h as Sender Axis ID Code.

b) If the host is connected via RS-485 with a drive, the 2 devices must have different axis ID
values. For example if the host has axis ID = 255 and the drive has axis ID = 1, the
modifications compared with the above examples are:

· “GiveMeData”: Axis ID Code – 0010h instead of 0FF0h and Sender Axis ID Code –
0FF0 instead of 0FF1h (Host bit = 0);

 Technosoft 2022 131 ESM User Manual

· “TakeData”: Axis ID Code – 0FF0h instead of 0FF1h (Host bit = 0) and Sender Axis ID
Code – 0010h instead of 0FF0h;

Example 3 – Type C Message: A host is connected to a drive via RS-232 and wants to be
informed when the programmed motion is completed. The axis ID of the host and the drive/motor
are 255 = 0FFh. A Type C message is a “TakeData2” message sent without a “GiveMeData2”
request. It includes the following information:

“TakeData2” - Message description

The destination axis is provided by the TML variable MASTERID, according with formula:
MASTERID = host axis ID * 16 + 1. In this example, the 8-bit host axis ID = 255, hence
MASTERID = 16 * 255 + 1 = 4081 (0xFF1). In the case of a Type C message, the “TakeData2”
can return:

• The 32-bit value of the 2 status registers SRL (bits 15-0) and SRH (bits 31-16), if one of
their selected bits changes (the requested data address is the SRL address)

• The 16-bit value of the error register MER, if one of its selected bits changes

• The 16-bit value of the PVT/PT status PVTSTS, if PVT/PT buffer status changes

• The 16-bit or 32-bit TML data requested to be sent with the TML command SEND.

Remark: Use Command Interpreter to get the addresses for the above TML data. Note that the
SRL and SRH status registers may also be accessed as a single 32-bit variable named SR32.

The bit selection is done via 3 masks, one for each register, set in TML parameters: SRL_MASK,
SRH_MASK, MER_MASK. A bit set in a mask, enables a message transmission when the same
bit from the corresponding register changes. In this example, the motion complete condition is
signaled by setting SRL.10 = 1. To activate automatic sending of a “TakeData2” whenever
SRL.10 changes, set SRL_MASK = 0x0400.

If SRH = 0x201 and SRL = 0x8400, after SRL.10 goes from 0 to 1, the host gets a “TakeData2”
message with the following contents:

 Technosoft 2022 132 ESM User Manual

Serial message: “TakeData2” with status registers SRL and SRH from axis 255

Remark: A “TakeData2” message with SRL.10=1 signals that the last programmed motion is
completed. A “TakeData2” message with SRL.10=0 signals that a new motion has started and
may be used as a confirmation for the last motion command.

RS-232 communication protocol

The RS-232 protocol is full duplex, allowing simultaneous transmission in both directions. After
each command (Type A or B) sent by the host, the drive will confirm the reception by sending one
acknowledge-Ok byte. This byte is: ‘O’ (ASCII code of capital letter “o”, 0x4F). If the host receives
the ‘O’ byte, this means that the drive has received correctly (checksum verification was passed)
the last message sent, and now is ready to receive the next message.

Remark: If the destination axis for the message is not the axis connected with the host via RS-
232 (e.g. the relay axis), but another axis connected with the relay axis via CAN-bus, the
reception of the acknowledge-Ok byte from the relay axis doesn’t mean that the message was
received by the destination axis, but just by the relay axis. Depending on the CAN-bus baud rate
and the amount of traffic on this bus, the host may need to consider introducing a delay before
sending the next message to an axis connected on the CAN-bus. This delay must provide the
relay axis the time necessary to retransmit the message via CAN-bus.

If any error occurs during the message reception, for example the checksum computed by the
drive axis doesn’t match with the one sent by the host, the drive will not send the acknowledge-Ok
byte. If the host doesn’t receive any acknowledge byte for at least 2ms after the end of the
checksum byte transmission, this means that at some point during the last message transmission,
one byte was lost and the synchronization between the host and the relay axis is gone. In order to
restore the synchronization the host should do the following:

1) Send a SYNC byte having value 0x0d (higher values are also accepted)

2) Wait a programmed timeout (typically 2ms) period for an answer;

 Technosoft 2022 133 ESM User Manual

3) If the drive sends back a SYNC byte having value 0x0d, the synchronization is restored
and the host can send again the last message, else go to step 1

4) Repeat steps 1 to 3 until the drive answers with a SYNC byte or until 15 SYNC bytes are
sent. If after 15 SYNC bytes the drive/motor still doesn’t answer, then there is a serious
communication problem and the serial link must be checked

When a host sends a type A message through RS-232 it has to:

a) Send the message (as in Example 1);

b) Wait the acknowledge-OK byte ‘O’ from the drive;

When a host sends a type B message through RS-232 it has to:

a) Send the request message (as in Example 2 in case of a “Give Me Data” command)

b) Wait the acknowledge-OK byte ‘O’ from the drive connected via RS-232 (relay axis);

c) Wait the answer message from the drive/motor (as in Example 2, in case of a “Take Data”
answer)

When the relay axis returns an answer message it doesn’t expect to receive an acknowledge byte
from the host. It is the host task to monitor the communication. If the host gets the response
message with a wrong checksum, it is the host duty to send again the data request.

RS-485 communication protocol

The RS-485 protocol is half duplex. If two devices start by mistake to transmit in the same time,
both transmissions are corrupted. Therefore for a correct operation, in an RS-485 network it is
mandatory to have a master, which controls the transmission. This means that only the master
can initiate a transmission, while all the other devices from the network may transmit only when
the master asks them to provide some data. Usually you should set as master your host.

After each command (Type A or B) sent by the host to one drive, the drive will confirm the
reception by sending one acknowledge-Ok byte. This byte is: ‘O’ (ASCII code of capital letter “o”,
0x4F). If the host receives the ‘O’ byte, this means that the drive has received correctly
(checksum verification was passed) the last message sent, and now is ready to receive the next
message.

The acknowledge-Ok byte is not sent when the host broadcasts a message to a group of drives.

If any error occurs during the message reception, for example if the checksum computed by the
drive axis doesn’t match with the one sent by the host, the drive will not send the acknowledge-Ok
byte. If the host doesn’t receive any acknowledge byte for at least 2ms after the end of the
checksum byte transmission, this means that at some point during the last message transmission,
one byte was lost and the synchronization between the host and the relay axis is gone. In order to
restore the synchronization the host should do the following:

1) Send 15 SYNC bytes having value 0x0d or any other bigger value up to 0xFF

 Technosoft 2022 134 ESM User Manual

2) Wait a programmed timeout (typically 2ms);

3) Send again the last command and wait for the drive answer

4) If the drive still doesn’t answer, then there is a serious communication problem and the
serial link must be checked

When a host sends a type A message through RS-485 it has to:

a) Send the message (as in Example 1);

b) Wait the acknowledge-OK byte ‘O’ from the drive, only if the message destination was a
single drive;

When a host sends a type B message through RS-485 it has to:

a) Send the request message (as in Example 2 in case of a “Give Me Data” command)

b) Wait the acknowledge-OK byte ‘O’ from the drive;

c) Wait the answer message from the drive/motor (as in Example 2, in case of a “Take Data”
answer)

Remarks:

• When using the RS-485 protocol, do not send Type B request messages to a group of
axes, because the answer messages will overlap

• When using the RS-485 protocol, the Type C messages must be suppressed. Only the
host/master is allowed to initiate a transmission

When a drive returns an answer message it doesn’t expect to receive an acknowledge byte from
the host. It is the host task to monitor the communication. If the host gets the response message
with a wrong checksum, it is the host duty to send again the data request.

See also:

Communication protocols – Overview

CAN-bus communication. TMLCAN protocol

CAN-bus communication. TechnoCAN protocol

Message structure. Axis ID and Group ID

 Technosoft 2022 135 ESM User Manual

5.2.3. CAN-bus communication. TechnoCAN protocol

TechnoCAN is an alternate protocol to TMLCAN – the default CAN-bus protocol for the
Technosoft drives/motors without CANopen. TechnoCAN was specifically designed to permit
connection of the Technosoft drives/motors without CANopen on a CANopen network where
messages are exchanged using CANopen protocol. TechnoCAN and CANopen do not disturb
each other and therefore can co-exist on the same physical bus.

On request, the Technosoft drives/motors without CANopen may be delivered with TechnoCAN
protocol. The difference between the drives/motors with TMLCAN protocol and those with
TechnoCAN protocol is done only through the firmware: all the Technosoft products equipped with
TechnoCAN have a firmware number starting with 2 i.e. a firmware code is F2xxY, where 2xx is
the firmware number and Y is the firmware revision.

TechnoCAN is based on CAN2.0A using 11 bits for the identifier. It accepts the following baud
rates: 125kb, 250kb, 500kb (default after reset), 800kb and 1Mb. Like TMLCAN, TechnoCAN
offers the possibility to connect a PC via a serial RS-232 link to any drive/motor from the
CANopen network and through it to access all the Technosoft drives/motors. In this case, this
drive/motor connected both to CAN-bus and RS-232 becomes a relay axis (see Communication
protocols – Overview for details)

In TechnoCAN the TML instructions are split into 8 categories:

a) Normal – includes all the TML instructions addressed to a single drive/motor (axis)

b) TakeData – includes the answer “TakeData” to the request “GiveMeData”

c) Group – includes all the TML instructions multicast to a group of drives/motors

d) Host – includes the answers to all the other on line TML commands except “TakeData”

e) PVT – includes the instruction PVTP (the instruction is to long to be sent as a normal
message)

f) Synchronization – includes the synchronization message for the group 0

g) Broadcast – includes all the TML instructions addressed to the group 0 (to the all drives in
the system) except the request GiveMeData.

h) TakeData2 – includes the answers “TakeData2” to the request “GiveMeData2”

Each category is mapped in the following range of COB-ID (Communication Object Identifier –
CANopen terminology for a CAN message identifier):

 Technosoft 2022 136 ESM User Manual

TechnoCAN uses only COB-IDs outside of the range used by CANopen. Thus, TechnoCAN
protocol and CANopen protocol can co-exist and communicate simultaneously on the same
physical CAN bus, without disturbing each other.

TechnoCAN
Node 1

TechnoCAN
Node 2

TechnoCAN
Node n

TechnoCAN
Node 31

CANopen
Node 1

CANopen
Node 2

CANopen
Node n

CANopen
Node 127

Communication - TechnoCAN protocol

Communication - CANopen protocol

Can Bus Line (Physical)

The next table shows how TechnoCAN COB-IDs are assigned in relation with the CANopen COB-
IDs.

CANOpen and TechnoCAN COB-IDs

 Technosoft 2022 137 ESM User Manual

 Technosoft 2022 138 ESM User Manual

Remarks: In comparison with TMLCAN, TechoCAN has the following restrictions:

• The maximum number of axes is 31: possible Axis ID values: 1 to 31

• The maximum number of groups is 5: possible Group ID values: 1 to 5

Normal messages encapsulation: COB-ID: 121h – 13Fh

Host messages encapsulation: COB-ID: 141h – 15Fh

Remark: Host messages occur only when a drive/master answers to a data request (other then
“GiveMeData”) where the Sender Axis ID has the HOST bit set to 1. This happens for example
when the host is a PC connected to one of the drives/motors via RS-232 and asks a data from
another drive/motor. The answer will be sent to the relay axis as a Host message. The Host
messages do not occur when the request is sent by a drive or by a host/master connected directly
on the CAN bus.

 Technosoft 2022 139 ESM User Manual

Take Data messages encapsulation: COB-ID: 161h – 17Fh

Remarks: In the Take Data messages, the 10-byte code of the Take Data TML instruction is
compacted to 8-bytes. This is done in the following way:

• From the 16-bit Operation Code, only the first 10LSB are transmitted. The 6MSB are
always constant: 0x2D (101101b) and are not transmitted. The receiver of a Take Data
message must add 0x2D on the 6MSB of the Operation Code received in order to restore
the full 16-bit code for TakeData instruction.

• The HOST bit is transmitted in bit 2 of byte 1. There is no need to send the GROUP bit
because the GiveMeData request can’t be sent to a group of drives/motors.

• The first data word of the TakeData TML instruction is the Sender Axis ID. As the
maximum number of drives is limited to 31, only bits 8-4 are useful and are transmitted.

 Technosoft 2022 140 ESM User Manual

Group messages encapsulation: COB-ID: 001h – 01Fh

PVT messages encapsulation: COB-ID: 041h – 05Fh

Remarks: In the PVT messages, the 10-byte code of the PVT TML instruction is compacted to 8-
bytes. This is done in the following way:

• The Operation Code is not transmitted. The receiver of a PVT message adds 0x6 on the
9MSB of the Operation Code received and the Counter value on the 7LSB in order to
restore the full 16-bit code for PVT instruction.

• The first data word of the PVT instruction contains the 15LSB of the 24 bits Position

• The second data word of the PVT instruction contains the 8LSB of the 24 bits Speed
value and the 8 MSB of the 24 bits Position value.

 Technosoft 2022 141 ESM User Manual

• The third data word of the PVT instruction contains the 16MSB of the 24 bits Speed
value.

• The fourth data word of the PVT instruction contains the 9bits Time value.

Synchronization messages encapsulation: COB-ID: 020h

Remarks:

• The message has zero data bytes

• The Operation Code is 0x1000

• The synchronization messages are broadcast messages; they are received by every drive
connected to the network

Broadcast messages encapsulation: COB-ID: 200h

 Technosoft 2022 142 ESM User Manual

Take Data 2 messages encapsulation: COB-ID: 101h – 11Fh

Remarks:

• The message will be never receive by one of the Technosoft drive, the message is
dedicate for other drives.

• The COB-ID contains the Expeditor Axis ID for the host to get the answers one by one,
prioritized in the ascending order of the expeditors’ axis ID.

• The VT bit specifies the data length (VT = 0 for 16bits or VT = 1 for 32 bits) and is
transmitted in the first byte sent.

• The P bit specifies if the message is TakeData2, in reply to a GiveMeData2 message, or
a PONG, in reply to a PING message. The PING message is a broadcast message that
requests the Axis ID and the firmware version of the drives in the network. For P=0 the
message is Take Data2 and for P = 1 the message is a PONG (the VT bit is automatically
reset and it has no meaning).

Example 1: A host connected on a CANopen network sends to drive/motor with axis ID = 5 the
TML instruction “KPP = 0x1234” (set proportional part of the position controller with value
0x1234). The Axis ID Code and the TML instruction binary code are:

Binary code of TML instruction KPP =0x1234

Remark: Use Binary Code Viewer to get the binary code of TML instructions

 Technosoft 2022 143 ESM User Manual

The host must send a TechnoCAN message with the following contents:

TechnoCAN message: TML instruction KPP =0x1234 sent to axis 5

Remark: The last 4 bytes are not used and are not transmitted

Example 2: A host connected on a CANopen network wants to get the value of the position error
from the drive/motor with the axis ID=5. The host axis ID is 3. The position error is the 16-bit TML
variable named POSERR and its address in the TML data memory is 0x022A. The host sends to
axis 5 a “GiveMeData” request for the TML variable POSERR and waits for the “TakeData”
answer.

The Axis ID Code and the binary code of “GiveMeData” request for POSERR are:

Binary code of GiveMeData request for POSERR value sent to axis 5

The host must send a TechnoCAN message with the following contents:

 Technosoft 2022 144 ESM User Manual

TechnoCAN message: GiveMeData request for POSERR value sent to axis 5

Remark: The last 2 byes are not used and are not transmitted.

Supposing that the drive/motor with Axis ID = 5 returns a position error POSERR = 2, the Axis ID
Code and the binary code of the “TakeData” answer is:

Binary code of TakeData with POSERR value from axis 5

The host gets a TechnoCAN message with the following contents:

 Technosoft 2022 145 ESM User Manual

TechnoCAN message: TakeData with POSERR value from axis 5

Remark: The last 2 byes are not used and are not transmitted.

Example 3: A PVT command is sent to the drive with the axis ID 5 like following: pvtp -1000L, -
10, 500U, 0 (set the coordinates for the next point the position at -1000 IU = 0,5 rot = FFFC18h,
the speed at -10IU = 300 rpm = FFF600 and the time 500IU = 0,5s = 01F4).

Binary code of PVT command sent to axis 5

The TechnoCAN message sent has the following contents:

 Technosoft 2022 146 ESM User Manual

 TechnoCAN message: PVT command for axis 5

Example 4: If a Technosoft drive/motor receives the TML instruction SETSYNC 20, it becomes
the synchronization master and starts sending every 20ms a synchronization message and its
time to the all drives connected in the CAN bus network.

At a moment the master time has the value 0x246C46F and the code of TML instruction is the
following:

Binary code of Set Master Time command sent to all axes

The TechnoCAN messages are:

• The synchronization message that when it is received by everybody specifics time
variables are saved.

 TechnoCAN message: Synchronization command for all axes

Remark: The last 8 bytes are not used and are not transmitted.

 Technosoft 2022 147 ESM User Manual

• The master broadcast messages with the command to the slaves to set the master time

TechnoCAN message: Set Master Time command to all axes

Example 5: If for example the axis 2 encounters a control error, the drive sends a message with
the value of the error register MER (0x0008) with a TakeData2 instruction which has the following
content:

Binary code of TakeData 2 with MER register value from axis 2

Remark: The VT bit is set to zero

The TechnoCAN message sent has the following contents:

 TechnoCAN message: TakeData2 command from axis 2

Remark: The last 3 byes are not used and are not transmitted.

 Technosoft 2022 148 ESM User Manual

See also:

Communication protocols – Overview

Message structure. Axis ID and Group ID

Serial communication. RS-232 and RS-485 protocols

CAN-bus communication. TMLCAN protocol

5.2.4. CAN-bus communication. TMLCAN protocol

Most of the Technosoft drives/motors can communicate via CAN-bus. The CAN-bus
communication is multi-point, half duplex, and enables you to link up to 32 drives/motors in a
network.

The major advantage of the CAN-bus is its capability to solve automatically the conflicts. On a
CAN-bus network, if two devices start to transmit in the same time, one of them (having the higher
priority) always wins the network access and completes the transmission. The other device, after
losing the network access, commutes from transmission to reception, receives the message with
the higher priority, then tries again to transmit its own message. All this procedure is done
automatically by the hardware (CAN-bus controller) and it is transparent at higher levels. Put in
other words, one can work with a CAN-bus network like being full duplex, knowing that if
transmission conflicts occur, these are automatically solved.

Technosoft drives/motors have been specifically designed to exploit the CAN-bus benefits. For
example, in multi-axis applications you can really distribute the intelligence between the master
and the drives/motors. Instead of trying to command each step of an axis movement, you can
program the drives/motors using TML to execute complex tasks and inform the master when
these are done. Thus for each axis the master task may be reduced at: calling TML functions
(with possibility to abort their execution if needed) and waiting for a message, which confirms the
execution. If needed, the drives/motors may also be programmed to send periodically information
messages to the master so it can monitor a task progress.

Depending on product, Technosoft drives/motors are delivered either with TMLCAN protocol or
with CANopen. On request, the TMLCAN protocol, which is based on CAN2.0B, may be replaced
with TechnoCAN protocol which is based on CAN2.0A. TechnoCAN was specifically designed to
permit connection of the Technosoft drives/motors without CANopen on a CANopen network
where messages are exchanged using CANopen protocol. TechnoCAN and CANopen do not
disturb each other and therefore can co-exist on the same physical bus.

Message encapsulation in TMLCAN protocol

TMLCAN is based on CAN2.0B using 29 bits for the identifier. It accepts the following baud rates:
125kb, 250kb, 500kb (default after reset), 800kb and 1Mb.

The message destination (an axis or a group of axes) and the TML instruction binary code are
encapsulated as follows:

 Technosoft 2022 149 ESM User Manual

CAN message identifier of a message sent to:

Axis

Group

Broadcast

CAN message data bytes:

Message types on CAN-bus communication

The CAN-bus communication is based on 3 types of messages imposed by the nature of the TML
commands encapsulated:

• Type A: Messages that don’t require an answer (a return message). These messages
can be sent either by a host or by another drive/motor and contain TML instructions
performing parameter settings, motion programming, motor commands, etc.

• Type B: Messages that require an answer. These messages are sent by a host and
contain one of the on line TML commands. These commands ask to return data, for
example the value of a TML parameter, register, or variable.

• Type C: Messages sent by a drive/motor to a host without being requested by the host.
These messages may be sent either when a specific condition occurs or following the
execution of the TML command SEND (see Messages sent to the host for details)

 Technosoft 2022 150 ESM User Manual

The next paragraphs present an example of each message type.

Example 1 – Type A Message: A host connected on CAN-bus sends to drive/motor with axis ID
= 5 the TML instruction “KPP = 0x1234” (set proportional part of the position controller with value
0x1234). The TML instruction binary code are:

Binary code of TML instruction KPP =0x1234

Remark: Use Binary Code Viewer to get the binary code of TML instructions

The CAN message identifier is:

CAN message identifier: TML instruction KPP =0x1234 sent to axis 5

The host must send a CAN message with the following contents:

 CAN message: TML instruction KPP =0x1234 sent to axis 5

Example 2 – Type B Message: A host wants to get the position error of 2 drives/motors, which
are members of group 1. The host axis ID is 3 and the drives/motors axis ID are 5 and 7. The
position error is the 16-bit TML variable named POSERR and its address in the TML data memory
is 0x022A. The host sends to group 1 a “GiveMeData2” request for the TML variable POSERR
and waits for the “TakeData2” answers.

The Group ID Code and the binary code of “GiveMeData2” request for POSERR are:

 Technosoft 2022 151 ESM User Manual

Binary code of GiveMeData2 request for POSERR value sent to group 1

The CAN message identifier is:

CAN message identifier: GiveMeData2 request for POSERR value sent to group 1

The host must send a CAN message with the following contents:

CAN message: GiveMeData2 request for POSERR value sent to group 1

Supposing that the drive/motor with Axis ID = 5 returns a position error POSERR = 2, the binary
code of the “TakeData2” answer is:

Binary code of TakeData2 with POSERR value from axis 5

The CAN message identifier is:

CAN message identifier: TakeData2 with POSERR value from axis 5

 Technosoft 2022 152 ESM User Manual

The host gets a CAN message with the following contents:

 CAN message: TakeData2 with POSERR value from axis 5

Supposing that the drive/motor with Axis ID = 7 returns a position error POSERR = 1, the binary
code of the “TakeData2” answer is:

Binary code of TakeData2 with POSERR value from axis 7

The CAN message identifier is:

CAN message identifier: TakeData2 with POSERR value from axis 7

The host gets a CAN message with the following contents:

 CAN message: TakeData2 with POSERR value from axis 7

Example 3 – Type C Message: A host is connected to a drive via CAN-bus and wants to be
informed when the programmed motion is completed. The host axis ID = 255 and the drive/motor
axis ID = 1. A Type C message is a “TakeData2” message sent without a “GiveMeData2”
request. It includes the following information:

 Technosoft 2022 153 ESM User Manual

“TakeData2” – Message description

The destination axis is provided by the TML variable MASTERID, according with formula:
MASTERID = host axis ID * 16 + 1. In this example, the 8-bit host axis ID = 255, hence
MASTERID = 16 * 255 + 1 = 4081 (0xFF1). In the case of a Type C message, the “TakeData2”
can return:

• The 32-bit value of the 2 status registers SRL (bits 15-0) and SRH (bits 31-16), if one of
their selected bits changes (the requested data address is the SRL address)

• The 16-bit value of the error register MER, if one of its selected bits changes

• The 16-bit value of the PVT/PT status PVTSTS, if PVT/PT buffer status changes

• The 16-bit or 32-bit TML data requested to be sent with the TML command SEND.

Remark: Use Command Interpreter to get the addresses for the above TML data. Note that the
SRL and SRH status registers may also be accessed as a single 32-bit variable named SR32.

The bit selection is done via 3 masks, one for each register, set in TML parameters: SRL_MASK,
SRH_MASK, MER_MASK. A bit set in a mask, enables a message transmission when the same
bit from the corresponding register changes. In this example, the motion complete condition is
signaled by setting SRL.10 = 1. To activate automatic sending of a “TakeData2” whenever
SRL.10 changes, set SRL_MASK = 0x0400.

Supposing that the drive/motor with Axis ID = 1 returns SRH = 0x201 and SRL = 0x8400, after
SRL.10 goes from 0 to 1, the Axis ID Code and the binary code of the “TakeData2” message is:

Axis ID Code + Binary code of TakeData2 with status registers SRL and SRH from axis 1

The CAN message identifier is:

 Technosoft 2022 154 ESM User Manual

CAN message identifier: TakeData2 with status registers SRL and SRH from axis 1

The host gets a CAN message with the following contents:

 CAN message: TakeData2 with status registers SRL and SRH from axis 1

Remark: A “TakeData2” message with SRL.10=1 signals that the last programmed motion is
completed. A “TakeData2” message with SRL.10=0 signals that a new motion has started and
may be used as a confirmation for the last motion command.

See also:

Communication protocols – Overview

CAN-bus communication. TechnoCAN protocol

Message structure. Axis ID and Group ID

Serial communication. RS-232 and RS-485 protocols

 Technosoft 2022 155 ESM User Manual

6. Application Programming

6.1. Motion Programming – drives with built-in Motion Controller

One of the key advantages of the Technosoft drives/motors is their capability to execute complex
motions without requiring an external motion controller. This is possible because Technosoft
drives offer in a single compact package both a state of art digital drive and a powerful motion
controller.

Programming motion on a Technosoft drive/motor means to create and download a TML
(Technosoft Motion Language) program into the drive/motor memory. The TML allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of TML functions

o TML interrupts generated on pre-defined or programmable conditions (protections
triggered, transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

With TML, you can really distribute the intelligence between the master and the drives/motors in
complex multi-axis applications. Thus, instead of trying to command each step of an axis
movement, you can program the drives/motors using TML to execute complex tasks and inform
the master when these are done. Thus for each axis the master task may be reduced at: calling
TML functions (with possibility to abort their execution if needed) and waiting for a message,
which confirms the execution. If needed, the drives/motors may also be programmed to send
periodically information messages to the master so it can monitor a task progress.

 Technosoft 2022 156 ESM User Manual

A TML program includes a main section, followed by the subroutines used: functions, interrupt
service routines and homing procedures. The TML program may also include cam tables used
for electronic camming applications.

When you select the “Motion” part of an application, you access the main section of your
application TML program.

You can select the other components of a TML program too. Each has 2 types of access views:

• Definition and/or selection view, with the following purposes:

o Homing modes: select the homing procedure(s) to use from a list of already defined
procedures.

o Functions: create new TML functions (initially void) and manipulate those defined:
delete, rename, change their order in the program

o Interrupts: choose the TML interrupt service routines you want to view/change their
default implementation

o Cam Tables: create new cam tables loaded from other applications or imported from
text files and manipulate those defined: select those to be downloaded and their order,
delete or rename.

• Edit view – for editing the contents. There is one edit view for each homing procedure and
cam table selected, for each function defined and each interrupt chosen for view/edit.

In order to help you create a TML program, EasyMotion Studio includes a Motion Wizard which
is automatically activated when you select “M Motion” – the main section view or an edit view for a
homing procedure, function or interrupt service routine. The Motion Wizard adds a set of toolbar
buttons in the project window just below the title bar. Each button opens a programming dialogue.
When a programming dialogue is closed, the associated TML instructions are automatically
generated. Note that, the TML instructions generated are not a simple text included in a file, but a
motion object. Therefore with Motion Wizard you define your motion program as a collection of
motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can
very easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex
functions

 Technosoft 2022 157 ESM User Manual

The Motion Wizard includes the following programming dialogues:

Motion Programming and control
Trapezoidal Profiles

S-curve Profiles

PT

PVT

External

Electronic Gearing

Electronic Camming

Motor Commands

Position Triggers

Homing

Contouring

Test

Events Programming
Event Types

When the actual motion is complete

Function of motor or load position

Function of motor or load speed

After a wait time

Function of reference

Function of inputs status

Function of a variable value

Jumps and Function Calls

I/O Handling

Assignment & Data Transfer
16-bit Integer Data

32-bit Integer Data

 Technosoft 2022 158 ESM User Manual

Arithmetic Operations

Multiple Axis Data Transfer

Send to Host

Miscellaneous commands

Interrupt Settings

Free Text Editor

See also:

Motion View

Homing Procedures View

Functions View

Interrupts View

Cam Tables View

 Technosoft 2022 159 ESM User Manual

6.1.1. Motion Programming Toolbars

The top toolbar contains the buttons associated to motion programming dialogues.

 The “Motion – Trapezoidal Profiles“allows you to program a positioning path described
through a series of points. Each point specifies the desired Position and Time, i.e. contains a PT
data. Between the points the built-in reference generator performs a linear interpolation.

 The “Motion – S-curve Profiles” allows you to program a position profile with an S-curve
shape of the speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular
profile for the acceleration and an S-curve profile for the speed.

 The “Motion - PT” allows you to program an arbitrary profile whose contour is described by a
succession of linear segments.

 The “Motion – PVT” allows you to program a positioning path described through a series of
points. Each point specifies the desired Position, Velocity and Time, i.e. contains a PVT data.
Between the points the built-in reference generator performs a 3rd order interpolation

 The “Motion – External” allows you to program the drives/motors to work with external
reference provided by another device.

 The “Motion – Electronic Gearing” dialogue allows you to set the drives as master or a
slave for electronic gearing mode.

 The “Motion – Electronic Camming” dialogue allows you to set the drives as master or a
slave for electronic camming mode.

 The “Motor Commands” allows you to apply one of following commands to the motor:
activate/deactivate the control loops and the power stage PWM output commands (AXISON /
AXISOFF), stop the motor with acceleration/deceleration set, change the value of the motor
position and position reference.

 Technosoft 2022 160 ESM User Manual

 The “Motion – Position Triggers” dialogue allows you to define 4 position trigger points.

 The “Motion – Homing” dialogue allows you choose a homing procedure and set its
parameters.

 The “Motion - Contouring” allows you to program an arbitrary contour via a series of points.
Between the points, linear interpolation is performed, leading to a contour described by a
succession of linear segments.

 The "Test" dialogue allows you to set the drives/motors in a special test configuration.

 The “Events” allows you to define an event to be monitored and to perform several actions.

 The “Jumps and Function Calls” allows you to control the TML program flow through
unconditional or conditional jumps and unconditional, conditional or cancelable calls of TML
functions.

 The “I/O” allows you program operations with the digital inputs and outputs of the
drives/motors.

 The “16-bit Integer Data” helps you to program an assignment operation through which you
can set the value of a 16-bit variable or set a memory location with a 16-bit immediate value or the
value of a 16-bit variable.

 The “32-bit Long or Fixed Data” helps you to program an assignment operation through
which you can set the value of a 32-bit variable, set the low part (16LSB) or the high part (16MSB)
of a 32-bit variable with a 16-bit value / variable value, set a memory location with a 32-bit
immediate value or the value of a 32-bit variable.

 The “Arithmetic Operations” helps you to program one of the arithmetic operations
accepted by the TML (Technosoft Motion Language): addition, subtraction, product or shifting.

 Technosoft 2022 161 ESM User Manual

 The “Data Transfer Between Axis” helps you to program the data transfer operations
between drives that are connected in a network.

 The “Send Data to Host” dialogue allows you to choose what information is sent by the drive
automatically. You can send information about status register, error register or variables.

 The “Miscellaneous” dialogue allows you to declare new variables, reset FAULT status,
insert a END instruction, insert an NOP instruction, set the baud rates for the Serial
Communication Interface (SCI) used for RS-232 and RS-485, set the baud rates for the CAN
communication.

 The “TML Interrupt Settings” allows you to activate and/or deactivate the TML (Technosoft
Motion Language) interrupts

 The “Free text” opens a dialogue where you can freely insert comments or TML instructions
in the current position.

Once the parameters have been entered, a "motion sequence" is created. Such a sequence
represents a macro-instruction to which one or more specific TML instructions correspond. The
EasyMotion Studio automatically generates the TML code for these motion sequences.

The right toolbar contains buttons used for the motion sequences management.

 Insert. Allows you choose a new motion sequence to be inserted.

- Motion.

 Trapezoidal Profiles. This command allows you to program a position or
speed profile with a trapezoidal shape of the speed, due to a limited
acceleration.

 S-Curve Profiles. This command allows you to program a positioning with a
limited jerk. In an S-curve mode, the acceleration profile is trapezoidal and
the speed profile is like an S-curve.

 Technosoft 2022 162 ESM User Manual

 PT The command allows to program a positioning with path described
through a set of points, for each point you specify

 PVT. This command allows you to program a positioning described through a
series of points, each point includes the desired position, the speed and the
time at which the position is to be reached. The user points are interpolated
using third order polynomials.

 External. This command allows you to set the drives working with an external
reference provided by another device.

 Electronic Gearing. This command dialogue allows you to set the drives as
master or a slave for electronic gearing mode.

 Electronic Camming. This command dialogue allows you to set the drives
as master or a slave for electronic camming mode.

 Motor Commands. This command allows you to apply one of following
commands to the motor: activate/deactivate the control loops and the power
stage PWM output commands (AXISON / AXISOFF), stop the motor with
acceleration/deceleration set, change the value of the motor position and
position reference

 Position Triggers. This command opens the dialogue where you define the
triggering values for each trip point.

 Homing

 Contouring. This command allows you to program an arbitrary profile whose
contour is described by a succession of linear segments

 Test. This command dialogue allows you to set up the drives in a special test
configuration.

- Events. This command allows you to define an event (a condition) to be monitored
and to perform several actions.

- Jumps and Function Calls. This command allows you program the operations
related with the control of the program flow.

- I/O. This command allows you program operations with the digital inputs and outputs
of the drives

- Assignment & Data Transfer

 16-bit Integer Data. This command helps you to program an assignment
operation through which you can set the value of a 16-bit variable or set a
memory location with a 16-bit immediate value or the value of a 16-bit
variable.

 Technosoft 2022 163 ESM User Manual

 32-bit Long or Fixed Data. This command helps you to program an
assignment operation through which you can set the value of a 32-bit
variable, set the low part (16LSB) or the high part (16MSB) of a 32-bit
variable with a 16-bit value / variable value, set a memory location with a 32-
bit immediate value or the value of a 32-bit variable.

 Arithmetic Operations. This command helps you to program one of the
arithmetic operations accepted by the TML (Technosoft Motion Language):
addition, subtraction, product or shifting.

 Data Transfer Between Axes. This command helps you to program the data
transfer operations between drives that are connected in a network.

 Send Data to Host. This command allows you to choose what information is
sent by the drive automatically. You can send the status register (low part -
SRL and high part - SRH), error register (MER) or the value of a variable.

 Miscellaneous. This command opens the dialogue from where you can
declare new variables and insert FAULTR, END, NOP, SPI and SCI
instructions.

- Interrupt Settings. This command allows you to activate and/or deactivate the TML
interrupts.

- Free text. This command opens a dialogue where you can freely insert a sequence of
TML instructions in the current position in the Motion Wizard window.

 Edit. Pressing this button, the dialogue associated with the selected motion sequence opens,
allowing changing the motion parameters.

 Duplicate. Duplicate the selected motion sequence.

 Move Down. Moves down the selected motion sequence.

 Move Up. Moves up the selected motion sequence.

 Delete. Delete the selected motion sequence.

 Technosoft 2022 164 ESM User Manual

 Group. The button allows you to group the selected motion sequences in a new object
containing all the selected motion objects. You can give a name or title to the grouped object. This
embedding process can be performed in consecutive steps. Any grouped object is displayed with
a leading [+] symbol. Click on the [+] symbol to expand the grouped object content to the next
embedding level. The leading [+] symbol transforms into a leading [-] symbol. Click the [-] symbol
to group back the expended object. Successive embedded levels are accepted.

 Ungroup. Use the “Ungroup” command to restore the motion objects list instead of the group
object.

 Enable. For debugging, you have the possibility to remove motion sequences (one or more
motion objects) from the motion program like commenting lines in a text program. Use the the
“Enable” button to uncomment / enable motion sequences.

 Disable. For debugging, you have the possibility to remove motion sequences (one or more
motion objects) from the motion program like commenting lines in a text program. Use the
“Disable” button to comment / disable motion sequences.

 Import. Use the “Import” button to load/insert motion objects previously saved in *.msq files.
These are appended below the current position e.g. the immediately after the selected motion
object.

 Export. You can select a part of your program (one or more motion objects) and save it in a
separate motion file, using the "Export" button. The operation saves the selected motion objects in
a file with extension *.msq.

See also:

Motion programming Toolbars for Multi-axis motion controller

 Technosoft 2022 165 ESM User Manual

6.1.2. Motion Trapezoidal Profile

The “Motion – Trapezoidal Profiles” dialogue allows you to program a position or speed profile
with a trapezoidal shape of the speed, due to a limited acceleration.

In the position profile, the load/motor is controlled in position. You specify either a position to
reach in absolute mode or a position increment in relative mode, plus the slew (maximum travel)
speed and the acceleration/deceleration rate. In relative mode, the position to reach can be
computed in 2 ways: standard (default) or additive. In standard relative mode, the position to
reach is computed by adding the position increment to the instantaneous position in the moment
when the command is executed. In the additive relative mode, the position to reach is computed
by adding the position increment to the previous position to reach, independently of the moment
when the command was issued. During motion, you can change on the fly the position command,
the slew speed and the acceleration/deceleration rate.

In the speed profile, the load/motor is controlled in speed. You specify the jog speed (speed sign
specifies the direction) and the acceleration/deceleration rate. The load/motor accelerates until
the jog speed is reached. During motion, you can change on the fly the slew speed and the
acceleration/deceleration rate.

You can switch at any moment between position and speed profiles or to any of these from
another motion mode.

IMPORTANT: Some setup configurations foresee a transmission ratio between the motor and the
load. In these cases, the load position and speed are different from the motor position and speed.
The motion parameters refer always to the load trajectory.

 Technosoft 2022 166 ESM User Manual

Choose Position to program a position profile. Select positioning mode Relative or Absolute.
For relative positioning, check Additive to add the position increment to the position to reach set
by the previous motion command. Set the values of the Acceleration rate and the Slew speed.
Select the measuring units from the lists on the right. In the absolute positioning mode, set the
value of the Position to reach. In the relative positioning, set the value of the Position
increment.

Remark: The position profile option is available only if the drive/motor is setup to perform position
control.

Choose Speed to program a speed profile. Set the values of the Acceleration rate and the Jog
speed. Select the measuring units from the lists on the right.

Remark: Speed profile option is active if the drive/motor is setup to perform speed control or
position control with speed loop closed.

Once set, the trapezoidal profile parameters are memorized. If you intend to use the same values
as previously defined for the acceleration rate, the slew or jog speed, the position increment or
position to reach you don’t need to set their values again in the following trapezoidal profiles. Use
the checkboxes on the left to uncheck those parameters that remain unchanged. When a
parameter is unchecked, you don’t need to give it a value.

Remark: The additive mode for relative positioning is not memorized and must be set each time a
new additive relative move is set.

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the motion profile starting from the actual values
of the position and speed reference. Use this option for example if successive standard relative
moves must be executed and the final target position should represent exactly the sum of the
individual commands. Select Generate new trajectory starting from actual values of
load/motor position and speed if you want the reference generator to compute the motion
profile starting from the actual values of the load/motor position and speed. When this option is
used, at the beginning of each new motion profile, the position and speed reference are updated
with the actual values of the load/motor position and speed. Use this option for example if during a
motion an external input triggers a stop on a precise position relative to the trigger point. Another
situation to use this option is at recovery from an error or any other condition that disables the
motor control while the motor is moving. Updating the reference values leads to a “glitch” free
recovery because it eliminates the differences that may occur between the actual load/motor
position/speed and the last computed position/speed reference (before disabling the motor
control).

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion until this programmed motion is completed.

 Technosoft 2022 167 ESM User Manual

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may
never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the trajectory and has
arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor
and using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
only to set the motion parameters without starting the execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Trapezoidal Position Profiles – TML Programming Details

Trapezoidal Speed Profiles – TML Programming Details

Trapezoidal Position Profiles – Related TML Instructions and Data

Trapezoidal Speed Profiles – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 168 ESM User Manual

6.1.3. Motion S-Curve Profile

The “Motion – S-curve Profiles” dialogue allows you to program a position profile with an S-curve
shape of the speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular
profile for the acceleration and an S-curve profile for the speed.

In the S-curve profile, the load/motor is controlled in position. You specify either a position to
reach in absolute mode or a position increment in relative mode, plus the slew (maximum travel)
speed, the maximum acceleration/deceleration rate and the jerk rate.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion. During an S-curve execution, you can switch at any moment to another motion mode
(except PVT and PT interpolated modes) or stop the motion with a STOP command.

I

IMPORTANT: Some setup configurations foresee a transmission ratio between the motor and the
load. In these cases, the load position and speed are different from the motor position and speed.
The motion parameters refer always to the load trajectory.

Choose the option Relative to program a relative positioning or Absolute for an absolute
positioning. Set the values of the Jerk, Acceleration rate and the Slew speed. Select the
measuring units from the lists on the right. In the absolute positioning mode, set the value of the
Position to reach. In the relative positioning, set the value of the Position increment.

Remarks:

• The reference generator actually uses the jerk time to compute the profile. This is computed as
the ratio between the acceleration rate and the jerk rate you provided and must be a positive

 Technosoft 2022 169 ESM User Manual

integer number, in internal time units. If the jerk value is too low, the jerk time may be zero. In
this case you’ll get the error message “Jerk parameter must be greater than zero!”

• The S-curve requires the drive/motor to be setup for position control. Otherwise, in the Motion
view, the button opening this dialogue will not occur.

Select Decelerate at STOP command with a limited jerk if you want a smooth deceleration,
using an S-curve speed profile in case of a STOP command. Select Decelerate at STOP
command in shortest time if you want a faster deceleration, using a trapezoidal speed profile in
case of a STOP command.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion until this programmed motion is completed. If the next motion is an S-
curve too, checking this option is mandatory.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may
never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the trajectory and has
arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor
and using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
only to set the motion parameters without starting the execution.

 OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

 See also:

S-Curve Profiles – TML Programming Details

S-Curve Profiles – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

6.1.4. Motion PT

 Technosoft 2022 170 ESM User Manual

The “Motion – PT” dialogue allows you to program a positioning path described through a series
of points. Each point specifies the desired Position and Time, i.e. contains a PT data. Between the
points the built-in reference generator performs a linear interpolation.

In the PT mode the load/motor is controlled in position. A PT sequence must begin when
load/motor is not moving.

The PT mode is typically used together with a host, which sends PT points via a communication
channel. Due to the interpolation, the PT mode offers the possibility to describe arbitrary position
contours using a reduced number of points. It is particularly useful when the motion reference is
computed on the fly by the host, like for example, in vision systems. By reducing the number of
points, both the computation power and the communication bandwidth needed are substantially
reduced optimizing the costs. When the PT motion mode is used simultaneously with several
drives/motors having the time synchronization mechanism activated, the result is a very powerful
multi-axis system that can execute complex synchronized moves.

Upon reception, each PT point is stored in a reception buffer. The reference generator empties
the buffer as the PT points are executed. The drive/motor automatically sends warning messages
when the buffer is full, low or empty. The buffer full condition occurs when the number of PT
points in the buffer is equal with the buffer size. The buffer low condition occurs when the number
of PT points in the buffer is less or equal with a programmable value. The buffer empty condition
occurs when the buffer is empty and the execution of the last PT point is over.

Remarks:

• The PT buffer size is programmable and if needed can be substantially increased. By default it
is set to 7 PT points.

• The buffer low condition is set by default when the last PT point from the buffer is read and
starts to be executed

• After the execution of the last PT point from a sequence the drive/motor keeps the last
reference position, waiting for the next PT commands.

• The PT mode requires the drive/motor to be setup for position control. Otherwise, in the Motion
view, the button opening this dialogue will not occur.

The “Motion – PT” dialogue was specifically created to help you quickly evaluate, in advance, a
PT sequence of points. The included graphical plot shows you the interpolated trajectory allowing
you to check the results. Moreover, you can execute the whole sequence of PT points and check
your application behavior before implementing the PT handshake on your host.

 Technosoft 2022 171 ESM User Manual

You can introduce the PT points in 2 ways:

• One by one, by setting for each point its Position and Time values. Both are relative to the
beginning of the PT motion. Select the measuring units from the list on the right. The graphical
tool included, will automatically update the evolution of the position after each point change. A
red spot, indicates the active point. Use buttons: Remove, Update, Insert, << and >> to
navigate between the PT points and modify them.

• With Import From File to insert a set of PT points previously defined. The file format is a simple
text with 2 columns separated by space or tabs representing from left to right: position and time
values. The number of rows gives the number of PT points

Check Host address and set your PC/host address if the drive/motor is connected via CANbus
with your host. The host address is where the PT messages regarding buffer status are sent.

Remark: By default, the host address is initialized with the same value as the drive/motor
address, plus the host bit set. This causes to send the PT messages via RS-232 link.

Check Clear PT Buffer to erase all the previously stored points from the PT buffer. Use this
option each time when you initiate a new PT motion. Uncheck this option if the execution of the
PT points was interrupted and you want to resume the execution of the remaining points.

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the PT motion path starting from the actual value
of the position reference (the speed reference is always considered zero). Select Generate new
trajectory starting from actual values of load/motor position and speed if you want the
reference generator to compute the PVT motion starting from the actual value of the load/motor

 Technosoft 2022 172 ESM User Manual

position. When this option is used, the position and speed reference are updated with the actual
values of the load/motor position and speed. Use this option for example at recovery from an error
or any other condition that disables the motor control while the motor is moving. Updating the
reference values leads to a “glitch” free recovery because it eliminates the differences that may
occur between the actual load/motor position/speed and the last computed position/speed
reference (before disabling the motor control).

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion until this programmed motion is completed.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may
never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the trajectory and has
arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor
and using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details).

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

PT – TML Programming Details

PT – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 173 ESM User Manual

6.1.5. Motion PVT

The “Motion – PVT” dialogue allows you to program a positioning path described through a series
of points. Each point specifies the desired Position, Velocity and Time, i.e. contains a PVT data.
Between the points the built-in reference generator performs a 3rd order interpolation.

In the PVT mode the load/motor is controlled in position. A PVT sequence must begin when
load/motor is not moving and must end with a last PVT point having velocity zero.

The PVT mode is typically used together with a host, which sends PVT points via a
communication channel. Due to the 3 rd order interpolation, the PVT mode offers the possibility to
describe complex position contours using a reduced number of points. It is particularly useful
when the motion reference is computed on the fly by the host, like for example, in vision systems.
By reducing the number of points, both the computation power and the communication bandwidth
needed are substantially reduced optimizing the costs. When the PVT motion mode is used
simultaneously with several drives/motors having the time synchronization mechanism activated,
the result is a very powerful multi-axis system that can execute complex synchronized moves.

Upon reception, each PVT point is stored in a reception buffer. The reference generator empties
the buffer as the PVT points are executed. The drive/motor automatically sends warning
messages when the buffer is full, low or empty. The buffer full condition occurs when the number
of PVT points in the buffer is equal with the buffer size. The buffer low condition occurs when the
number of PVT points in the buffer is less or equal with a programmable value. The buffer empty
condition occurs when the buffer is empty and the execution of the last PVT point is over.

Remarks:

• The PVT buffer size is programmable and if needed can be substantially increased. By default it
is set to 7 PVT points.

• The buffer low condition is set by default when the last PVT point from the buffer is read and
starts to be executed

• The normal end of a PVT sequence means: buffer empty condition and velocity zero of the last
PVT point executed. If the velocity is not zero, the drive/motor enters in quick stop mode and
stops using the quick stop deceleration rate.

• The PVT mode requires the drive/motor to be setup for position control. Otherwise, in the
Motion view, the button opening this dialogue will not occur.

When PVT mode is used, a key factor for getting a correct positioning path is to set correctly the
distance in time between the points. Typically this is 10-20ms, the shorter the better. If the
distance in time between the PVT points is too big, the 3rd order interpolation may lead to
important variations compared with the desired path.

The “Motion – PVT” dialogue was specifically created to help you quickly evaluate, in advance,
the results of the 3rd order interpolation applied to your data. The included graphical plot shows
you the interpolation results for both position and speed reference allowing to check if with the
data provided the results are correct. Moreover, you can execute the whole sequence of PVT
points and check your application behavior before implementing the PVT handshake on your host.

 Technosoft 2022 174 ESM User Manual

You can introduce the PVT points in 2 ways:

• One by one, by setting for each point its Position, Velocity and Time values. Both Position and
Time values are relative to the beginning of the PVT motion. Select the measuring units from
the list on the right. The graphical tool included, will automatically update the evolution of the
position and speed after each point change. A red spot, indicates the active point. Use buttons:
Remove, Update, Insert, << and >> to navigate between the PVT points and modify them.

• With Import From File to insert a set of PVT points previously defined. The file format is a
simple text with 3 columns separated by space or tabs representing from left to right: position,
velocity and time values. The number of rows gives the number of PVT points

Check Host address and set your PC/host address if the drive/motor is connected via CANbus
with your host. The host address is where the PVT messages regarding buffer status are sent.

 Technosoft 2022 175 ESM User Manual

Remark: By default, the host address is initialized with the same value as the drive/motor
address, plus the host bit set. This causes to send the PVT messages via RS-232 link.

Check Clear PVT Buffer to erase all the previously stored points from the PVT buffer. Use this
option each time when you initiate a new PVT motion. Uncheck this option if the execution of the
PVT points was interrupted and you want to resume the execution of the remaining points.

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the PVT motion path starting from the actual value
of the position reference (the speed reference is always considered zero). Select Generate new
trajectory starting from actual values of load/motor position and speed if you want the
reference generator to compute the PVT motion starting from the actual value of the load/motor
position. When this option is used, the position and speed reference are updated with the actual
values of the load/motor position and speed. Use this option for example at recovery from an error
or any other condition that disables the motor control while the motor is moving. Updating the
reference values leads to a “glitch” free recovery because it eliminates the differences that may
occur between the actual load/motor position/speed and the last computed position/speed
reference (before disabling the motor control).

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion until this programmed motion is completed.

Remark: Verify the motion complete condition parameters. If these are incorrectly set, you may
never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the
trajectory and has arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the drive/motor
and using the command interpreter get their value.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
only to set the motion parameters without starting the execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

 Technosoft 2022 176 ESM User Manual

Help: Open this help page.

See also:

PVT – TML Programming Details

PVT – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 177 ESM User Manual

6.1.6. Motion External

The “Motion - External” dialogue allows you to program the drives/motors to work with an external
reference provided by another device. There are 3 types of external references:

• Analogue – read by the drive/motor via a dedicated analogue input (10-bit resolution)

• Digital – computed by the drive/motor from:

 Pulse & direction signals

 Quadrature signals like A, B signals of an incremental encoder

• Online – received online via a communication channel from a host and saved in a
dedicated TML variable

Select Analogue if the external reference is an analogue signal. This signal is interpreted as a:

• Position reference, if the drive/motor was setup for position control

 Technosoft 2022 178 ESM User Manual

• Speed reference, if the drive/motor was setup for speed control

• Current/torque reference, if the drive/motor was setup for torque control

Remark: Check the drive/motor setup for the correspondence between the analogue input
voltage and the reference values.

In position control, check Limit maximum speed at and set a desired value, if you want to avoid
mechanical shocks by limiting the maximum speed at sudden changes of the position reference.
In speed control, check Limit maximum acceleration at and set a desired value, if you want a
smoother transition at sudden changes of the speed reference. In torque control, check Update
torque in fast loop if you want to read the analogue input at each fast loop sampling period.
When unchecked, the analogue input is read at each slow loop sampling period.

Select Digital if the external reference is provided as pulse & direction or quadrature encoder
signals. In either case, the drive/motor performs a position control with the reference computed
from the external signals. Check Set/Change gear ratio if you want to follow the external
position reference with a different ratio than 1:1. Set the desired Slave / Master ratio.

Remarks:

• A 1:3 ratio means that the actual position reference TPOS is 1/3 of the external
reference.

• Due to an automatic compensation procedure, the actual position reference is computed
correctly without cumulating errors, even if the ratio is an irrational number like 1: 3

Select Online if an external device sends the reference via a communication channel. Depending
on the Control Mode chosen, the external reference is saved in one of the TML variables:

• EREFP, which becomes the position reference if the Control Mode selected is Position

• EREFS, which becomes the speed reference if the Control Mode selected is Speed

• EREFT, which becomes the torque reference if the Control Mode selected is Torque

• EREFV, which becomes voltage reference if the Control Mode selected is Voltage

If the external device starts sending the reference AFTER the external online mode is activated, it
may be necessary to initialize EREFP, EREFS, EREFT or EREFV. Check Set the initial value to
set the desired starting value.

Remarks:

• The external online mode may also be used as a test mode in which you assign in
EREFP, EREFS, EREFT or EREFV the desired reference

• Use external online voltage mode with caution. If the motor is moving, an abrupt
reduction of the voltage reference may lead to a high peak of regenerated energy
injected into the DC supply. Without proper surging capacity, this may cause high over-
voltages

 Technosoft 2022 179 ESM User Manual

Choose Execute Immediate to activate the external reference mode immediately when the
motion sequence is encountered. Choose Execute On Event to activate the external reference
when a programmable event occurs. Click Change Event to select the event type or Edit Event
to modify the parameters of the selected event (see Events for details). Select Setup motion
data, but don’t start execution if you want to set the external reference mode parameters for a
later use.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

External –TML Programming Details

External –TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 180 ESM User Manual

6.1.7. Motion Electronic Gearing

The “Motion – Electronic Gearing” dialogue allows you to set a drive/motor as master or a slave
for electronic gearing mode.

When set as master, a drive/motor sends its position via a multi-axis communication channel, like
the CANbus. The master sends either the load position or the position reference once at each
slow loop sampling time interval.

When set as slave, a drive/motor follows the master position with a programmable ratio. The
slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction or quadrature encoder. Both options
have dedicated inputs. The pulse & direction signals are usually provided by an indexer and
must be connected to the pulse & direction inputs of the drive/motor. The quadrature encoder
signals are usually provided by an encoder on the master and must be connected to the 2nd
encoder inputs.

Remark: In case 2, you don’t need to program a drive/motor as master in electronic gearing

Select Master tab to set a drive/motor as master in electronic gearing.

 Technosoft 2022 181 ESM User Manual

If the master sends its position to a single drive/motor, check the Axis ID and fill the associated
field with the axis ID of the slave. If the master sends its position to more drives, indicate the
Group ID of the slaves. Select one groups of drives (1 to 8) to which the master should send its
position.

Remark: You need to specify the Axis ID or the Group ID where master sends its position only
the first time (after power on) when a drive is set as master. If the master mode is later on
disabled, then enabled again, there is no need to set again the Axis ID or the Group ID, as long as
they remain unchanged. In this case, just uncheck both the Axis ID and the Group ID.

Select Feedback, to set the master sending its load position, or Reference, for sending its
position reference.

Remark: The feedback option is disabled if the master operates in open loop. It is meaningless if
the master drive has no position sensor.

 Technosoft 2022 182 ESM User Manual

Check Synchronization to activate the synchronization procedure between the master and the
slave axes. Select Send synchronization messages and set the time interval between
synchronization messages. Recommended starting value is 20ms. When synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10µs time interval. Due to this powerful feature, drifts between master and
slave axes are eliminated. Select Don’t send synchronization to disable the synchronization
procedure.

If the master activation is done AFTER the slaves are set in electronic gearing mode, check
Initialize slave(s) axis with master position. This determines the master to send an initialization
message to the slaves.

Check Enable operation to activate the master mode and start the sending of master position to
the slaves. Check Disable operation to deactivate the master mode and stop sending of master
position to the slaves. Note that enabling or disabling master operation has no effect on the
motion executed by the master.

Choose Execute Immediate to enable the slave operation mode immediately when the motion
sequence is encountered. Choose Execute On Event to start the slave operation mode when a
programmable event occurs. Click Change Event to select the event type or Edit Event to modify
the parameters of the selected event (see Events for details). Select Setup motion data, but
don’t start execution if you want to prepare the slave operation mode for a later execution.

Select Slave tab to set a drive/motor as slave in electronic gearing.

 Technosoft 2022 183 ESM User Manual

Check Gear Ratio to set/change the gear ratio with which the slave follows the master position.
The gear ratio is specified as a ratio of 2 integer values: Slave / Master. The slave value is
signed, while the master one is unsigned. The sign indicates the direction of movement: positive –
same as the master, negative – reversed to the master.

Remarks:

• Slave=1 and Master=3, means that slave does 1/3 of master displacement and its speed
is 1/3 of the master speed

• Due to an automatic compensation procedure, the slave reference is computed correctly
without cumulating errors, even if the ratio is an irrational number like 1: 3

Check Master Resolution to specify the number of encoder counts per one revolution of the
master motor. The slaves need the master resolution to compute correctly the master position and
speed (i.e. position increment). Select Full range if master position is not cyclic (e.g. the
resolution is equal with the whole 32-bit range of position). In this case the master resolution is set
to value 0x80000001.

Check Enable operation with master position and select how to get the master position: via
communication or via an external reference. Leave unchecked if you want to set the slave
parameters without enabling slave operation mode.

Check Superposition with other motions and select On or Off to enable or disable the
superposition of the electronic gearing mode with a second motion mode. When this superposed
mode activated, the position reference is computed as the sum of the position references for each
of the 2 superposed motions.

You may enable the superposed mode at any moment, independently of the
activation/deactivation of the electronic gearing slave. If the superposed mode is activated during
an electronic gearing motion, any subsequent motion mode change is treated as a second move
to be superposed over the basic electronic gearing move, instead of replacing it. If the
superposed mode is activated during another motion mode, a second electronic gearing mode will
start using the motion parameters previously set. This move is superposed over the first one. After
the first move ends, any other subsequent motion will be added to the electronic gearing.

When you disable the superposed mode, the electronic gearing slave move is stopped and the
drive/motor executes only the other motion. If you want to remain in the electronic gearing slave
mode, set first the electronic gearing slave move and then disable the superposed mode.

Check Limit maximum acceleration at, to smooth slave coupling with the master, when this
operation is done with master running at high speed. This option limits the slave acceleration
during coupling to the programmed value.

Remark: Bit 12 from the Status Register High is set (SRH.12 = 1), when slave coupling with the
master is complete. The same bit is reset to zero if the slave is decoupled from the master. The
bit has no significance in other motion modes.

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the slave position starting from the actual values

 Technosoft 2022 184 ESM User Manual

of the position and speed reference. Select Generate new trajectory starting from actual
values of load/motor position and speed if you want the reference generator to compute the
slave position starting from the actual values of the load/motor position and speed.

Choose Execute Immediate to enable the slave operation mode immediately when the motion
sequence is encountered. Choose Execute On Event to start the slave operation mode when a
programmable event occurs. Click Change Event to select the event type or Edit Event to modify
the parameters of the selected event (see Events for details). Select Setup motion data, but
don’t start execution if you want to prepare the slave operation mode for a later execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page

See also:

Electronic Gearing – TML Programming Details

Electronic Gearing – TML Instruction and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 185 ESM User Manual

6.1.8. Motion Electronic Camming

The “Motion – Electronic Camming” dialogue allows you to set a drive/motor as master or slave
for electronic camming mode.

When set as master, a drive/motor sends its position via a multi-axis communication channel, like
the CAN bus. The master sends either the load position or the position reference once at each
slow loop sampling time interval.

When set as slave, a drive/motor executes a cam profile function of the master position. The cam
profile is defined by a cam table – a set of (X, Y) points, where X is cam table input i.e. the master
position and Y is the cam table output i.e. the corresponding slave position. Between the points
the drive/motor performs a linear interpolation. Using Cam Tables Selection selection you can
associate cam tables to your application. These may be visualized and modified using the Cam
Tables Edit. You may also import cam tables. The required format is: text file with 2 columns, one
for X, and the other for Y, separated by space or tab. Data must be in internal units.

The slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction or quadrature encoder. Both options
have dedicated inputs. The pulse & direction signals are usually provided by an indexer and
must be connected to the pulse & direction inputs of the drive/motor. The quadrature encoder
signals are usually provided by an encoder on the master and must be connected to the 2nd
encoder inputs.

Remark: For 2nd option you don’t need to program a drive/motor as master in electronic
camming

Select Master tab to set a drive/motor as master in electronic camming.

 Technosoft 2022 186 ESM User Manual

If the master sends its position to a single drive/motor, check the Axis ID and fill the associated
field with the axis ID of the slave. If the master sends its position to more drives, indicate the
Group ID of the slaves. Select one group of drives (1 to 8) to which the master should send its
position.

Remark: You need to specify the Axis ID or the Group ID where master sends its position only
the first time (after power on) when a drive is set as master. If the master mode is later on
disabled, then enabled again, there is no need to set again the Axis ID or the Group ID, as long as
they remain unchanged. In this case, just uncheck both the Axis ID and the Group ID.

Select Feedback, to set the master sending its load position, or Reference, for sending its
position reference.

Remark: The feedback option is disabled if the master operates in open loop. It is meaningless if
the master drive has no position sensor.

 Technosoft 2022 187 ESM User Manual

Check Synchronization to activate the synchronization procedure between the master and the
slave axes. Select Send synchronization messages and set the time interval between
synchronization messages. Recommended starting value is 20ms. When synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10µs time interval. Due to this powerful feature, drifts between master and
slave axes are eliminated. Select Don’t send synchronization to disable the synchronization
procedure.

Check Enable operation to activate the master mode and start the sending of master position to
the slaves. Check Disable operation to deactivate the master mode and stop sending of master
position to the slaves. Note that enabling or disabling master operation has no effect on the
motion executed by the master.

Choose Execute Immediate to enable the slave operation mode immediately when the motion
sequence is encountered. Choose Execute On Event to start the slave operation mode when a
programmable event occurs. Click Change Event to select the event type or Edit Event to modify
the parameters of the selected event (see Events for details). Select Setup motion data, but
don’t start execution if you want to prepare the slave operation mode for a later execution.

Select Slave tab to set a drive/motor as slave in electronic camming.

 Technosoft 2022 188 ESM User Manual

Select the camming mode:

• In Relative mode, the output of the cam table represents for the slave a position
increment, which is added to its actual position

• In Absolute mode, the output of the cam table represents for the slave the position to
reach.

Remark: The absolute mode may generate abrupt variations on the slave position reference,
mainly at entry in the camming mode. Check Limit maximum speed at to limit the speed of the
slave during travel towards the position to reach.

Check Use CAM table and choose between the selected cam tables which one to use.

 Technosoft 2022 189 ESM User Manual

Remark: Note that at runtime, all the selected cam tables are loaded into the drive memory. If
needed, you may switch between the cam tables loaded. This operation means just to change the
value of the CAMSTART parameter which points towards the active cam table.

Check Offset from master in IU to shift the cam profile versus the master position, by setting a
cam offset for each slave. The cam table input is computed as the master position minus the cam
offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam offset of
50 degrees will make the cam table to execute between master angles 150 and 300 degrees.

Check Multiply table input with to compress/extend a cam table input. Specify the input
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

Check Multiply table output with in order to compress/extend a cam table output. Specify the
output correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

Check Enable operation with master position and select how to get the master position: via
communication or via an external reference. Leave unchecked if you want to set the slave
parameters without enabling slave operation mode.

Check Master Resolution to specify the number of encoder counts per one revolution of the
master motor. The slaves need the master resolution to compute correctly the master position and
speed (i.e. position increment). Select Full range if master position is not cyclic (e.g. the
resolution is equal with the whole 32-bit range of position). In this case the master resolution is set
to value 0x80000001.

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the slave position starting from the actual values
of the position and speed reference. Select Generate new trajectory starting from actual
values of load/motor position and speed if you want the reference generator to compute the
slave position starting from the actual values of the motor position and speed.

Choose Execute Immediate to enable the slave operation mode immediately when the motion
sequence is encountered. Choose Execute On Event to start the slave operation mode when a
programmable event occurs. Click Change Event to select the event type or Edit Event to
modify the parameters of the selected event (see Events for details). Select Setup motion data,
but don’t start execution if you want to prepare the slave operation mode for a later execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page

 Technosoft 2022 190 ESM User Manual

See also:

Cam Tables Selection

Cam Tables Edit

Electronic Camming – TML Programming details

Electronic Camming –TML Instruction and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 191 ESM User Manual

6.1.9. Motor Commands

The “Motion - Motor Commands” dialogue allows you to apply one of following commands to the
motor:

• Activate/deactivate the control loops and the power stage PWM output commands (AXISON /
AXISOFF)

• Stop the motor with deceleration set in TML parameter CACC

• Change the value of the motor position and position reference

• Set deceleration rate for quick stops

Select Activate the control loops and PWM outputs (AXISON) to restore normal drive
operation after an AXISOFF command. Typically, this situation occurs at recovery from an error,
following the fault reset command FAULTR, or after the drive/motor ENABLE input goes from
status disabled to status enabled.

Select Deactivate the control loops and PWM outputs (AXISOFF) when a fault condition is
detected, for example when a protection is triggered. This command disables the motor control
(all the control loops), all the PWM output commands for the power stage (all the switching
devices are off) and also the reference generator.

Fault conditions trigger TML interrupts. Each drive/motor has a built-in set of TML interrupt service
routines (ISR) which are automatically activated after power-on. In these routines, the default

 Technosoft 2022 192 ESM User Manual

action for fault conditions is an AXISOFF command. If needed, you may replace any built-in ISR
with your own ISR and thus, adapt the fault treatment to your needs.

After a fault condition, the actual values of the load position and speed (which continue to be
measured during the AXISOFF condition) may differ quite a lot from the values of the target
position and speed as were last computed by the reference generator before entering in the
AXISOFF condition. Therefore, a correct fault recovery sequence involves the following steps:

• Set the motion mode, even if it is the same. Motion mode commands, automatically set the
target update mode zero (TUM0), which updates the target position and speed with the
actual measured values of the load position and speed

• Execute update command UPD

• Execute AXISON command

Remark:

• In the Drive Status control panel, SRL.15 shows the AXISON/AXISOFF condition and
SRH.15 shows a fault condition

• In EasyMotion Studio, ENDINIT and AXISON commands are automatically included in the
TML program, just before your first TML command from the main section. Therefore you
don’t need to include them in your motion program.

Select STOP to stop the motor with the deceleration rate set in TML parameter CACC. The
drive/motor decelerates following a trapezoidal position or speed profile. If the STOP command is
issued during the execution of an S-curve profile, the deceleration profile may be chosen between
a trapezoidal or an S-curve profile (see S-curve dialogue settings). You can detect when the
motor has stopped by setting a motion complete event and waiting until the event occurs. The
STOP command can be used only when the drive/motor is controlled in position or speed.

Remarks:

• In order to restart after a STOP command, you need to set again the motion mode. This
operation disables the stop mode and allows the motor to move

• When STOP command is sent via a communication channel, it will automatically stop any TML
program execution, to avoid overwriting the STOP command from the TML program

Choose Immediate Update to generate an update command UPD. When this command is
received, the last motion mode programmed together with the latest motion parameters are taken
into consideration. The immediate update command is available in all the dialogues setting a
motion mode and normally it is called from these dialogues. The immediate update command is
useful when the motion mode is set in advance for a later execution, which is started with a
separate update command. In a similar way you may use Update on event.

You can set / change the referential for position measurement by changing simultaneously the
load position APOS and the target position TPOS values, while keeping the same position error
any moment during motion. Use the edit field from set actual position value to specify the new
motor position value.

 Technosoft 2022 193 ESM User Manual

Remark: In the case of steppers controlled in open loop, this command changes only the target
position TPOS to the desired value.

The deceleration rate for quick stops can be set/change selecting the option Set quick stop
deceleration rates. To assign an immediate value select option value and fill the associated
field, if you want to assign the value of a variable select then variable and in the associated field
write the name of the variable.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Motor Commands – TML Programming Details

Motor Commands – TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 194 ESM User Manual

6.1.10. Motion Position Triggers

The “Motion - Position Triggers” dialogue allows you to define 4 position trigger points. A position
trigger is a position value with which the actual position is continuously compared. The compare
result is shown in the Status Register High (SRH). If the actual position is below a position trigger,
the corresponding bit from SRH is set to 0, else it is set to 1. You can change at any moment the
value of a position trigger.

The actual position that is compared with the position triggers is:

• The Load position feedback (TML variable APOS_LD) for configurations with position sensor

• The position reference (TML variable TPOS – Target position) in the case of steppers
controlled in open-loop

Remark: The position triggers can be used to monitor the motion progress. If this operation is
done from a host, you may program the drive/motor to automatically issue a message towards the
host, each time when the status of a position trigger is changed.

 Technosoft 2022 195 ESM User Manual

See also:

Position Triggers – TML Programming Details

Position Triggers – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 196 ESM User Manual

6.1.11. Motion Homing

The “Motion – Homing” dialogue allows you choose a homing procedure and set its parameters.
The homing is a sequence of motions, usually executed after power-on, through which the load is
positioned into a well-defined point – the home position. Typically, the home position is the
starting point for normal operation.

The search for the home position can be done in numerous ways. Therefore, a lot of homing
procedures are possible. Technosoft provides for each intelligent drive/motor a collection of up to
32 homing procedures. These are predefined TML functions, which you may call after setting the
homing parameters. You may use these homing procedures as they are, or you may modify them
according with your application needs. From the list with all the defined homing procedures you
can choose one or several to be used in your application. This represents the list of selected
homing procedures.

Check Select homing parameters to set the following values:

• Acceleration/deceleration rate for the position or speed profiles done during homing

• Deceleration rate for quick stop when a limit switch is reached

• High/normal speed for the position or speed profiles done during homing

 Technosoft 2022 197 ESM User Manual

• Low speed for the final approach towards the home position

• New home position set at the end of the homing procedure

Check Execute homing mode and choose a homing procedure from the list of the selected
homing procedures. During the execution of a homing sequence SRL.8 = 1. Hence you can find
when a homing sequence ends, either by monitoring bit 8 from SRL or by programming the
drive/motor to send a message to your host when SRL.8 changes. As long as a homing sequence
is in execution, you should not start another one. If this happens, the last homing is aborted and a
warning is generated by setting SRL.7 = 1.

Remark: You can abort a homing sequence execution at any moment using TML command
ABORT (see Decisions).

You can also use this dialogue to read the status of the home input. The home input is one of the
drive/motor inputs, which is used by the homing procedures. The home input is specific for each
product and based on the setup data, EasyMotion Studio automatically generates the TML code
for reading the correct input. Check Read home input in the variable and fill the associated field
with the name of the variable. After execution, the value of the variable will be 0 if the home input
is zero (low) or 1 if the home input is 1 (high).

Remark: The source of the motion sequence for reading the home input is general and
independent. The particular value of the home input, specific for each product, occurs only in the
compiled version of this motion sequence, in the TML code generated. Therefore, you can safely
import the source code of this motion sequence into other applications where the target products
have different home inputs.

OK: Close this dialogue and save the settings in your motion sequence list.

Cancel: Close this dialogue without saving the settings in your motion sequence list.

Help: Open this help page.

See also:

Homing – TML Programming Details

Homing – Related TML Instructions and data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 198 ESM User Manual

6.1.12. Motion Contouring

The “Motion - Contouring” dialogue allows you to program an arbitrary contour via a series of
points. Between the points, linear interpolation is performed, leading to a contour described by a
succession of linear segments. The contouring mode may be executed only from a TML program.
You can’t send contouring points from a host via a communication channel, like in the case of the
PT mode. Depending on the control mode chosen, four options are available:

• Position contouring – the load/motor is controlled in position. The path represents a
position reference

• Speed contouring – the load/motor is controlled in speed. The path represents a speed
reference.

• Torque contouring – the motor is controlled in torque. The path represents a current
reference.

• Voltage contouring – the motor is controlled in voltage. The path represents a voltage
reference.

Each contour point is defined by 2 values: the reference and the time. The contouring mode has
been foreseen mainly for setup tests. However, you can also use the position contouring and the
speed contouring for normal operation, as part of your motion application. You can switch at any
moment to and from these 2 modes. The torque contouring and the voltage contouring have been
foreseen only for setup tests. The torque contouring may be used, for example, to check the
response of the current controllers to different input signals. Similarly, the voltage contouring may
be used, for example, to check the motors behavior under a constant voltage or any other voltage
shape.

 Technosoft 2022 199 ESM User Manual

Choose

Position for a position contouring,

Speed for a speed contouring,

Torque for a torque contouring

Voltage for a voltage contouring.

Remarks:

• Position contouring option is disabled if the drive/motor is not setup for position control

• Speed contouring option is disabled if the drive/motor is not setup for speed control. This
includes the case when position control is performed without closing the speed loop

• Torque contouring option is disabled for stepper drives working in open loop

In the position contouring and the speed contouring the starting point has always the coordinates
(0,0) and corresponds to the moment when the contouring mode is activated. Therefore all the
segments values (time and reference) are relative to the starting point of the contouring.
For example, lets suppose that a position contouring sequence has one segment with coordinates
(1s, 10 rot) and the absolute position is 20 revolutions (initial position when the position contouring

 Technosoft 2022 200 ESM User Manual

is activated). During the contour segment execution, the motor moves 10 revolutions in 1 second
and stops on absolute position 30 revolutions.

In the torque contouring and voltage contouring the starting point has by default the initial value 0.
However, you can also start with a different value, by setting in the first point a non-zero reference
at time = 0.

You can introduce the contouring points in 2 ways:

• One by one, by setting for each point its Time and Reference values. Select the
measuring units from the list on the right. The graphical tool included, will automatically
update the contour as you introduce each point. A red spot, indicates the active point.
Use buttons: Remove, Update, Insert, << and >> to navigate between the points and
modify them.

• With Import From File to insert a set of contouring points previously defined. The file
format is a simple text with 2 columns separated by space or tabs representing from left
to right: time and reference values. The number of rows gives the number of points

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the contour profile starting from the actual values
of the position and speed reference. Select Generate new trajectory starting from actual
values of load/motor position and speed if you want the reference generator to compute the
contour profile starting from the actual values of the load/motor position and speed. When this
option is used, at the beginning of each new contour profile the position and speed reference is
updated with the values of the load/motor position and speed. Use this option for example at
recovery from an error or any other condition that disables the motor control while the motor is
moving. Updating the reference values leads to a “glitch” free recovery because it eliminates the
differences that may occur between the actual load/motor position/speed and the last computed
position/speed reference (before disabling the motor control).

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Choose Execute Immediate to start the contour profile immediately when the motion sequence is
encountered. Choose Execute On event to start the motion when a programmable event occurs.
Click Change Event to select the event type or Edit Event to modify the parameters of the
selected event (see Events for details).

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

 Technosoft 2022 201 ESM User Manual

Contouring – TML programming details

Contouring – TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

6.1.13. Motion Test

The “Motion – Test” dialogue allows you to set the drives/motors in a special test configuration.
This configuration is not supposed to be used during normal operation, but only during drive/motor
setup.

In the test mode, either a voltage or a torque (current) command can be set using a test reference
consisting of a limited ramp. For AC motors (like for example the brushless motors), the test
mode offers also the possibility to rotate a voltage or current reference vector with a
programmable speed. As a result, these motors can be moved in an “open-loop” mode without
using the position sensor. The main advantage of this test mode is the possibility to conduct in a
safe way a series of tests, which can offer important information about the motor parameters,
drive status and the integrity of the its connections.

Select Voltage for voltage reference or Torque for torque reference. Insert the appropriate values
for reference amplitude and reference increment in the corresponding fields and select the
measurement unit.

 Technosoft 2022 202 ESM User Manual

For AC motors, check the option AC motor only. Insert the appropriate values for the reference
vector initial position and the electrical angle increment in the corresponding fields and select the
measurement unit.

Choose Execute Immediate to activate the external reference mode immediately when the
motion sequence is encountered. Choose Execute On Event to activate the external reference
when a programmable event occurs. Click Change Event to select the event type or Edit Event
to modify the parameters of the selected event (see Events for details). Select Setup motion
data, but don’t start execution if you want to prepare the external reference mode for a later
use.

 OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

 See also:

Motion Test –TML programming details

Motion Test – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 203 ESM User Manual

6.1.14. Events Dialogue

The “Events” dialogue allows you to define events. An event is a programmable condition, which
once set, is monitored for occurrence. You can do the following actions in relation with an event:

1) Change the motion mode and/or the motion parameters, when the event occurs

2) Stop the motion when the event occurs

3) Wait for the programmed event to occur

Remark: The programmed event is automatically erased if the event is reached, if the timeout for
the wait is reached or if a new event is programmed.

Only a single event can be programmed at a time. This can be:

1) When the actual motion is completed

2) When motor absolute position is equal or under a value or the value of a variable

3) When motor absolute position is equal or over a value or the value of a variable

4) When load absolute position is equal or under a value or the value of a variable

5) When load absolute position is equal or over a value or the value of a variable

6) When load/motor relative position is equal or under a value or the value of a variable

7) When load/motor relative position is equal or over a value or the value of a variable

8) When motor speed is equal or under a value or the value of a variable

9) When motor speed is equal or over a value or the value of a variable

10) When load speed is equal or under a value or the value of a variable

11) When load speed is equal or over a value or the value of a variable

12) After a wait time equal with a value or the value of a variable

 Technosoft 2022 204 ESM User Manual

13) When position reference is equal or under a value or the value of a variable

14) When position reference is equal or over a value or the value of a variable

15) When speed reference is equal or under a value or the value of a variable

16) When speed reference is equal or over a value or the value of a variable

17) When torque reference is equal or under a value or the value of a variable

18) When torque reference is equal or over a value or the value of a variable

19) When 1st or 2nd encoder index goes low or high

20) When the positive limit switch goes low or high

21) When the negative limit switch goes low or high

22) When a digital input goes low

23) When a digital input goes high

24) When a 32-bit variable is equal or under a 32-bit value or the value of another 32-bit
variable

25) When a 32-bit variable is equal or over a 32-bit value or the value of another 32-bit
variable

Remark: The load/motor relative position is computed starting from the beginning of the current
movement.

You can also program events in the following motion dialogues: Trapezoidal Profiles, S-curve
Profiles, PT, PVT, External, Electronic Gearing, Electronic Camming, Contouring, Test. Set
events in these dialogues, if you want to activate the programmed motion mode and/or its motion
parameters, when the programmed event occurs.

The event programming is done in the same way when it is done from a motion dialogue or from
this dialogue. Press Change Event to open the Event Selection dialog which allows you to define
the event / condition to be monitored. If you have already defined an event, use Edit Event button
to modify its parameters or conditions.

When you set an event using one of the motion dialogues, you program the following operations:

• Definition of an event

• Programming of a new motion mode and/or new motion parameters

• Definition of the moment when the new motion mode and/or motion parameters must be
updated (e.g. enabled) as the moment when the programmed event will occur

Remark: After you have programmed a new motion mode and/or new motion parameters with
update on event, you need to introduce a wait until the programmed event occurs. Otherwise, the
program will continue with the next instructions that may override the event monitoring. In order to
introduce a wait until the programmed event occurs, open this dialogue, select as event None and
check Wait until the event occurs.

 Technosoft 2022 205 ESM User Manual

In this dialogue, apart from programming an event, you can Stop motion when the event occurs
and Wait until the event occurs by checking these options. You can also define a time limit for
an event to occur. Check Exit from the wait loop after a time equal with and specify the time
limit. If the monitored event doesn’t occur in this time limit, the wait loop is interrupted and the
TML program passes to the next instruction.

Remarks:

• By default, the option Wait until the event occurs is checked. Typically, you define an
event, than wait for the event to occur.

• If the option Wait until the event occurs is checked without a time limit, and the
programmed event doesn’t occur, the TML program will remain in a loop. In order to exit
from this loop, send via a communication channel a GOTO command, which moves the
program execution outside the loop

OK: Close this dialogue and save the event programming in your motion sequence list.

Cancel: Close this dialogue without saving or updating the event programming in the motion
sequence list.

Help: Open this help page.

See also:

Events – TML Programming Details

Event Selection

Motion Programming

 Technosoft 2022 206 ESM User Manual

6.1.14.1. Event Type Selection

The “Event Type” dialogue allows you to select an event. An event is a programmable condition,
which once set, is monitored for occurrence.

The “Event Type” dialogue may be opened from:

• Events dialogue:

 Event Type – called from Events dialogue

• One of the following motion dialogues: Trapezoidal Profiles, S-curve Profiles, PT, PVT,
External, Electronic Gearing, Electronic Camming, Contouring, Test:

 Event Type – called from a motion dialogue

The events are grouped into 8 categories:

None/ When a previously defined event occurs. The meaning of this case depends from
where the “Event Type” dialogue was opened:

 Technosoft 2022 207 ESM User Manual

• None – appears when the dialogue is opened from the “Events” dialogue. Check this
item if you have already defined an event and now you want to: a) program a stop
when the event occurs and/or b) wait for the programmed event to occur.

• When a previously defined event occurs – appears when the dialogue is opened
from one of the motion dialogues (see above). Check this item if you have already
defined an event (in a previous motion sequence) and now you want to start the
actual motion sequence when this event occurs.

When actual motion is completed – for programming the event: when the actual motion is
completed.

Function of motor or load position – for programming the events: when the absolute or relative
motor or load position is equal or over/under a value or the value of a variable.

Function of motor or load speed – for programming the events: when the motor or load speed is
equal or over/under a value or the value of a variable.

After a wait time – for programming a time delay, using a time event. The monitored event is:
when the relative time is equal with a value or the value of a variable

Function of reference – for programming the events: when the position or speed or torque
reference is equal or over/under a value or the value of a variable.

Function of inputs status – for programming the events: when capture inputs or limit switch inputs
or general purpose inputs change status: low to high or high to low.

Function of a variable value – for programming the events: when a selected variable is equal or
over/under a value or the value of another variable.

OK: Close this dialogue and save selected event

Cancel: Close this dialogue without saving the selected event

Help: Open this help page.

See also:

Events

Motion Programming

 Technosoft 2022 208 ESM User Manual

6.1.14.2. Event - When the actual motion is completed

This dialogue allows you to set the event: when a motion is completed. You can use, for example,
this event to start the next move only after the actual one is finalized.

The motion complete condition is set in the following conditions:

• During position control:

 With position feedback – when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a preset
stabilize time interval

 Without position feedback (open-loop systems) – when the position reference arrives
at the position to reach (commanded position)

• During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started.

 Technosoft 2022 209 ESM User Manual

In position control, choose In position control when the actual position remains inside a
settle band for the first option. Check Set motion complete parameters if you want to modify
the Settle band tolerance and the Stabilize time values. Select the measuring units from the list
on the right. Leave Set motion complete parameters unchecked if you want to keep the motion
complete parameters unchanged.

Choose In position control when the position arrives at the position to reach or in speed
control when speed command & reference are equal in:

• Speed control

• Position control with open-loop configurations or if you do not want to use first option

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Events – When actual motion is completed– TML programming details

Event Selection

Events

Motion Programming

 Technosoft 2022 210 ESM User Manual

6.1.14.3. Event - Function of motor or load position

This dialogue allows you to program an event function of the motor or load position. The events
can be: when the absolute or relative motor or load position is equal or over/under a value or the
value of a variable

The absolute load or motor position is the measured position of the load or motor. The relative
position is the load displacement from the beginning of the actual movement. For example if a
position profile was started with the absolute load position 50 revolutions, when the absolute load
position reaches 60 revolutions, the relative motor position is 10 revolutions.

Select motor or load position, its type: absolute or relative, the event condition: over (or equal)
or under (or equal) and the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of motor or load position–TML Programming Details

Event Selection

Motion Programming

 Technosoft 2022 211 ESM User Manual

6.1.14.4. Event - Function of motor or load speed

This dialogue allows you to program an event function of the motor or load speed. The events can
be: when the motor or load speed is equal or over/under a value or the value of a variable.

Select motor or load speed, the event condition: over (or equal) or under (or equal) and the
comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of motor or load speed–TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 212 ESM User Manual

6.1.14.5. Event– After a Wait Time

This dialogue allows you to introduce a programmable delay in the motion program execution of
the motion controller/drive, using a time event. When you set this event, the motion
controller/drive relative time is reset and it starts counting from zero and the monitored condition
is: when the relative time is equal with a value or the value of a variable.

Remarks:

• The event on time can be programmed only for the local axis.

• In order to effectively execute the time delay, you need to follow this command by a Wait
until the event occurs command e.g. until the programmed relative time has elapsed.

Select the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event– After a Wait Time –TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 213 ESM User Manual

6.1.14.6. Event - Function of reference

This dialogue allows you to program an event function of the position or speed or torque
reference. The events can be: when the position/speed/torque reference is equal or over/under a
value or the value of a variable. Use:

• Position reference events, only when position control is performed

• Speed reference events, only when speed control is performed

• Torque reference events, only when torque control is performed

Remark: Setting an event based on the position or speed reference is particularly useful for open
loop operation where feedback position and speed is not available

Select the reference type: position, speed or torque, the event condition: over (or equal) or
under (or equal) and the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of reference –TML Programming Details

Event Selection Events

Motion Programming

 Technosoft 2022 214 ESM User Manual

6.1.14.7. Event - Function of inputs status

This dialogue allows you to program one of the following events:

• When a transition occurs on one of the 2 capture inputs, where are connected the 1st and
2nd encoder index signals (if available)

• When a transition occurs on one of the 2 limit switch inputs

• When a general purpose digital input changes its status

• When the home input changes its status

The capture inputs and the limit switch inputs can be programmed to sense either a low to high or
high to low transition. When the programmed transition occurs on either of these inputs, the
following happens:

• Motor position is captured and memorized in the TML variable CAPPOS, except the case
of open-loop systems, where the reference position is captured instead

• Master or load position is captured and memorized in the TML variable CAPPOS2, except
the case of steppers controlled open-loop with an encoder on the load, when load position
is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in
CAPPOS2 only for the setup configurations which use different sensors for load and motor and
foresee a transmission ratio between them. For all the other setup configurations, the master
position is saved in CAPPOS2. The master position is automatically computed when pulse and
direction signals or quadrature encoder signals are connected to their dedicated inputs.

Select:

• encoder index to detect a transition on 1st capture/encoder index input

• 2nd encoder index to detect a transition on 2nd capture/encoder index

 Technosoft 2022 215 ESM User Manual

• positive limit switch to detect a transition on limit switch input for positive direction

• negative limit switch to detect a transition on limit switch input for negative direction

and choose the transition type: low -> high or high -> low

Select digital input to set an event on one of the general-purpose digital input available. The
event can be set when the input goes high or low. Select home input in order to set an event on
the general purpose digital input assigned as home input. The home input is specific for each
product and based on the setup data, EasyMotion Studio automatically generates the TML code
for reading the correct input.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Events – Function of inputs status– TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 216 ESM User Manual

6.1.14.8. Event - Function of a variable value

This dialogue allows you to program an event function of the value of a selected variable. The
events can be: when the selected variable is equal or over/under a value or the value of another
variable. You may select any 32-bit TML variable or parameter, long or fixed, for this event.

Introduce the variable name, the event condition: over (or equal) or under (or equal) and the
comparison data: a value or the value of a variable.

Remark: If you choose a predefined TML parameter or variable and as comparison a value, you’ll
see on the right list the measurement units associated with the selected variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of a variable value –TML Programming Details

Event Type Dialogue

Events

Motion Programming

 Technosoft 2022 217 ESM User Manual

6.1.15. Jumps and Function Calls

The “Jumps and Function Calls” dialogue allows you to control the TML program flow through
unconditional or conditional jumps and unconditional, conditional or cancelable calls of TML
functions.

Select Goto and indicate the jump address in address, label or address set in variable. The
jump address can be set directly as a numerical value (if it is known) or indirectly via:

• A label. Use Insert label name to place the label in the desired location. The label name
can be any string of up to 32 characters, which starts with an alphanumeric character or
with underscore.

• A 16-bit TML variable whose value represents the jump address.

Remark: You may assign a label to a 16-bit integer variable. The variable takes the value of the
label i.e. the address of the next instruction after label. Example: user_var = jump_label;

Leave if variable unchecked to execute an unconditional jump. Check if variable to execute a
conditional jump and specify a test variable and a condition. The test variable is always compared
with zero. The possible conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0. If the condition is true the jump
is executed, else the next TML command is carried out.

Select Call and indicate the name of a TML function in address, label or address set in
variable. A TML function starts with a label and ends with the RET instruction. The label gives
the TML function address and name. You can create, rename or delete TML functions using the
Functions View.

Remark: The TML functions are placed after the end of the main program

 Technosoft 2022 218 ESM User Manual

Similarly with the jump address, the TML function address can be set directly, as a numerical
value (if it is known), or indirectly via:

• The TML function starting label (i.e. the function name)

• A 16-bit TML variable whose value represents the TML function address.

Leave if variable unchecked to execute an unconditional call. Check if variable to execute a
conditional call and specify a test variable and a condition. The test variable is always compared
with zero. The possible conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0. If the condition is true the call
is executed, else the next TML command is carried out.

Choose Cancelable Call and indicate the TML function address if the exit from the called function
depends on conditions that may not be reached. In this case, using Abort cancelable call you
can terminate the function execution and return to the next instruction after the call.

Select RETurn from function to insert the RET instruction, which ends a TML function. When
RET instruction is executed, the TML program returns to the next instruction (motion sequence)
after the TML function call.

Select RETurn from interrupt to insert the RETI instruction, which ends a TML interrupt. When
RETI instruction is executed, the TML program returns to the point where it was before the TML
interrupt occurrence.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Jumps and Function Calls – TML Programming Details

Functions View.

Motion Programming

 Technosoft 2022 219 ESM User Manual

6.1.16. I/O General I/O (Firmware FAxx)

The “I/O” dialogue allows you to program the following operations with the digital inputs and
outputs:

• Read and save the status of a digital input into a variable

• Set low or high a digital output

• Read and save the status of multiple digital inputs into a variable

• Set multiple digital outputs according with the value of variable

The digital inputs and outputs are numbered: #0 to #39. Each intelligent drive/motor has a specific
number of inputs and outputs, therefore only a part of the 40 I/Os is used. The I/O numbering is
common for all the products; hence each product has its own list of available I/Os. This is not an
ordered list. For example, a product with 4 inputs and 4 outputs can use the inputs: #36, #37, #38
and #39 and the outputs #28, #29, #30 and #31.

If you want to read the status of an input:

1. Select Single I/O, Read input line, choose the desired input from the list of available
inputs and provide the name of an integer variable where to save the input status

 Technosoft 2022 220 ESM User Manual

2. Check Set as input if the input selected may also be used as an output (i.e. the input
line number occurs in the outputs list too). Do this operation only once, first time when
you use the input. Omit this check if the drive/motor has the inputs separated from the
outputs (i.e. all have different line numbers)

3. Press OK

When this TML command is executed, the variable where the input line status is saved, becomes:

• Zero if the input line was low

• Non-zero if the input line was high

Remark: Check the drive/motor user manual to find if the input line you are reading is directly
connected or is inverted inside the drive/motor. If an input line is inverted, the variable where the
input line is saved is inverted too: zero if the input is high (at connectors level), non-zero if the
input is low (at connectors level).

If you want to set an output low or high:

1. Select Single I/O, choose Set output line, select the desired output from the list of
available outputs and choose the output level: low or high

2. Check Set as output if the output selected may also be used as an input (i.e. the output
line number occurs in the inputs list too). Do this operation only once, first time when you
use the output. Omit this check if the drive/motor has the inputs separated from the
outputs (i.e. all have different line numbers)

3. Press OK

Remark: The TML code generated takes into account the possibility to have outputs inverted
inside the drive/motor. This information, provided by the setup data, is used to inverse the output
command logic: getting the output high (at connectors level) means setting the output low and to
getting the output low (at connectors level) means setting the output high

Check Read inputs in variable to read simultaneously more inputs and specify the name of an
integer variable where to save their status. The inputs are:

• Enable input – saved in bit 15

• Limit switch input for negative direction (LSN) - saved in bit 14

• Limit switch input for positive direction (LSP) - saved in bit 13

• General-purpose inputs #39, #38, #37 and #36 – save din bits 3, 2, 1 and 0

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is
high. The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the
variable is inverted too. Hence, these bits always show the inputs status at connectors level (0 if
input is low and 1 if input is high) even when the inputs are inverted.

 Technosoft 2022 221 ESM User Manual

Check Set multiple outputs to a value of variable to set simultaneously more outputs with the
value of the specified variable. The outputs are:

• Ready output – set by bit 15

• Error output – set by bit 14

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: If one of these outputs is inverted inside the drive/motor, its command is inverted too.
Hence, the outputs are always set at connectors level according with the bits values (low if bit is 0
and high if bit is 1) even when the outputs are inverted.

CAUTION: Do not use Set multiple outputs to a value of variable if any of the 6 outputs
mentioned is not on the list of available outputs of your drive/motor. There are products that use
some of these outputs internally for other purposes. Attempting to change these lines status may
harm your product.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

General-purpose I/O – TML Programming Details

Motion Programming

 Technosoft 2022 222 ESM User Manual

6.1.17. I/O General I/O (Firmware FBxx)

The “I/O” dialogue allows you to program the following operations with the digital inputs and
outputs:

• Read and save the status of a digital input into a variable

• Set low or high a digital output

• Read and save the status of multiple digital inputs into a variable

• Set multiple digital outputs according with an immediate value or the value of 16-bit
variable

The digital inputs and outputs are numbered: 0 to 15. Each intelligent drive/motor has a specific
number of inputs and outputs, therefore only a part of the 16 inputs or outputs is used. The I/O
numbering is common for all the products; hence each product has its own list of available I/Os.
This is an ordered list. For example, a product with 4 inputs and 4 outputs can use the inputs: IN0,
IN1, IN2 and IN3 and the outputs OUT0, OUT1, OUT2 and OUT3.

 Technosoft 2022 223 ESM User Manual

If you want to read the status of an input:

1. Select Single I/O, Read input line, choose the desired input from the list of available
inputs and provide the name of an integer variable where to save the input status

2. Check Set as input if the input selected may also be used as an output. Do this operation
only once, first time when you use the input. Omit this check if the drive/motor has the
inputs separated from the outputs (i.e. all have different line numbers)

3. Press OK

When this TML command is executed, the variable where the input line status is saved, becomes:

• Zero if the input line was low

• Non-zero if the input line was high

Remark: Check the drive/motor user manual to find if the input line you are reading is directly
connected or is inverted inside the drive/motor. If an input line is inverted, the variable where the
input line is saved is inverted too: zero if the input is high (at connectors’ level), non-zero if the
input is low (at connectors’ level).

If you want to set an output low or high:

1. Select Single I/O, choose Set output line, select the desired output from the list of
available outputs and choose the output level: low or high

2. Check Set as output if the output selected may also be used as an input. Do this
operation only once, first time when you use the output. Omit this check if the drive/motor
has the inputs separated from the outputs.

3. Press OK

Remark: The TML code generated takes into account the possibility to have outputs inverted
inside the drive/motor. This information, provided by the setup data, is used to inverse the output
command logic: getting the output high (at connectors’ level) means setting the output low and to
getting the output low (at connectors’ level) means setting the output high

Check Read inputs in variable to read simultaneously more inputs and specify the name of an
integer variable where to save their status. The bits corresponding to these inputs are set as
follows: 0 if the input is low and 1 if the input is high. The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the
variable is inverted too. Hence, these bits always show the inputs status at connectors level (0 if
input is low and 1 if input is high) even when the inputs are inverted.

Check Set outputs to set simultaneously more outputs with the value of 16-bit mask or variable.
Select the outputs you want to command and specify how they are set:

• with the mask generated after setting as High or Low each of the selected outputs

• with the value of the specified 16-bit variable.

 Technosoft 2022 224 ESM User Manual

The outputs are set as follows: low if the corresponding bit in the mask or variable is 0 and high if
the corresponding bit in the mask or variable is 1. The other bits of the mask or variable are not
used.

Remark: If one of these outputs is inverted inside the drive/motor, its command is inverted too.
Hence, the outputs are always set at connectors level according with the bits values (low if bit is 0
and high if bit is 1) even when the outputs are inverted.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

General-purpose I/O – TML Programming Details

Motion Programming

 Technosoft 2022 225 ESM User Manual

6.1.18. Assignment & Data Transfer - Setup 16-bit variable

The “Assignment and Data Transfer – 16 bit Integer Data” dialogue helps you to:

1. Assign a value to a 16-bit integer TML parameter/variable

2. Transfer in a memory location, a 16-bit value or the value of a 16-bit integer TML
parameter or variable

Select Set 16-bit variable to assign a value to a 16-bit integer TML parameter or variable.
Introduce its name and choose one of the possible sources:

• With value / 16 bit variable / label: A 16-bit value or the value of a 16-bit variable or
the value of a label. Introduce in the associated field the value or the variable/label
name.

• With data / program / E2ROM memory contents located at address set in pointer
variable: The value of a memory location whose address is set in another 16-bit
(pointer) variable. Introduce in the associated field the pointer variable name. Check

 Technosoft 2022 226 ESM User Manual

then increment the pointer variable to automatically increment by one the pointer
value, after the assignment is done. This option is particularly useful for repetitive
assign operations where source is placed in successive memory locations. The memory
type is split into 3 categories: data – for the RAM area for TML data, program – for the
RAM area for TML programs and E2ROM – for the EEPROM area for TML programs.

Remark: The data memory may be used to extend the number of user-defined variables.
By data exchanges with TML variables, the data memory locations may be used as a
temporary buffer. Work for example for these operations with the RAM locations reserved
but not used by the cam tables.

• With low / high part of a 32-bit variable: The low or high 16-bit part of a 32-bit TML
parameter or variable. Introduce in the associated field the variable name.

• With inverse (-) of variable: The inverse (negate) value of a 16-bit TML parameter or
variable. Introduce in the associated field the variable name

• Using AND mask…and OR mask …: The result of a logical operations:

 AND between the selected variable and the AND mask value

 OR between the above result and the OR mask value

• With checksum of data located in data / program / E2ROM memory between address …
and …: The result of a checksum performed with all the locations situated between the 2
specified memory addresses. The memory type is split into 3 categories like in the case of
indirect addressing: data – for the RAM area for TML data, program – for the RAM area for
TML programs and E2ROM – for the EEPROM area for TML programs.

Remark: The checksum is the sum modulo 65536 of all the memory values, including
those from the limits. The address limits are hexadecimal values.

Select Set data / program / E2ROM memory contents located at address set in the pointer
variable to transfer in a memory location, a 16-bit value or the value of a 16-bit integer TML
parameter or variable. The memory location address is provided by another 16-bit (pointer)
variable. Introduce in the associated fields the pointer variable name and the 16-bit value or the
variable name. Check then increment the pointer variable to automatically increment by one
the pointer value, after the assignment is done. This option is particularly useful for repetitive
assign operations where destination is placed in successive memory locations. The memory type
is split into 3 categories: data – for the RAM area for TML data, program – for the RAM area for
TML programs and E2ROM – for the EEPROM area for TML programs.

OK: Close this dialogue and save the assignment or data transfer in your motion sequence list.

Cancel: Close this dialogue without anything in your motion sequence list.

Help: Open this help page.

 See also:
Assignment and Data Transfer: 16-bit data – TML Programming Details
Motion Programming

 Technosoft 2022 227 ESM User Manual

6.1.19. Assignment & Data Transfer - Setup 32-bit variable

The “Assignment and Data Transfer – 32-bit Long or Fixed Data” dialogue helps you:

1. Assign a value to a 32-bit long or fixed TML parameter/variable

2. Assign a value to the high (16MSB) or low (16LSB) part of a 32-bit long or fixed data

3. Transfer in 2 consecutive memory locations, a 32-bit value or the value of a 32-bit long
or fixed TML parameter or variable

Select Set 32-bit variable to assign a value to a 32-bit long or fixed TML parameter or variable.
Introduce its name and choose one of the possible sources:

• With value / 32 bit variable: A 32-bit value or the value of a 32-bit variable. Introduce
in the associated field the value or the variable name.

• With data / program / E2ROM memory contents located at address set in pointer
variable: The value of 2 consecutive memory locations. The first memory address (the
lowest) is provided by another 16-bit (pointer) variable. Introduce in the associated field
the pointer variable name. Check then increment the pointer variable to automatically

 Technosoft 2022 228 ESM User Manual

increment by two the pointer value, after the assignment is done. This option is
particularly useful for repetitive assign operations where source is placed in successive
memory locations. The memory type is split into 3 categories: data – for the RAM area
for TML data, program – for the RAM area for TML programs and E2ROM – for the
EEPROM area for TML programs.

Remark: The data memory may be used to extend the number of user-defined variables. By data
exchanges with TML variables, the data memory locations may be used as a temporary buffer.
Work for example for these operations with the RAM locations reserved but not used by the cam
tables.

• With inverse (-) of variable: The inverse (negate) value of a 32-bit TML parameter or variable.
Introduce in the associated field the variable name

• With 16-bit value of variable…left shifted with: The value of a 16-bit TML data, left shifted
with 0 to 16 bits. Introduce in the associated fields the variable name and the shift value.

Select Set low / high part of 32-bit variable… with value/16-bit variable…to copy a 16-bit data
into the higher or lower 16-bits or a 32-bit TML data. The 16-bit data can be either an immediate
value or a 16-bit TML data. Choose low or high part and introduce in the associated field the
value or the variable name.

Remarks:

• The left shift operation is done with sign extension. If you intend to copy the value of an integer
TML data into a long TML data preserving the sign use this operation with left shift 0

• If you intend to copy the value of a 16-bit unsigned data into a 32-bit long variable, assign the
16-bit data in low part of the long variable and set the high part with zero.

Select Set data / program / E2ROM memory contents located at address set in the pointer
variable to transfer in 2 consecutive memory locations, a 32-bit value or the value of a 32-bit
integer TML parameter or variable. The first memory address (the lowest) is provided by another
16-bit (pointer) variable. Introduce in the associated field the pointer variable name and the 16-bit
value or the variable name. Check then increment the pointer variable to automatically
increment by two the pointer value, after the assignment is done. This option is particularly useful
for repetitive assign operations where destination is placed in successive memory locations. The
memory type is split into 3 categories: data – for the RAM area for TML data, program – for the
RAM area for TML programs and E2ROM – for the EEPROM area for TML programs.

Remark: When this operation is performed having as source an immediate value, the TML
compiler checks the type and the dimension of the immediate value and based on this generates
the binary code for a 16-bit or a 32-bit data transfer. Therefore if the immediate value has a
decimal point, it is automatically considered as a fixed value. If the immediate value is outside the
16-bit integer range (-32768 to +32767), it is automatically considered as a long value. However,
if the immediate value is inside the integer range, in order to execute a 32-bit data transfer it is
necessary to add the suffix L after the value, for example: 200L or –1L.

OK: Close this dialogue and save the assignment or data transfer in your motion sequence list.

Cancel: Close this dialogue without anything in your motion sequence list.

 Technosoft 2022 229 ESM User Manual

Help: Open this help page.

See also:

Assignment and Data Transfer: 32-bit data – TML Programming Details

Motion Programming

6.1.20. Assignment & Data Transfer - Arithmetic Operations

The “Arithmetic Operations” dialogue allows you to program the following arithmetic operations:
addition, subtraction, multiplication and division, plus the left and right shifting. All these
operations are signed i.e. the operands are treated as signed numbers. Except the multiplication,
the result is saved in the left operand. For multiplication, the result is saved in the dedicated
product register.

Select Add to variable and introduce the name of the left operand to perform an addition.
Indicate the right operand in the value/variable field. The left operand may be a 16-bit or 32-bit
TML data. The right operand may be an immediate value or another TML data, of the same type
as the left operand.

 Technosoft 2022 230 ESM User Manual

Remark: When the left operand is a 32-bit long or fixed TML data and the right operand is a 16-bit
integer value, it is treated as follows:

• Sign extended to a 32-bit long value, if the left operand is a 32-bit long

• Set as the integer part of a fixed value, if the left operand is a 32-bit fixed

Select Subtract from variable and introduce the name of the left operand to perform a
subtraction. Indicate the right operand in the value/variable field. The left operand may be a 16-
bit or 32-bit TML data. The right operand may be an immediate value or another TML data, of the
same type as the left operand.

Remark: When the left operand is a 32-bit long or fixed TML data and the right operand is a 16-bit
integer value, it is treated as follows:

• Sign extended to a 32-bit long value, if the left operand is a 32-bit long

• Set as the integer part of a fixed value, if the left operand is a 32-bit fixed

 Select Set PROD register with the product of variable and introduce the name of the first
operand to perform a multiplication. Indicate the second operand in with value / 16 bit variable
field. The first operand may be a 16-bit or 32-bit TML data. The second operand may be a 16-bit
value or a 16-bit TML data. The multiplication result is saved left or right shifted in a dedicated 48-
bit product register. Choose the shift type Left or Right and number of shift bits: 0 to 15. Use 0 to
perform no shift.

Remark: The result is placed in the product register function of the left operand. When shift is 0:

• In the 32 least significant bits, when the left operand is a 16-bit integer. The result is a 32-
bit long integer

• In all the 48 bits, when the left operand is a 32-bit fixed. The result has the integer part in
the 32 most significant bits and the fractional part in the 16 least significant bits

• In all the 48 bits, when the left operand is a 32-bit long. The result is a 48-bit integer

The TML variable PRODH contains the 32 most significant bits of the product register. The TML
variable PROD contains the 32 least significant bits of the product register.

Select Divide variable and introduce the name of the left operand: the dividend, to perform a
division. Indicate the right operand: the divisor, in the by the value of variable field. The dividend
is a 32-bit TML data. The divisor is 16-bit TML data.

Remark: The result, saved in first operand, is a fixed value with the integer part in the 16 most
significant bits and the fractional part in the 16 least significant bits.

Choose Shift Left / Right and introduce the name of the TML data to be shifted left or right in the
variable field, followed by the number of shift bits: 0 to 15. The TML data can be any 16-bit or 32-
bit TML data.

Choose Shift Left / Right product register by and introduce the number of shift bits: 0 to 15, to
perform a left or right shift of the 48-bit product register.

 Technosoft 2022 231 ESM User Manual

Remark: At right shifts, high order bits are sign-extended and the low order bits are lost. At left
shifts, high order bits are lost and the low order bits are zeroed.

OK: Close this dialogue and save the arithmetic or logic operation in your motion sequence list.

Cancel: Close this dialogue without anything in your motion sequence list.

Help: Open this help page.

See also:

Arithmetic and logic operations. TML Programming Details

Motion Programming

 Technosoft 2022 232 ESM User Manual

6.1.21. Assignment & Data Transfer - Data Transfer Between Axes

The “Data Transfer Between Axes” dialog allows you to program data transfer operations between
drives/motors connected in a network. From this dialog, you can also change the axis ID – the
drive/motor network address, and the groups it belongs for multicast transmissions as well as to
activate/deactivate the synchronization between axes.

Check Set axis ID if you want to change the axis ID and set a new value. The axis ID is a value
between 1 and 255. It is initially set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data. If this value is
0, the axis ID is set with the value read from the hardware switches/jumpers or in their absence
according with d)

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID
value which is 255.

 Technosoft 2022 233 ESM User Manual

Remark: Typically, the axis ID is kept constant during operation at the value established during
the setup phase. However, if needed, you can change the axis ID to any of the 255 possible
values, using the above command

In EasyMotion Studio, each application has associated an Axis Number, set in Application
General Information. When an application is selected, all the data exchange operations are
performed with the drive/motor having the same axis ID as the application Axis Number. An axis
ID change may create communication problems, if this is performed during operation i.e. if the
drive/motor starts with one axis ID and later on switches to another axis ID.

Check Set group if you want set the groups to which a drive/motor belongs. A group is way to
identify a number of drives, for a multicast transmission. Each drive can be programmed to be
member of one or several of the 8 possible groups (up to all). A drive will accept all the messages
sent to any of the groups it belongs. Push the buttons for the groups the drive/motor will belong.
Use Add groups or Remove groups to add or remove your drive/motor from one or several
groups.

Remark: A message can be:

• Sent to an axis defined by an Axis ID

• Multicast to one group of axes defined by a Group ID. The Group ID is an 8-bit value, where
each bit set represents a group. For example, a multicast to Group ID = 4 (100b) will be
received by all drives from group 3.

• Broadcast to all nodes, if the Group ID = 0.

Check Synchronization group to activate/deactivate the synchronization procedure. This
procedure requires activating one axis as a synchronization master. The other axes are
deactivated and are synchronization slaves. Select Send synchronization messages every…
and set the time interval between synchronization messages, to activate the synchronization
master. Recommended starting value for the time interval is 20ms. When synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10µs time interval. Due to this powerful feature, drifts between master and
slave axes are eliminated. Deactivate the synchronization procedure by choosing Stop sending
synchronization messages. This will disable the synchronization master and set the axis as a
synchronization slave. In the absence of a master, the synchronization process is stopped.

The data transfer operations may be split into three categories:

1. Read data from a remote axis. A variable or a memory location from the remote axis is saved
into a local variable

2. Write data to a remote axis or group of axes. A variable or a memory location of a remote axis
or group of axes is written with the value of a local variable

3. Send TML commands from local drive to a remote drive or group of drives

Check data transfer commands, and select From axis to read from the remote axis specified, the
value of a variable or the data / program / E2ROM memory contents located at an address
set in a pointer variable. The data is saved in the local TML variable indicated in to local

 Technosoft 2022 234 ESM User Manual

variable field. The local variable can be either a 16-bit or a 32-bit TML data. Its type, dictates the
data transfer size. Check then increment the pointer variable to automatically increment the
pointer by one or two function of the local variable type, after the transfer is performed. The
memory type is split into 3 categories: data – for the RAM area for TML data, program – for the
RAM area for TML programs and E2ROM – for the EEPROM area for TML programs.

Select Send the local variable to copy on a remote axis or group of axes, the value of the local
variable specified. The data is saved either in an external/remote variable or in the data /
program / E2ROM memory location(s) from address set in the pointer variable indicated. The
local variable can be either a 16-bit or a 32-bit TML data. Its type, dictates the data transfer size.
Check then increment the pointer variable to automatically increment the pointer by one or two
function of the local variable type, after the transfer is performed. The memory type is split into 3
categories: data – for the RAM area for TML data, program – for the RAM area for TML
programs and E2ROM – for the EEPROM area for TML programs. The destination specified at
axis/group can be:

• An axis ID set with a number between 1 and 255

• A group set with letter G followed by a number between 1 and 8. Examples: G1, G7

• A broadcast to all axes set with letter B

Select Send TML command to program the local axis to transmit the TML command(s) you type
in the associated field towards the destination specified in the axis/group field. The transmission
is done when the command is executed.

Remarks:

• This command offers a very powerful tool through which one drive/motor may control other
drives/motors from the network. For example it can start or stop the other drives motion or
check their status

• You may type multiple TML commands separated by semicolon (;). These will be sent one by
one in the order of occurrence in the edit.

• Via this type of messages, you can send all the TML instructions having an instruction code of
maximum 4 words. In this category enter most of the TML commands (see TML Instruction
Coding and the detailed description of the TML Instructions).

 OK: Close this dialogue and save the operations selected in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

Axis Identification

Data Transfer Between Axes – TML Programming Details

Remote Control

Motion Programming

 Technosoft 2022 235 ESM User Manual

6.1.22. Send data to host

The “Send Data to Host” dialogue allows you to program when the drive/motor will send
messages to your host. The message transmission can be triggered by:

• Conditions which change the status or error registers

• The execution of a dedicated TML command from your TML program. Through this command
you can send to your host the contents of any TML data

In the first case, you can select the status or the error register bits, which will trigger a message
when are changed. The selection is done via masks, one for each register, where for each bit you
can choose if to trigger or not a transmission when it is changed.

When the transmission is triggered by a bit change in a status register SRH (high part) or SRL
(low part), the message sent contains these 2 registers grouped together as a single 32-bit
register/data. When the transmission is triggered by a bit change in the error register MER, the
message sent contains this register.

 Technosoft 2022 236 ESM User Manual

In the Host address write the axis ID of the host.

Check Status Register to enable transmission on status register bit changes. From the right list,
select a bit whose change you want to trigger a message transmission and press the [<] button.
The selected bit will appear on the left list. Repeat the operation for the other bits. Use the button
[<<] to select all the bits. Choose a bit from the left list and press the [>] button to move it back
to the right list. Use the [>>] button to remove all the bits from the left list.

Check Error Register to enable transmission on error register bit changes. From the right list,
select a bit whose change you want to trigger a message transmission and press the [<] button.
The selected bit will appear on the left list. Repeat the operation for the other bits. Use the button
[<<] to select all the bits. Choose a bit from the left list and press the [>] button to move it back
to the right list. Use the [>>] button to remove all the bits from the left list.

Remark: After power on, the 2 masks are empty i.e. none of the status or error bits is selected to
trigger a transmission on change.

Check Send contents of variable and indicate the name of the TML data to be sent when this
TML command is executed. The TML data can be any 16-bit or 32-bit data: TML registers,
parameters, variable or user variables.

Remark: By default, at power on, the host address is set equal with the drive/motor axis ID.
Therefore, the messages will be sent via RS-232 serial communication. If the host address is
different from the drive/motor axis ID, the messages are sent via the other communication
channels: CAN bus, RS485, etc.

See also:

Messages sent to the host – TML Programming Details

Motion Programming

 Technosoft 2022 237 ESM User Manual

6.1.23. Assignment & Data Transfer - Miscellaneous

The “Miscellaneous” dialogue allows you to:

• Declare user variables

• Reset/exit the drive/motor from the FAULT status

• Execute less frequently used TML commands like: END, NOP, ENDINIT

• Change the CAN bus and serial RS232 / RS485 communication settings

• Save actual setup data from RAM into the EEPROM in the setup table

Select Define variable named if you want to define a new variable. Specify the variable name in
the next field and choose the variable type from the list. The options are: int, fixed or long. A
variable of type int is a 16-bit signed integer. A variable of type long is a 32-bit signed integer. A
variable of type fixed is 32-bit wide and is used for signed fixed-point representations with 16MSB
the integer part and 16LSB the factionary part.

Select Reset FAULT status to exit a drive/motor from the FAULT status in which it has entered
due to an error. After a fault reset command, most of the bits from error register MER are cleared
(set to 0), ready output is set to ready level, error output is set to no error level and drive/motor
returns to normal operation.

 Technosoft 2022 238 ESM User Manual

Remarks:

• The FAULT reset command does not change the status of MER.15 (enable input on
disabled level), MER.7 (negative limit switch input active), MER.6 (positive limit switch
input active) and MER.2 (invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the FAULTR
command is executed

Select Insert END instruction to introduce in your TML program the instruction END. When END
is executed, the TML program execution is stopped.

Remark: It is mandatory to end the main section of a TML program with an END command. All
the TML functions and the TML interrupt service routines must follow after the END command.
EasyMotion Studio automatically handles these requirements, when it generates the TML
program to be compiled and downloaded into the drive.

Select Insert NOP instruction to introduce a NOP (No operation) instruction. It can be used as a
delay between two motion sequences / instructions.

In the Serial communication section, choose Change baudrate to if you want to change the
drive baud rate for RS-232 and RS-485 communication. Choose from the drop list one of the
available baud rates: 9600, 19200, 38400, 56000 and 115200.

Remarks:

1. The drives/motors default serial baud rate after power on is 9600 baud, unless another
value was saved in the setup table. When you start EasyMotion Studio, the drives/motors
serial baud rate is automatically adjusted to the last value selected at Communication |
Setup in the Baud Rate field.

2. Use this command when a drive/motor operates in AUTORUN (after power on starts to
execute the TML program from the EEPROM) and it must communicate with a host at a
baud rate different from the default value. In this case, the TML program must start with a
serial baud rate change.

3. An alternate solution to the above case is to set via EasyMotion Studio the desired baud
rate and then to save it the EEPROM, with command SAVE. After a reset, the
drive/motor starts directly with the new baud rate, if the setup table was valid. Once set,
the new default baud rate is preserved, even if the setup table is later on disabled,
because the default serial baud rate is stored in a separate area of the EEPROM.

In the CAN communication section, choose Select Set CAN baudrate to if you want to change
the baud rate for CAN-bus communication. Choose from the drop list one of the available CAN
baud rates: 125kb, 250kb, 500kb, 800kb, 1Mb.

Remarks:

1. The drives/motors default CAN baud rate after power on is 500kb, unless another value
was saved in the setup table. In EasyMotion Studio, at Communication | Setup, in the
Baud Rate field, you must choose the same value as the default CAN baud rate of the
drives/motors value. This selection refers ONLY to the CAN bus interface of your PC

 Technosoft 2022 239 ESM User Manual

2. Use this command when a drive/motor operates in AUTORUN (after power on starts to
execute the TML program from the EEPROM) and it must communicate with a host at a
baud rate different from the default value. In this case, the TML program must start with a
CAN baud rate change.

3. An alternate solution to the above case is to set via TML command CANBR the desired
CAN baud rate and then to save it the EEPROM, with command SAVE. After a reset, the
drive/motor starts directly with the new CAN baud rate, if the setup table was valid. Once
set, the new default CAN baud rate is preserved, even if the setup table is later on
disabled, because the default CAN baud rate is stored in a separate area of the
EEPROM.

Select Insert ENDINIT instruction to introduce an ENDINT (end of initialization) instruction. This
command uses the available setup data to perform key initializations, but does not activate the
controllers or the PWM outputs. These are activated with the AXISON command

Remarks:

1. After power on, the ENDINIT command may be executed only once. Subsequent
ENDINIT commands are ignored.

2. The AXISON command must be executed after the ENDINIT command

3. Typically, the ENDINIT command is executed at the beginning of a TML program and
may be followed by the AXISON command even if no motion mode was set. In the
absence of any programmed motion, the drive applies zero voltage to the motor.

4. In EasyMotion Studio, ENDINIT and AXISON commands are automatically included
when a TML program is generated. Hence you can start directly with the motion
programming

Select Save actual setup data in the EEPROM to insert a SAVE instruction in the TML program.
When SAVE instruction is executed, the actual values of the TML parameters are copied from the
RAM memory into the EEPROM memory, in the setup table. Through this command, you can
save all the setup modifications done, after power on initialization.

OK: Close this dialogue and save the TML commands in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page

See also:

Miscellaneous commands – TML Programming Details

Motion Programming

6.1.24. TML Interrupt Settings

 Technosoft 2022 240 ESM User Manual

The “Interrupt Settings” dialogue allows you to activate and/or deactivate the TML (Technosoft
Motion Language) interrupts. When a TML interrupt occurs, the normal TML program execution is
suspended to execute a TML function associated with the interrupt, called Interrupt Service
Routine (in short ISR). The TML interrupt mechanism is the following:

• The drive continuously monitors 12 conditions that may generate TML interrupts. In case
of motion controller applications there is a 13th condition related to slave error status.

• The motion controller has an additional condition that triggered interrupt when an error on
the slaves occurs

• When an interrupt condition occurs, a flag (bit) is set in the ISR (Interrupt Status Register)

• If the interrupt is unmasked e.g. the same bit (as position) is set in the ICR (Interrupt
Control Register) and also if the interrupts are globally enabled (EINT instruction was
executed), the interrupt condition is qualified and it generates a TML interrupt

• The interrupt causes a jump to the associated interrupt service routine. On entry in this
routine, the TML interrupts are globally disabled (DINT) and the interrupt flag is reset

• The interrupt service routine must end with the TML instruction RETI, which returns to
normal program execution and in the same time globally enables the TML interrupts.

Interrupt settings dialog for drive/motor

Interrupt settings dialog for motion controller

 Technosoft 2022 241 ESM User Manual

The 13 conditions are:

1. Int0 – Enable input has changed: either transition sets the interrupt flag

2. Int1 – Short-circuit: when the drive/motor hardware protection for short-circuit is triggered

3. Int2 – Software protections: when any of the following protections is triggered:

a) Over current

b) I2t motor

c) I2t drive

d) Over temperature motor

e) Over temperature drive

f) Over voltage

g) Under voltage

4. Int3 – Control error: when the control error protection is triggered

5. Int4 – Communication error: when a communication error occurs

 Technosoft 2022 242 ESM User Manual

6. Int5 – Wrap around: when the target position computed by the reference generator wraps
around because it bypasses the limit of the 32-bit long integer representation

7. Int6 – LSP programmed transition detected: when the programmed transition is detected
on the limit switch input for positive direction (LSP)

8. Int7 – LSN programmed transition detected: when the programmed transition is detected
on the limit switch input for negative direction (LSN)

9. Int8 – Capture input transition detected: when the programmed transition is detected on
the 1st capture/encoder index input or on the 2nd capture/encoder index input

10. Int9 – Motion is completed: in position control, when motion complete condition is set
and in speed control when target speed reaches zero.

11. Int10 – Time period has elapsed: periodic time interrupt with a programmable time
period

12. Int11 – Event set has occurred: when last defined event has been occurred

13. Int12 – Error on slave has occurred: when a slave reports an error. The errors reported
by the slaves are configured from Slave Management dialog.

Remark: Int12 – Error on slave has occurred is available only in motion controller applications.

After power-on, the TML interrupts are globally enabled together with the first 4 interrupts: Int 0 to
Int 3. For Int 2, all the protections are activated, except over temperature motor, which depends
on the presence or not of a temperature sensor on the motor; hence this protection may or may
not be activated. For each of these 4 interrupts there is a default ISR which is executed when the
corresponding interrupt occurs. You can view the contents of the default ISR in the TML Interrupt
Service Routines view. From this view you may also modify the default ISR for these interrupts
and/or define ISR for the other TML interrupts.

Before using other TML interrupts, you need to enable them from this dialogue. Keep in mind that
the interrupt flags are set independently of the activation or not of the TML interrupts. Therefore,
as a general rule, before enabling an interrupt, reset the corresponding flag. This operation will
avoid triggering an interrupt immediately after activation, due to an interrupt flag set in the past.

Remarks:

• On entry in an ISR, the TML interrupts are globally disabled. If you want to enable during
the ISR execution ant of the other interrupts, set accordingly the interrupt mask in the ICR
register and insert the EINT instruction that globally enables the interrupts

• The interrupt service routines are similar with the TML functions, except for the return
instruction: RETI (RETurn from Interrupt) instead of RET (RETurn from subroutine). Like the
TML functions, the TML interrupt service routines must be positioned after the end of the
main program. EasyMotion Studio handles automatically this aspect.

 Technosoft 2022 243 ESM User Manual

Check Globally Enable TML interrupts to globally enable the TML interrupts. Check Globally
Disable TML interrupts to globally disable the TML interrupts. At Enable/Disable TML interrupt
choose one or several interrupts and select either Enable or Disable to activate or deactivate
them. The status of the other interrupts remains unchanged. For the interrupts enables, check
also Reset previous TML interrupt request to reset the corresponding interrupt flag(s) set in the
past.

For Int2 – Software protections, select Enable and press Details to modify the status (enabled
or disabled) of the protections triggering this interrupt.

For Int 6 - LSP programmed transition detected and Int 7 - LSN programmed transition
detected select Enable and press Details to select the monitored transition: high to low or low to
high.

 Technosoft 2022 244 ESM User Manual

For Int8 – Capture input transition detected select Enable and press Details to select the
monitored transition: high to low or low to high and the capture/encoder input to use: 1st or 2nd

For Int10 – Time period has elapsed select Enable and press Details to set the time period.

Remark: Some of the drive/motor protections may not work properly if the TML Interrupts are
handled incorrectly. In order to avoid this situation keep in mind the following rules:

 Technosoft 2022 245 ESM User Manual

• The TML interrupts must be kept globally enabled to allow execution of the ISR for those
TML interrupts triggered by protections. As during a TML interrupt execution, the TML
interrupts are globally disabled, you should keep the ISR as short as possible, without
waiting loops. If this is not possible, you must globally enable the interrupts with EINT
command during your ISR execution.

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you keep the
original TML commands from the default ISR. Put in other words, you may add your own
commands, but these should not interfere with the original TML commands. Moreover, the
original TML commands must be present in all the ISR execution paths.

OK: Close this dialogue and save the interrupt settings in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

TML Interrupts – TML Programming Details

TML Interrupt Service Routines

Motion Programming

 Technosoft 2022 246 ESM User Manual

6.1.25. Free text

The “Free Text” dialogue allows you to add comments to your TML programs in order to improve
their readability and therefore make them easier to understand and debug. A comment can
include any characters. A multi line comment must start with “ /* ” and finish with “ */ “. A single
line comment can be preceded by “ // ”.

Through this dialogue you can also insert directly TML commands, if you know their syntax. Note
that all the TML commands must ended with a semicolon “;”. Labels must start from the first
column of a new line and end with a colon “:”. For readability, leave at least one space before
starting a TML command in a new line. This way you can quickly distinguish them from the labels.

Remark: The motion dialogues cover all the TML commands you typically need in an application.
There is however a small number of TML instructions that can’t be generated from the motion
dialogues and which may be used in some special cases. If ever needed, you can set these TML
commands via this dialogue.

OK: Close this dialogue and add the comments / TML commands in your motion sequence list.

Cancel: Close this dialogue without saving anything.

Help: Open this help page.

See also:

Motion Programming

 Technosoft 2022 247 ESM User Manual

6.2. Motion Programming – multi-axis Motion Controller

Technosoft Motion Controllers simplifies the programming of complex motion applications by
providing in a single compact package both a state of art digital drive and a powerful motion
controller. Technosoft Motion Controller can command up to 8 slave axes being able to control
multi-axis or independent moves of the slaves.

Programming motion with a Technosoft Motion Controller means to create and download a TML
(Technosoft Motion Language) program into the motion controller memory. From the motion
controller application you can:

• Set 2/3D coordinated profiles (Vector Mode, Linear Interpolation)

• Set independent motion modes on each slave axes (profiles, PVT, PT, electronic gearing
or camming, etc.)

• Execute motion sequence imported from G-code files

• Change the motion modes and/or the motion parameters on slave axes

• Execute homing sequences stored in the non-volatile memory of the slaves

• Control the program flow through:

o Calls to TML functions stored on the slave axes

o Program and wait for events occurrence on slave axes

• Handle slave axes digital I/O

• Perform data transfers between axes

• Synchronize all the slaves from a network

The features implemented in Motion Controller allow the user to take full advantage of intelligence
embedded in Technosoft drives/motors in complex multi-axis applications. Thus, instead of having
a host computing the trajectory for each axis, you can program the Motion Controller using TML to
execute complex tasks, like a 2D/3D path, and inform the host when these are done. With this
approach the host task is reduced at: calling TML functions (with possibility to abort their
execution if needed) and waiting for a message from motion controller, which confirms the
execution. If needed, the functionality of complex applications can be further divided between the
Motion Controller and intelligent drives/motors.

A TML program includes a main section, followed by the subroutines used: functions, interrupt
service routines and homing procedures of the slave drive embedded in the Motion Controller.

When you select the “Motion” part of an application, you access the main section of your
application TML program.

You can select the other components of a TML program too. Each has 2 types of access views:

 Technosoft 2022 248 ESM User Manual

• Definition and/or selection view, with the following purposes:

o Homing modes: select the homing procedure(s) to use from a list of already defined
procedures.

o Functions: create new TML functions (initially void) and manipulate those defined:
delete, rename, change their order in the program

o Interrupts: choose the TML interrupt service routines you want to view/change their
default implementation

• Edit view – for editing the contents. There is one edit view for each homing procedure and
cam table selected, for each function defined and each interrupt chosen for view/edit.

In order to help you create a TML program, EasyMotion Studio includes a Motion Wizard which
is automatically activated when you select “M Motion” – the main section view or an edit view for a
homing procedure, function or interrupt service routine. The Motion Wizard adds a set of toolbar
buttons in the project window just below the title bar. Each button opens a programming dialogue.
When a programming dialogue is closed, the associated TML instructions are automatically
generated. Note that, the TML instructions generated are not a simple text included in a file, but a
motion object. Therefore with Motion Wizard you define your motion program as a collection of
motion objects.

The major advantage of encapsulating programming instructions in motion objects is that you can
very easily manipulate them. For example, you can:

• Save and reuse a complete motion program or parts of it in other applications

• Add, delete, move, copy, insert, enable or disable one or more motion objects

• Group several motion objects and work with bigger objects that perform more complex
functions

The Motion Wizard includes the following programming dialogues:

Motion Programming and control

Linear Interpolation

Vector Mode

Trapezoidal Profiles

S-curve Profiles

External

Motor Commands

Homing

Test

 Technosoft 2022 249 ESM User Manual

Events Programming
Event Types

When the actual motion is complete

Function of motor or load position

Function of motor or load speed

After a wait time

Function of reference

Function of inputs status

When target is reached

Function of vector distance

Jumps and Function Calls

I/O Handling

Assignment & Data Transfer
16-bit Integer Data

32-bit Integer Data

Arithmetic Operations

Multiple Axis Data Transfer

Send to Host

Slave Management

Miscellaneous commands

Interrupt Settings

Free Text Editor

See also:

Axis Selection

Motion View

Homing Procedures View

Functions View

 Technosoft 2022 250 ESM User Manual

Interrupts View

Importing G-code files

6.2.1. Motion Programming Toolbars

The top toolbar contains the buttons associated to motion programming dialogues.

 The “Motion – Linear Interpolation” dialog allows you to program a 2D/3D positioning path
described through a series of linear segments.

 The “Motion – Vector Mode” dialog allows you to program 2D paths described through a
series of linear and circular segments.

 The “Motion – Trapezoidal Profiles“allows you to program a positioning path described
through a series of points. Each point specifies the desired Position and Time, i.e. contains a PT
data. Between the points the built-in reference generator performs a linear interpolation.

 The “Motion – S-curve Profiles” allows you to program a position profile with an S-curve
shape of the speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular
profile for the acceleration and an S-curve profile for the speed.

 The “Motion – External” allows you to program the drives/motors to work with external
reference provided by another device.

 The “Motor Commands” allows you to apply one of following commands to the motor:
activate/deactivate the control loops and the power stage PWM output commands (AXISON /
AXISOFF), stop the motor with acceleration/deceleration set, change the value of the motor
position and position reference.

 The “Motion – Homing” dialogue allows you choose a homing procedure and set its
parameters.

 Technosoft 2022 251 ESM User Manual

 The "Test" dialogue allows you to set the drives/motors in a special test configuration.

 The “Events” allows you to define an event to be monitored and to perform several actions.

 The “Jumps and Function Calls” allows you to control the TML program flow through
unconditional or conditional jumps and unconditional, conditional or cancelable calls of TML
functions.

 The “I/O” allows you program operations with the digital inputs and outputs of the
drives/motors.

 The “16-bit Integer Data” helps you to program an assignment operation through which you
can set the value of a 16-bit variable or set a memory location with a 16-bit immediate value or the
value of a 16-bit variable.

 The “32-bit Long or Fixed Data” helps you to program an assignment operation through
which you can set the value of a 32-bit variable, set the low part (16LSB) or the high part (16MSB)
of a 32-bit variable with a 16-bit value / variable value, set a memory location with a 32-bit
immediate value or the value of a 32-bit variable.

 The “Arithmetic Operations” helps you to program one of the arithmetic operations
accepted by the TML (Technosoft Motion Language): addition, subtraction, product or shifting.

 The “Slave Management” dialog allows you to program the motion controller to initialize the
slaves, configure the slaves when to report their status and to manage TML functions stored on
the slave drives/motors.

 The “Data Transfer Between Axis” helps you to program the data transfer operations
between drives that are connected in a network.

 Technosoft 2022 252 ESM User Manual

 The “Send Data to Host” dialogue allows you to choose what information is sent by the drive
automatically. You can send information about status register, error register or variables.

 The “Miscellaneous” dialogue allows you to declare new variables, reset FAULT status,
insert a END instruction, insert an NOP instruction, set the baud rates for the Serial
Communication Interface (SCI) used for RS-232 and RS-485, set the baud rates for the CAN
communication.

 The “TML Interrupt Settings” allows you to activate and/or deactivate the TML (Technosoft
Motion Language) interrupts

 The “Free text” opens a dialogue where you can freely insert comments or TML instructions
in the current position.

Once the parameters have been entered, a "motion sequence" is created. Such a sequence
represents a macro-instruction to which one or more specific TML instructions correspond. The
EasyMotion Studio automatically generates the TML code for these motion sequences.

The right toolbar contains buttons used for the motion sequences management.

 Insert. Allows you choose a new motion sequence to be inserted.

- Motion.

 Linear Interpolation. This command allows you to program a 2D/3D
positioning path described through a series of linear segments

 Vector Mode. This command allows you to program 2D paths described
through a series of linear and circular segments.

 Trapezoidal Profiles. This command allows you to program a position or
speed profile with a trapezoidal shape of the speed, due to a limited
acceleration.

 S-Curve Profiles. This command allows you to program a positioning with a
limited jerk. In an S-curve mode, the acceleration profile is trapezoidal and
the speed profile is like an S-curve.

 Technosoft 2022 253 ESM User Manual

 External. This command allows you to set the drives working with an external
reference provided by another device.

 Motor Commands. This command allows you to apply one of following
commands to the motor: activate/deactivate the control loops and the power
stage PWM output commands (AXISON / AXISOFF), stop the motor with
acceleration/deceleration set, change the value of the motor position and
position reference

 Homing.

 Test. This command dialogue allows you to set up the drives in a special test
configuration.

- Events. This command allows you to define an event (a condition) to be monitored
and to perform several actions.

- Jumps and Function Calls. This command allows you program the operations
related with the control of the program flow.

- I/O. This command allows you program operations with the digital inputs and outputs
of the drives

- Assignment & Data Transfer

 16-bit Integer Data. This command helps you to program an assignment
operation through which you can set the value of a 16-bit variable or set a
memory location with a 16-bit immediate value or the value of a 16-bit
variable.

 32-bit Long or Fixed Data. This command helps you to program an
assignment operation through which you can set the value of a 32-bit
variable, set the low part (16LSB) or the high part (16MSB) of a 32-bit
variable with a 16-bit value / variable value, set a memory location with a 32-
bit immediate value or the value of a 32-bit variable.

 Arithmetic Operations. This command helps you to program one of the
arithmetic operations accepted by the TML (Technosoft Motion Language):
addition, subtraction, product or shifting.

 Slave Management. This command allows you to program the motion
controller to initialize the slaves, configure the slaves when to report their
status and to manage TML functions stored on the slave drives/motors.

 Data Transfer Between Axes. This command helps you to program the data
transfer operations between drives that are connected in a network.

 Send Data to Host. This command allows you to choose what information is
sent by the drive automatically. You can send the status register (low part -
SRL and high part - SRH), error register (MER) or the value of a variable.

 Technosoft 2022 254 ESM User Manual

 Miscellaneous. This command opens the dialogue from where you can
declare new variables and insert FAULTR, END, NOP, SPI and SCI
instructions.

- Interrupt Settings. This command allows you to activate and/or deactivate the TML
interrupts.

- Free text. This command opens a dialogue where you can freely insert a sequence of
TML instructions in the current position in the Motion Wizard window.

 Edit. Pressing this button, the dialogue associated with the selected motion sequence opens,
allowing changing the motion parameters.

 Duplicate. Duplicate the selected motion sequence.

 Move Down. Moves down the selected motion sequence.

 Move Up. Moves up the selected motion sequence.

 Delete. Delete the selected motion sequence.

 Group. The button allows you to group the selected motion sequences in a new object
containing all the selected motion objects. You can give a name or title to the grouped object. This
embedding process can be performed in consecutive steps. Any grouped object is displayed with
a leading [+] symbol. Click on the [+] symbol to expand the grouped object content to the next
embedding level. The leading [+] symbol transforms into a leading [-] symbol. Click the [-] symbol
to group back the expended object. Successive embedded levels are accepted.

 Ungroup. Use the “Ungroup” command to restore the motion objects list instead of the group
object.

 Enable. For debugging, you have the possibility to remove motion sequences (one or more
motion objects) from the motion program like commenting lines in a text program. Use the the
“Enable” button to uncomment / enable motion sequences.

 Technosoft 2022 255 ESM User Manual

 Disable. For debugging, you have the possibility to remove motion sequences (one or more
motion objects) from the motion program like commenting lines in a text program. Use the
“Disable” button to comment / disable motion sequences.

 Import. Use the “Import” button to load/insert motion objects previously saved in *.msq files.
These are appended below the current position e.g. the immediately after the selected motion
object.

 Export. You can select a part of your program (one or more motion objects) and save it in a
separate motion file, using the "Export" button. The operation saves the selected motion objects in
a file with extension *.msq.

See also:

Motion programming Toolbars for drives with built-in motion controller

6.2.2. Motion Linear Interpolation

The “Motion – Linear Interpolation” dialog allows you to program a 2D/3D positioning path
described through a series of linear segments. Vector speed and acceleration can be also
specified for each segment. The motion controller splits each path segment in PVT (Position,
Velocity and Time) points and sends them to the slave axes. On receiving the PVT points the
slaves rebuild the path using 3rd order interpolation.

In the Linear Interpolation mode the slave axes control the load/motor in position. A path
sequence must begin when load/motor is not moving and must complete with an end segment – a
segment with zero increment.

The Linear Interpolation mode can be used together with a host, which sends the linear segments
via a communication channel. An unlimited number of incremental segments may be given in a
continuous move sequence, making the linear interpolation mode ideal for following a piece-wise
linear path.

Upon reception, each segment is stored in a reception buffer. The reference generator empties
the buffer as the segment points are executed. The motion controller automatically sends warning
messages when the buffer is full, low or empty. The buffer full condition occurs when the number
of segments in the buffer is equal with the buffer size. The buffer low condition occurs when the
number of segments in the buffer is less or equal with a programmable value. The buffer empty
condition occurs when the buffer is empty and the execution of the last segment is over.

 Technosoft 2022 256 ESM User Manual

Remarks:

• The buffer size is programmable and if needed can be substantially increased. By default it
is set to 4 segments.

• The buffer low condition is set by default when the last PVT point from the buffer is read
and starts to be executed

• The Linear Interpolation mode requires the slave drives/motors to be setup for position
control. Otherwise, the slaves will not be available for X, Y and Z axes selection.

Specify the profile type, 2D or 3D from Type of Profile list. Depending on the profile selected you
can Set X, Y and Z axes to define the coordinate plane where the 2D/3D path will be executed.
The coordinate plane is defined with X-Axis, Y-Axis and Z-Axis. The X-Axis, Y-Axis and Z Axis
lists are populated with the slave axes selected in the Axis Selection view.

 Technosoft 2022 257 ESM User Manual

The end of the path is signaled with a segment having the position increment equal with zero. If
the current path is completely defined in the current motion sequence then check Insert End
Segment to add the end segment in the path list.

You can introduce the path segments in 2 ways:

• One by one, by setting the Position increment on axis X and Position increment on axis Y
for 2D paths and also the Position increment on axis Y for 3D. Additionally you can specify a
vector speed and/or acceleration for each segment. Check Vector acceleration and Vector
speed and set the values their values. For each parameter select the measuring unit from the
list on the right. Use buttons: Insert Above, Insert Below, Update, Remove, Previous, Next,
Move Up and Move Down to navigate between the segments and modify them.

• With Import From File to insert a set of segments previously defined. The file format is a
simple text with up to 5 columns separated by space or tabs representing from left to right:
position increment for X axis, position increment for Y axis, position increment for Z axis (for 3D
paths), acceleration and velocity. The number of rows gives the number of segments

Check Clear Buffer to erase all the previously stored segments from the buffer. Use this option
each time when you initiate a new path. Uncheck this option if the execution of the segments was
interrupted and you want to resume the execution of the remaining segments.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion until this motion sequence is completed.

Remark: The motion complete condition on the slave axes is set when their reference generator
is completing the trajectory received from the motion controller.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
only to set the motion parameters without starting the execution.

 OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

 See also:

Linear Interpolation– TML Programming Details

Linear Interpolation Mode– Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 258 ESM User Manual

6.2.3. Motion Vector Mode

The “Motion – Vector Mode” dialog allows you to program 2D paths described through a series of
linear and circular segments. Vector speed and acceleration can be also specified. Each segment
is split in PVT (Position, Velocity and Time) points by the motion controller and sent to the slave
axes. On receiving the PVT points the slaves rebuild the path using 3rd order interpolation.

In Vector Mode the slave axes control the load/motor in position. The path must begin when
load/motor is not moving and must complete with an end segment – a segment with zero
increment.

The Vector Mode can be used together with a host, which sends the path segments via
communication channel.

Upon reception, each segment is stored in a reception buffer. The reference generator empties
the buffer as the segments are executed. The motion controller automatically sends warning
messages when the buffer is full, low or empty. The buffer full condition occurs when the number
of segments in the buffer is equal with the buffer size. The buffer low condition occurs when the
number of segments in the buffer is less or equal with a programmable value. The buffer empty
condition occurs when the buffer is empty and the execution of the last segment is over.

Remarks:

• The buffer size is programmable and if needed can be substantially increased. By default it is
set to 4 segments.

• The buffer low condition is set by default when the last segment from the buffer is read and
starts to be executed

• The Vector Mode requires the slave drives/motors to be setup for position control. Otherwise,
the slaves will not be available for X, Y and tangent axes selection.

 Technosoft 2022 259 ESM User Manual

Check Set X, Y and tangent axes option to define the coordinate plane where the 2D path will be
executed. The coordinate plane is defined with X-Axis, Y-Axis and Tangent Axis. The X-Axis, Y-
Axis and Tangent Axis lists are populated with the slave axes selected in the Axis Selection Axis
Selection view.

The end of the 2D path is signaled with a segment having the position increment equal with zero.
If the current path is completely defined in the current motion sequence then check Insert End
Segment to add the end segment in the 2D path list.

You can introduce the path segments in 2 ways:

• One by one, by setting the Position increment on axis X and Position increment on axis Y
for Linear segments or Radius, Initial Angle and Angle Increment for Circular segments.
Additionally you can specify a vector speed and/or acceleration for each segment. Check
Vector acceleration and Vector speed and set the values their values. For each parameter
select the measuring unit from the list on the right. Use buttons: Insert Above, Insert Below,
Update, Remove, Previous, Next, Move Up and Move Down to navigate between the
segments and modify them.

 Technosoft 2022 260 ESM User Manual

• With Import From File to insert a set of segments previously defined. The file format is a
simple text with 6 columns separated by space or tabs representing from left to right: segment
type, position increment for X axis or radius, position increment for Y axis or initial angle,
acceleration and velocity. The number of rows gives the number of segments

Remarks:

• Zero angle for a circular segment corresponds to the positive horizontal direction.

• Positive values for Angle Increment mean counter-clockwise rotation, while negative values
mean clockwise rotation.

• The default value for Vector Acceleration and Vector Speed is zero. The Vector Mode requires
that at least once the Vector Acceleration and Vector Speed are set in order to execute the
profile properly.

Check Clear Buffer to erase all the previously stored segments from the buffer. Use this option
each time when you initiate a new vector motion. Uncheck this option if the execution of the
segments was interrupted and you want to resume the execution of the remaining segments.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion until this motion sequence is completed.

Remark: The motion complete condition on the slave axes is set when their reference generator
is completing the trajectory received from the motion controller.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
only to set the motion parameters without starting the execution.

 OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

 See also:
Vector Mode– TML Programming Details
Vector Mode– Related TML Instructions and Data
Motion Programming
Internal Units and Scaling Factors

 Technosoft 2022 261 ESM User Manual

6.2.4. Motion Trapezoidal Profiles

The “Motion – Trapezoidal Profiles” dialogue allows you to program a position or speed profile
executed on a slave axis. The profile will have a trapezoidal shape of the speed, due to a limited
acceleration.

In the position profile, the load/motor is controlled in position. You specify either a position to
reach in absolute mode or a position increment in relative mode, plus the slew (maximum travel)
speed and the acceleration/deceleration rate. In relative mode, the position to reach can be
computed in 2 ways: standard (default) or additive. In standard relative mode, the position to
reach is computed by adding the position increment to the instantaneous position in the moment
when the command is executed. In the additive relative mode, the position to reach is computed
by adding the position increment to the previous position to reach, independently of the moment
when the command was issued. During motion, you can change on the fly the position command,
the slew speed and the acceleration/deceleration rate.

In the speed profile, the load/motor is controlled in speed. You specify the jog speed (speed sign
specifies the direction) and the acceleration/deceleration rate. The load/motor accelerates until
the jog speed is reached. During motion, you can change on the fly the slew speed and the
acceleration/deceleration rate.

You can switch at any moment between position and speed profiles or to any of these from
another motion mode.

IMPORTANT: Some setup configurations foresee a transmission ratio between the motor and the
load. In these cases, the load position and speed are different from the motor position and speed.
The motion parameters refer always to the load trajectory on the slave axis.

 Technosoft 2022 262 ESM User Manual

Select the Slave axis that will execute the trapezoidal profile and then choose the profile type.

Remark: If there are no slaves selected from Axis Selection then the trapezoidal profile will be
executed locally by the drive part of the motion controller.

Choose Position to program a position profile. Select positioning mode Relative or Absolute.
For relative positioning, check Additive to add the position increment to the position to reach set
by the previous motion command. Set the values of the Acceleration rate and the Slew speed.
Select the measuring units from the lists on the right. In the absolute positioning mode, set the
value of the Position to reach. In the relative positioning, set the value of the Position
increment.

Remark: The position profile option is available only if the slave drive/motor is setup to perform
position control.

Choose Speed to program a speed profile. Set the values of the Acceleration rate and the Jog
speed. Select the measuring units from the lists on the right.

Remark: Speed profile option is active if the slave drive/motor is setup to perform speed control
or position control with speed loop closed.

Once set, the trapezoidal profile parameters are memorized. If you intend to use the same values
as previously defined for the acceleration rate, the slew or jog speed, the position increment or
position to reach you don’t need to set their values again in the following trapezoidal profiles. Use
the checkboxes on the left to uncheck those parameters that remain unchanged. When a
parameter is unchecked, you don’t need to give it a value.

Remark: The additive mode for relative positioning is not memorized and must be set each time a
new additive relative move is set.

Select Generate new trajectory starting from actual values of position and speed reference
if you want the reference generator to compute the motion profile starting from the actual values
of the position and speed reference. Use this option for example if successive standard relative
moves must be executed and the final target position should represent exactly the sum of the
individual commands. Select Generate new trajectory starting from actual values of
load/motor position and speed if you want the reference generator to compute the motion
profile starting from the actual values of the load/motor position and speed. When this option is
used, at the beginning of each new motion profile, the position and speed reference are updated
with the actual values of the load/motor position and speed. Use this option for example if during a
motion an external input triggers a stop on a precise position relative to the trigger point. Another
situation to use this option is at recovery from an error or any other condition that disables the
motor control while the motor is moving. Updating the reference values leads to a “glitch” free
recovery because it eliminates the differences that may occur between the actual load/motor
position/speed and the last computed position/speed reference (before disabling the motor
control).

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

 Technosoft 2022 263 ESM User Manual

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion sequence until the programmed motion on the slave axis is
completed.

Remark: Verify the motion complete condition parameters on the slave axis. If these are
incorrectly set, you may never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the trajectory and has
arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the slave
drive/motor and using the command interpreter request from the slave axis the values of the
parameters.

Choose Execute On event to start this new motion when a programmable event occurs on the
motion controller. Click Change Event to select the event type or Edit Event to modify the
parameters of the selected event (see Events for details). Select Setup motion data, but don’t
start execution if you want only to set the motion parameters without starting the execution.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Trapezoidal Position Profiles – TML Programming Details

Trapezoidal Speed Profiles – TML Programming Details

Trapezoidal Position Profiles – Related TML Instructions and Data

Trapezoidal Speed Profiles – Related TML Instructions and Data

Motion Programming
Internal Units and Scaling Factors

 Technosoft 2022 264 ESM User Manual

6.2.5. Motion S-Curve Profiles

The “Motion – S-curve Profiles” dialogue allows you to program a position profile with an S-curve
shape of the speed on a slave axis. The profile shape is due to the jerk limitation, leading to a
trapezoidal or triangular profile for the acceleration and an S-curve profile for the speed.

In the S-curve profile, the load/motor is controlled in position. You specify either a position to
reach in absolute mode or a position increment in relative mode, plus the slew (maximum travel)
speed, the maximum acceleration/deceleration rate and the jerk rate.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting the next
motion. During an S-curve execution, you can switch at any moment to another motion mode
(except PVT and PT interpolated modes) or stop the motion with a STOP command.

I

IMPORTANT: Some setup configurations foresee a transmission ratio between the motor and the
load. In these cases, the load position and speed are different from the motor position and speed.
The motion parameters refer always to the load trajectory on the slave axis.

First select the Slave axis that will execute the S-curve profile and then choose the positioning
type.

 Technosoft 2022 265 ESM User Manual

Remark: The Slave list contains all the slaves selected in the Axis Selection window, including
the motion controller. If there are no slaves selected then the S-curve profile will be executed
locally by the drive part of the motion controller.

Choose the option Relative to program a relative positioning or Absolute for an absolute
positioning. Set the values of the Jerk, Acceleration rate and the Slew speed. Select the
measuring units from the lists on the right. In the absolute positioning mode, set the value of the
Position to reach. In the relative positioning, set the value of the Position increment.

Remarks:

• The reference generator actually uses the jerk time to compute the profile. This is computed as
the ratio between the acceleration rate and the jerk rate you provided and must be a positive
integer number, in internal time units. If the jerk value is too low, the jerk time may be zero. In
this case you’ll get the error message “Jerk parameter must be greater than zero!”

• The S-curve requires the slave drive/motor to be setup for position control. Otherwise, in the
Motion view, the button opening this dialogue will not occur.

Select Decelerate at STOP command with a limited jerk if you want a smooth deceleration,
using an S-curve speed profile in case of a STOP command. Select Decelerate at STOP
command in shortest time if you want a faster deceleration, using a trapezoidal speed profile in
case of a STOP command.

Choose Execute Immediate to start the programmed motion immediately when the motion
sequence is executed. Check Then wait until motion is completed if you want to postpone the
start of the following motion sequence until the programmed motion on the slave axis is
completed. If the next motion is an S-curve too, checking this option is mandatory.

Remark: Verify the motion complete condition parameters on the slave axis. If these are
incorrectly set, you may never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the trajectory and has
arrived to the commanded position

If these parameters have not been set previously, check their default value. Reset the slave
drive/motor and using the command interpreter request from the slave axis the values of the
parameters.

Choose Execute On event to start this new motion when a programmable event occurs. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
only to set the motion parameters without starting the execution.

 Technosoft 2022 266 ESM User Manual

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

S-Curve Profiles – TML Programming Details

S-Curve Profiles – Related TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 267 ESM User Manual

6.2.6. Motion External

The “Motion – External” dialogue allows you to program the slave drives/motors to work with an
external reference provided by another device. There are 3 types of external references:

• Analogue – read by the slave drive/motor via a dedicated analogue input (10-bit resolution)

• Digital – computed by the slave drive/motor from:

 Pulse & direction signals

 Quadrature signals like A, B signals of an incremental encoder

• Online – received online via a communication channel from a host and saved in a dedicated
TML variable

First select the Slave axis that will execute the S-curve profile and then choose the external
reference type.

 Technosoft 2022 268 ESM User Manual

Remark: If there are no slaves selected in the Axis Selection window then the external reference
will be used by the motion controller with integrated drive.

Select Analogue if the external reference is an analogue signal. This signal is interpreted as a:

• Position reference, if the slave drive/motor was setup for position control

• Speed reference, if the slave drive/motor was setup for speed control

• Current/torque reference, if the slave drive/motor was setup for torque control

Remark: Check the slave drive/motor setup for the correspondence between the analogue input
voltage and the reference values.

In position control, check Limit maximum speed at and set a desired value, if you want to avoid
mechanical shocks by limiting the maximum speed at sudden changes of the position reference.
In speed control, check Limit maximum acceleration at and set a desired value, if you want a
smoother transition at sudden changes of the speed reference. In torque control, check Update
torque in fast loop if you want to read the analogue input at each fast loop sampling period.
When unchecked, the analogue input is read at each slow loop sampling period.

Select Digital if the external reference is provided as pulse & direction or quadrature encoder
signals. In either case, the slave drive/motor performs a position control with the reference
computed from the external signals. Check Set/Change gear ratio if you want to follow the
external position reference with a different ratio than 1:1. Set the desired Slave / Master ratio.

Remarks:

• A 1:3 ratio means that the actual position reference, TPOS, is 1/3 of the external
reference.

• Due to an automatic compensation procedure, the actual position reference is computed
correctly without cumulating errors, even if the ratio is an irrational number like 1: 3

Select Online if an external device sends the reference via a communication channel. Depending
on the Control Mode chosen, the external reference is saved in one of the TML variables:

• EREFP, which becomes the position reference if the Control Mode selected is Position

• EREFS, which becomes the speed reference if the Control Mode selected is Speed

• EREFT, which becomes the torque reference if the Control Mode selected is Torque

• EREFV, which becomes voltage reference if the Control Mode selected is Voltage

If the external device starts sending the reference AFTER the external online mode is activated, it
may be necessary to initialize EREFP, EREFS, EREFT or EREFV. Check Set the initial value to
set the desired starting value.

Remarks:

• The external online mode may also be used as a test mode in which you assign in
EREFP, EREFS, EREFT or EREFV the desired reference

 Technosoft 2022 269 ESM User Manual

• Use external online voltage mode with caution. If the motor is moving, an abrupt reduction
of the voltage reference may lead to a high peak of regenerated energy injected into the
DC supply. Without proper surging capacity, this may cause high over-voltages

Choose Execute Immediate to activate the external reference mode immediately when the
motion sequence is encountered. Choose Execute On Event to activate the external reference
on the slave drive/motor when a programmable event occurs on the motion controller. Click
Change Event to select the event type or Edit Event to modify the parameters of the selected
event (see Events for details). Select Setup motion data, but don’t start execution if you want
to set the external reference mode parameters for a later use.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

External –TML Programming Details

External –TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 270 ESM User Manual

6.2.7. Motor Commands

The “Motion - Motor Commands” dialogue allows you to send one of following commands to the
slave drive/motor:

• Activate/deactivate the control loops and the power stage PWM output commands (AXISON /
AXISOFF)

• Stop the motor with deceleration set in TML parameter CACC

• Change the value of the motor position and position reference

• Set deceleration rate for quick stops

Remark: The AXISON, AXISOFF and STOP commands can be sent, also, to several slaves.

The destination of the motor command is selected from the Slave list.

Remark: The Slave list contains all the slaves selected in the Axis Selection window, including
the motion controller. If there are no slaves selected then the motor command will be executed
locally by the drive part of the motion controller.

 Technosoft 2022 271 ESM User Manual

Select Activate the control loops and PWM outputs (AXISON) to restore normal drive
operation after an AXISOFF command. Typically, this situation occurs at recovery from an error,
following the fault reset command FAULTR, or after the drive/motor ENABLE input goes from
status disabled to status enabled.

Select Deactivate the control loops and PWM outputs (AXISOFF) when a fault condition is
detected, for example when a protection is triggered. This command disables the motor control
(all the control loops), all the PWM output commands for the power stage (all the switching
devices are off) and also the reference generator.

Fault conditions trigger TML interrupts. Each drive/motor has a built-in set of TML interrupt service
routines (ISR) which are automatically activated after power-on. In these routines, the default
action for fault conditions is an AXISOFF command. If needed, you may replace any built-in ISR
with your own ISR and thus, adapt the fault treatment to your needs.

After a fault condition, the actual values of the load position and speed (which continue to be
measured during the AXISOFF condition) may differ quite a lot from the values of the target
position and speed as were last computed by the reference generator before entering in the
AXISOFF condition. Therefore, a correct fault recovery sequence involves the following steps:

• Set the motion mode, even if it is the same. Motion mode commands, automatically set the
target update mode zero (TUM0), which updates the target position and speed with the
actual measured values of the load position and speed

• Execute update command UPD

• Execute AXISON command

Remark:

• In the Drive Status control panel, SRL.15 bit shows the AXISON/AXISOFF condition and
SRH.15 bit shows a fault condition

• In EasyMotion Studio, ENDINIT and AXISON commands are automatically included in the
TML program, just before your first TML command from the main section. Therefore you
don’t need to include them in your motion program.

Select STOP to stop the motor with the deceleration rate set in TML parameter CACC. The slave
drive/motor decelerates following a trapezoidal position or speed profile. If the STOP command is
issued during the execution of an S-curve profile, the deceleration profile may be chosen between
a trapezoidal or an S-curve profile (see S-curve dialogue settings). You can detect when the
motor has stopped by setting a motion complete event on motion controller and waiting until the
event occurs. The STOP command can be used only when the slave drive/motor is controlled in
position or speed.

Remarks:

• In order to restart after a STOP command, you need to set again the motion mode. This
operation disables the stop mode and allows the motor to move

• When STOP command is sent via a communication channel, it will automatically stop any TML
program execution, to avoid overwriting the STOP command from the TML program

 Technosoft 2022 272 ESM User Manual

Choose Immediate Update to send an update command UPD to one or several slave
drives/motors. When this command is received, the last motion mode programmed together with
the latest motion parameters are taken into consideration. The immediate update command is
available in all the dialogues setting a motion mode and normally it is called from these dialogues.
The immediate update command is useful when the motion mode is set in advance for a later
execution, which is started with a separate update command. In a similar way you may use the
Update on event command.

You can set / change the referential for position measurement by changing simultaneously the
load position APOS and the target position TPOS values, while keeping the same position error at
any moment during motion. Use the edit field from set actual position value to specify the new
motor position value.

Remarks: In the case of steppers controlled in open loop, this command changes only the target
position TPOS to the desired value.

The deceleration rate for quick stops can be set/change selecting the option Set quick stop
deceleration rates. To assign an immediate value select option value and fill the associated
field, if you want to assign the value of a variable then select variable and in the associated field
write the name of the variable.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Motor Commands – TML Programming Details

Motor Commands – TML Instructions and Data

Motion Programming

Internal Units and Scaling Factors

 Technosoft 2022 273 ESM User Manual

6.2.8. Motion Homing

The “Motion – Homing” dialog allows you choose for a slave axis a homing procedure and set its
parameters. The homing is a sequence of motions, usually executed after power-on, through
which the load is positioned into a well-defined point – the home position. Typically, the home
position is the starting point for normal operation.

The search for the home position can be done in numerous ways. Therefore, a lot of homing
procedures are possible. Technosoft provides a collection of up to 35 homing procedures which
can be programmed on motion controller or intelligent drives/motors. The homing procedures are
predefined TML functions, which you may call after setting the homing parameters. You may use
these homing procedures as they are, or you may modify them according with your application
needs. From the slave axis list with all the defined homing procedures you can choose one or
several to be used in your application. This represents the list of selected homing procedures.

Select the slave axis that will execute the homing routine from the Slave list.

 Technosoft 2022 274 ESM User Manual

Remark: The Slave list contains all the slaves selected in the Axis Selection window, including
the motion controller. If there are no slaves selected then the homing procedure will be executed
locally by the drive part of the motion controller.

Check Select homing parameters to set the following values:

• Acceleration/deceleration rate for the position or speed profiles done during homing

• Deceleration rate for quick stop when a limit switch is reached

• High/normal speed for the position or speed profiles done during homing

• Low speed for the final approach towards the home position

• New home position set at the end of the homing procedure

Check Execute homing mode and choose a homing procedure from the list of the selected
homing procedure. The homing procedure list is populated with the homing routines selected in
the slave applications. The motion controller can stop the execution of its TML program and wait
for homing to complete with then wait for homing to complete option. You can also define a
time limit for the homing procedure to complete. Check Exit from the wait loop after a time
equal with and specify the time limit. If the homing is not completed in the time limit, the wait loop
is interrupted and the TML program passes to the next instruction.

Remark: The motion controller can abort a homing sequence execution at any moment by
sending the TML command ABORT (see Decisions) to the slave axis.

When the homing is executed locally, i.e. there are no slave selected, you can use this dialogue to
read the status of the home input. The home input is one of the motion controller or drive/motor
inputs, which is used by the homing procedures. The home input is specific for each product and
based on the setup data, EasyMotion Studio automatically generates the TML code for reading
the correct input. Check Read home input in the variable and fill the associated field with the
name of the variable. After execution, the value of the variable will be 0 if the home input is zero
(low) or 1 if the home input is 1 (high).

Remark: The source of the motion sequence for reading the home input is general and
independent. The particular value of the home input, specific for each product, occurs only in the
compiled version of this motion sequence, in the TML code generated. Therefore, you can safely
import the source code of this motion sequence into other applications where the target products
have different home inputs.

 OK: Close this dialogue and save the settings in your motion sequence list.

Cancel: Close this dialogue without saving the settings in your motion sequence list.

Help: Open this help page.

See also:

Homing – TML Programming Details

Homing – Related TML Instructions and data

 Technosoft 2022 275 ESM User Manual

Motion Programming

Internal Units and Scaling Factors

6.2.9. Motion Test

The “Motion – Test” dialogue allows you to set a slave drive/motor in a special test configuration.
This configuration is not supposed to be used during normal operation, but only during slave
drive/motor setup.

In the test mode, either a voltage or a torque (current) command can be set using a test reference
consisting of a limited ramp. For AC motors (like for example the brushless motors), the test
mode offers also the possibility to rotate a voltage or current reference vector with a
programmable speed. As a result, these motors can be moved in an “open-loop” mode without
using the position sensor. The main advantage of this test mode is the possibility to conduct in a
safe way a series of tests, which can offer important information about the motor parameters,
drive status and the integrity of the its connections.

Select the Slave axis that will execute the test mode and then choose the test type.

Remark: If there are no slaves selected from Axis Selection window then the test mode will be
executed locally by the drive part of the motion controller.

 Technosoft 2022 276 ESM User Manual

Select Voltage for voltage reference or Torque for torque reference. Insert the appropriate values
for reference amplitude and reference increment in the corresponding fields and select the
measurement unit.

For AC motors, check the option AC motor only. Insert the appropriate values for the reference
vector initial position and the electrical angle increment in the corresponding fields and select the
measurement unit.

Choose Execute Immediate to activate the external reference mode immediately when the
motion sequence is encountered. Choose Execute On Event to activate the external reference
when a programmable event occurs. Click Change Event to select the event type or Edit Event
to modify the parameters of the selected event (see Events for details). Select Setup motion
data, but don’t start execution if you want to prepare the external reference mode for a later
use.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Motion Test –TML programming details

Motion Test – Related TML Instructions and Data

Motion Programming
Internal Units and Scaling Factors

 Technosoft 2022 277 ESM User Manual

6.2.10. Events Dialogue

The “Events” dialogue allows you to define events on one or several slave axes. An event is a
programmable condition, which once set, is monitored for occurrence. You can do the following
actions in relation with an event:

1) Change the motion mode and/or the motion parameters, when the event occurs

2) Stop the motion when the event occurs

3) Wait for the programmed event to occur

Remark: The programmed event is automatically erased if the event is reached, if the timeout for
the wait is reached or if a new event is programmed.

Only a single event can be programmed at a time on a slave axis. This can be:

1) When the actual motion is completed

2) When motor absolute position is equal or under a value or the value of a variable

3) When motor absolute position is equal or over a value or the value of a variable

4) When load absolute position is equal or under a value or the value of a variable

5) When load absolute position is equal or over a value or the value of a variable

6) When load/motor relative position is equal or under a value or the value of a variable

7) When load/motor relative position is equal or over a value or the value of a variable

8) When motor speed is equal or under a value or the value of a variable

9) When motor speed is equal or over a value or the value of a variable

10) When load speed is equal or under a value or the value of a variable

11) When load speed is equal or over a value or the value of a variable

 Technosoft 2022 278 ESM User Manual

12) After a wait time equal with a value or the value of a variable

13) When position reference is equal or under a value or the value of a variable

14) When position reference is equal or over a value or the value of a variable

15) When 1st or 2nd encoder index goes low or high

16) When the positive limit switch goes low or high

17) When the negative limit switch goes low or high

18) When a digital input goes low

19) When a digital input goes high

20) When the vector distance is equal or under a value or the value of a variable

21) When the vector distance is equal or over a value or the value of a variable

22) When the target position is reached

Remark: The load/motor relative position is computed starting from the beginning of the current
movement.

You can also program events in the following motion dialogues: Linear Interpolation, Vector Mode,
Trapezoidal Profiles, S-curve Profiles, External, Test. Set events in these dialogues, if you want to
activate the programmed motion mode and/or its motion parameters, when the programmed
event occurs.

The event programming is done in the same way when it is done from a motion dialogue or from
this dialogue. Press Change Event to open the Event Selection dialog which allows you to define
the event / condition to be monitored. If you have already defined an event, use Edit Event button
to modify its parameters or conditions.

When you set an event using one of the motion dialogues, you program the following operations:

• Definition of an event

• Programming of a new motion mode and/or new motion parameters

• Definition of the moment when the new motion mode and/or motion parameters must be
updated (e.g. enabled) as the moment when the programmed event will occur

Remark: After you have programmed a new motion mode and/or new motion parameters with
update on event the wait until the programmed event occurs is introduced automatically.

From the Events dialog, apart from programming an event, you can Stop motion when the event
occurs. You can also define a time limit for an event to occur. Check Exit from the wait loop
after a time equal with and specify the time limit. If the monitored event doesn’t occur in this time
limit, the wait loop is interrupted and the TML program passes to the next instruction.

 Technosoft 2022 279 ESM User Manual

OK: Close this dialogue and save the event programming in your motion sequence list.

Cancel: Close this dialogue without saving or updating the event programming in the motion
sequence list.

Help: Open this help page.

See also:

Events – TML Programming Details

Event Selection

Motion Programming

 Technosoft 2022 280 ESM User Manual

6.2.10.1. Event Type Selection

The “Event Type” dialog allows you to select an event on one or more slave axes. An event is a
programmable condition, which once set, is monitored for occurrence.

The “Event Type” dialog may be opened from:

• Events dialog:

 Event Type – called from Events dialog

• One of the following motion dialogs Trapezoidal Profiles, S-curve Profiles, External, Test:

 Event Type – called from a motion dialog

The events are grouped into 9 categories:

None – appears when the dialogue is opened from the “Events” dialogue. Check this item if you
have already defined an event and now you want to: a) program a stop when the event occurs
and/or b) program a time out condition.

 Technosoft 2022 281 ESM User Manual

Remark: The When a previously defined event occurs option is active only for TML
applications developed for intelligent drives/motor.

When actual motion is completed – for programming the event: when the actual motion is
completed on one or more slave axes.

Function of motor or load position – for programming the events: when the absolute or relative
motor or load position of a slave axis is equal or over/under a value or the value of a variable.

Function of motor or load speed – for programming the events: when the motor or load speed
of a slave axis is equal or over/under a value or the value of a variable.

After a wait time – for programming a time delay, using a time event. The monitored event is:
when the relative time of the motion controller is equal with a value or the value of a variable.

Remark: The event on time can be programmed only for the motion controller.

Function of reference – for programming the events: when the position or speed or torque
reference of a slave axis is equal or over/under a value or the value of a variable.

Function of inputs status – for programming the events: when capture inputs or limit switch
inputs or general purpose inputs from a slave axis change status: low to high or high to low.

When target is reached – for programming the events: when the reference generator from one
or more slaves completes the trajectory.

Function of vector distance – for programming the events: when the vector distance is equal or
over/under a value or the value of a variable.

OK: Close this dialogue and save selected event

Cancel: Close this dialogue without saving the selected event

Help: Open this help page.

See also:

Events

Motion Programming

 Technosoft 2022 282 ESM User Manual

6.2.10.2. Event - When Actual Motion Is Completed

This dialogue allows you to set the event: when a motion is completed on one or more slave axes.
You can use, for example, this event to start the next move only after the actual one is finalized on
all slave axes.

The motion complete condition on a slave is set in the following conditions:

• During position control:

 With position feedback – when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a preset
stabilize time interval

 Without position feedback (open-loop systems) – when the position reference arrives
at the position to reach (commanded position)

• During speed control, when the speed reference arrives at the commanded speed

Remark: Verify the motion complete condition parameters on slave axis. If these are incorrectly
set, you may never reach the motion complete condition:

• POSOKLIM – the settle band tolerance, expressed in internal position units

• TONPOSOK – the stabilize time, expressed in internal time units

• UPGRADE.11:

 1 = uses the above parameters,

 0 = sets motion complete when the reference generator has completed the
trajectory and has arrived to the commanded position

If these parameters have not been previously set then check their default value. Reset the slave
drive/motor and using the command interpreter get their value.

OK: Close this dialogue and save the event set

 Technosoft 2022 283 ESM User Manual

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Events – When actual motion is completed– TML programming details

Event Selection

Events

Motion Programming

 Technosoft 2022 284 ESM User Manual

6.2.10.3. Event - Function of Motor or Load Position

This dialogue allows you to program an event on a slave axis function of the motor or load
position. The events can be: when the absolute or relative motor or load position is equal or
over/under a value or the value of a variable

The absolute load or motor position is the measured position of the load or motor. The relative
position is the load displacement from the beginning of the actual movement. For example if a
position profile was started with the absolute load position 50 revolutions, when the absolute load
position reaches 60 revolutions, the relative motor position is 10 revolutions.

Select the slave axis, the position to monitor: motor or load, its type: absolute or relative, the
event condition: over (or equal) or under (or equal) and the comparison data: a value or the
value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of motor or load position–TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 285 ESM User Manual

6.2.10.4. Event - Function of Motor or Load Speed

This dialog allows you to program an event on a slave axis function of the motor or load speed.
The events can be: when the motor or load speed is equal or over/under a value or the value of a
variable.

Select the slave axis, the speed to monitor: motor or load, the event condition: over (or equal) or
under (or equal) and the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of motor or load speed–TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 286 ESM User Manual

6.2.10.5. Event– After a Wait Time

This dialogue allows you to introduce a programmable delay in the motion program execution of
the motion controller/drive, using a time event. When you set this event, the motion
controller/drive relative time is reset and it starts counting from zero and the monitored condition
is: when the relative time is equal with a value or the value of a variable.

Remarks:

• The event on time can be programmed only for the local axis.

• In order to effectively execute the time delay, you need to follow this command by a Wait
until the event occurs command e.g. until the programmed relative time has elapsed.

Select the comparison data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event– After a Wait Time –TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 287 ESM User Manual

6.2.10.6. Event - Function of Reference

This dialogue allows you to program an event on a slave axis function of the position reference.

Remark: Setting an event based on the position reference is particularly useful for open loop
operation where feedback position and speed is not available.

Select the slave axis, the event condition: over (or equal) or under (or equal) and the comparison
data: a value or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of reference –TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 288 ESM User Manual

6.2.10.7. Event - Function of Inputs Status

This dialog allows you to program one of the following events on a slave axis:

• When a transition occurs on one of the 2 capture inputs, where are connected the 1st and
2nd encoder index signals (if available)

• When a transition occurs on one of the 2 limit switch inputs

• When a general purpose digital input changes its status

• When the home input changes its status

The capture inputs and the limit switch inputs can be programmed to sense either a low to high or
high to low transition. When the programmed transition occurs on either of these inputs, the
following happens:

• Motor position is captured and memorized in the TML variable CAPPOS, except the case
of open-loop systems, where the reference position is captured instead

• Master or load position is captured and memorized in the TML variable CAPPOS2, except
the case of steppers controlled open-loop with an encoder on the load, when load position
is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in
CAPPOS2 only for the setup configurations which use different sensors for load and motor and
foresee a transmission ratio between them. For all the other setup configurations, the master
position is saved in CAPPOS2. The master position is automatically computed when pulse and
direction signals or quadrature encoder signals are connected to their dedicated inputs.

Choose the slave axis and then select:

• encoder index to detect a transition on 1st capture/encoder index input

• 2nd encoder index to detect a transition on 2nd capture/encoder index

 Technosoft 2022 289 ESM User Manual

• positive limit switch to detect a transition on limit switch input for positive direction

• negative limit switch to detect a transition on limit switch input for negative direction

and choose the transition type: low -> high or high -> low

Select digital input to set an event on one of the general-purpose digital input available. The
event can be set when the input goes high or low. Select home input in order to set an event on
the general purpose digital input assigned as home input. The home input is specific for each
product and based on the setup data, EasyMotion Studio automatically generates the TML code
for reading the correct input.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Events – Function of inputs status– TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 290 ESM User Manual

6.2.10.8. Event – When Target Is Reached

This dialogue allows you to program set the event: when the target position is reached on one or
more slave axes. You can use, for example, this event to start the next move only after the
position reference reached the final value.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of a vector distance –TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 291 ESM User Manual

6.2.10.9. Event - Function of Vector Distance

This dialogue allows you to program an event function of the value of vector distance. The events
can be: when the vector distance is equal or over/under a value or the value of another variable.

Select the event condition: over (or equal) or under (or equal) and the comparison data: a value
or the value of a variable.

OK: Close this dialogue and save the event set

Cancel: Close this dialogue without saving the event set.

Help: Open this help page.

See also:

Event – Function of a vector distance–TML Programming Details

Event Selection

Events

Motion Programming

 Technosoft 2022 292 ESM User Manual

6.2.11. Jumps and Function Calls

The “Jumps and Function Calls” dialogue allows you to control the TML program flow, from the
motion controller, through unconditional or conditional jumps and unconditional, conditional or
cancelable calls of TML functions.

Select Goto and indicate the jump address in address, label or address set in variable. The
jump address can be set directly as a numerical value (if it is known) or indirectly via:

• A label. Use Insert label name to place the label in the desired location. The label name
can be any string of up to 32 characters, which starts with an alphanumeric character or
with underscore.

• A 16-bit TML variable whose value represents the jump address.

Remark: You may assign a label to a 16-bit integer variable. The variable takes the value of the
label i.e. the address of the next instruction after label. Example: user_var = jump_label;

Leave if variable unchecked to execute an unconditional jump. Check if variable to execute a
conditional jump and specify a test variable and a condition. The test variable is always compared
with zero. The possible conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0. If the condition is true the jump
is executed, else the next TML command is carried out.

Select Call and indicate the name of a TML function in address, label or address set in
variable. A TML function starts with a label and ends with the RET instruction. The label gives
the TML function address and name. You can create, rename or delete TML functions using the
Functions View.

Remark: The TML functions are placed after the end of the main program

 Technosoft 2022 293 ESM User Manual

Similarly with the jump address, the TML function address can be set directly, as a numerical
value (if it is known), or indirectly via:

• The TML function starting label (i.e. the function name)

• A 16-bit TML variable whose value represents the TML function address.

Leave if variable unchecked to execute an unconditional call. Check if variable to execute a
conditional call and specify a test variable and a condition. The test variable is always compared
with zero. The possible conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0. If the condition is true the call
is executed, else the next TML command is carried out.

Choose Cancelable Call and indicate the TML function address if the exit from the called function
depends on conditions that may not be reached. In this case, using Abort cancelable call you
can terminate the function execution and return to the next instruction after the call.

Select RETurn from function to insert the RET instruction, which ends a TML function. When
RET instruction is executed, the TML program returns to the next instruction (motion sequence)
after the TML function call.

Select RETurn from interrupt to insert the RETI instruction, which ends a TML interrupt. When
RETI instruction is executed, the TML program returns to the point where it was before the TML
interrupt occurrence.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving the motion sequence in your motion sequence list.

Help: Open this help page.

See also:

Jumps and Function Calls – TML Programming Details

Functions View.

Motion Programming

 Technosoft 2022 294 ESM User Manual

6.2.12. I/O General I/O Motion Controller

The “I/O” dialogue allows you to program the following operations with the digital inputs and
outputs:

• Read and save the status of a digital input from motion controller or slave into a variable

• Set low or high a digital output from the motion controller or slave

• Read and save the status of multiple digital inputs from the motion controller into a
variable

• Set multiple digital outputs from the motion controller according with an immediate value
or the value of 16-bit variable

Each motion controller and intelligent drive/motor has a specific number of inputs and outputs.
The I/O numbering depends on the product, the I/O list being populated by EasyMotion Studio
automatically based on the motion controller and slave applications.

If you want to read the status of an input:

1. Select Single I/O

2. Select the axis from where the reading will be performed: On master for motion controller
or On slave for one of the slave axes

 Technosoft 2022 295 ESM User Manual

3. Read input line, choose the desired input from the list of available inputs and provide the
name of an integer variable where to save the input status. The inputs list is populated by
EasyMotion Studio based on the TML application defined in the project.

4. Check Set as input if the input selected may also be used as an output. Do this operation
only once, first time when you use the input. Omit this check if the drive/motor has the
inputs separated from the outputs (i.e. all have different line numbers)

5. Press OK

When this TML command is executed, the variable where the input line status is saved becomes:

• Zero if the input line was low

• Non-zero if the input line was high

Remark: Check the motion controller/intelligent drive user manual to find if the input line you are
reading is directly connected or is inverted inside the drive/motor. If an input line is inverted, the
variable where the input line is saved is inverted too: zero if the input is high (at connectors’ level),
non-zero if the input is low (at connectors’ level).

If you want to set an output low or high:

1. Select Single I/O

2. Select the axis from where the reading will be performed: On master for motion controller
or On slave for one of the slave axes

3. Choose Set output line, select the desired output from the list of available outputs and
choose the output level: low or high. The outputs list is populated by EasyMotion Studio
based on the TML application defined in the project.

4. Check Set as output if the output selected may also be used as an input. Do this
operation only once, first time when you use the output. Omit this check if the drive/motor
has the inputs separated from the outputs.

5. Press OK

Remark: The TML code generated takes into account the possibility to have outputs inverted
inside the drive/motor. This information, provided by the setup data, is used to inverse the output
command logic: getting the output high (at connectors’ level) means setting the output low and to
getting the output low (at connectors’ level) means setting the output high

Check Read inputs in variable to read simultaneously more inputs from the motion controller
and specify the name of an integer variable where to save their status. The bits corresponding to
these inputs are set as follows: 0 if the input is low and 1 if the input is high. The other bits of the
variable are set to 0.

Remark: If one of these inputs is inverted inside the motion controller, the corresponding bit from
the variable is inverted too. Hence, these bits always show the inputs status at connectors level (0
if input is low and 1 if input is high) even when the inputs are inverted.

 Technosoft 2022 296 ESM User Manual

Check Set outputs to set simultaneously more outputs from the motion controller with the value
of 16-bit mask or variable. Select the outputs you want to command and specify how they are set:

• with the mask generated after setting as High or Low each of the selected outputs

• with the value of the specified 16-bit variable.

The outputs are set as follows: low if the corresponding bit in the mask or variable is 0 and high if
the corresponding bit in the mask or variable is 1. The other bits of the mask or variable are not
used.

Remark: If one of these outputs is inverted inside the motion controller, its command is inverted
too. Hence, the outputs are always set at connectors level according with the bits values (low if bit
is 0 and high if bit is 1) even when the outputs are inverted.

OK: Close this dialogue and save the motion sequence in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

General-purpose I/O – TML Programming Details

Motion Programming

 Technosoft 2022 297 ESM User Manual

6.2.13. Slave Management

The “Slave Management” dialog allows you to program the motion controller to initialize the
slaves, configure the slaves when to report their status and to manage TML functions stored on
the slave drives/motors.

Select Initialize slaves to program the initialization sequence for all the slaves. The motion
controller will send the initialization messages to all the slaves selected from the Axis Selection
View. The motion controller application will remain in a wait loop until all the slaves signal the end
of initialization or the time limit elapses. The time limit for initialization sequence to complete is set
in the Exit from the wait loop after a time equal with field. The initialization status of the slave
is stored by the motion controller in the SSR register.

Remark: If the time limit is set to zero then the motion controller will wait until all the slaves
complete the initialization sequence.

For each selected slave you can:

 Technosoft 2022 298 ESM User Manual

• configure the error conditions for which it will report the Motion Error Register automatically to
the motion controller.

• execute a TML function stored in the EEPROM of the slave axis

• cancel the execution of a TML function on a slave axis

Select Send error register (MER) to master to enable the slave to transmit the MER register
when a bit changes. If Int12 – Error on slave has occurred is enabled the motion controller will
execute specific code for error handling.

From the right list, select a bit whose change you want to trigger a message transmission and
press the [<] button. The selected bit will appear on the left list. Repeat the operation for the
other bits. Use the button [<<] to select all the bits. Choose a bit from the left list and press the [>
] button to move it back to the right list. Use the [>>] button to remove all the bits from the left list.

Select Cancelable call function to start the execution on the slave of a TML function stored in
the slave’s EEPROM. EasyMotion Studio populates the function list with the functions defined in
the slave application through the Functions View.. The motion controller can remain in a wait
loop until the function completes when the then wait for function to complete option is checked.

Select Abort cancellable call to terminate the execution of a TML function on the slave axis.

OK: Close this dialogue and save the operations selected in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:

Axis Selection

Slave Initialization

Slave Error Handling

Motion Programming

 Technosoft 2022 299 ESM User Manual

6.2.14. Assignment & Data Transfer - Multiple Axis

The “Data Transfer Between Axes” dialogue allows you to program data transfer operations
between motion controller and the slaves. From this dialogue, you can also activate/deactivate the
synchronization between axes.

Check Synchronization group to activate/deactivate the synchronization procedure. This
procedure requires activating one axis as a synchronization master. The other axes are
deactivated and are synchronization slaves. Select Send synchronization messages every…
and set the time interval between synchronization messages, to activate the synchronization
master. Recommended starting value for the time interval is 20ms. When synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10µs time interval. Due to this powerful feature, drifts between master and
slave axes are eliminated. Deactivate the synchronization procedure by choosing Stop sending
synchronization messages. This will disable the synchronization master and set the axis as a
synchronization slave. In the absence of a master, the synchronization process is stopped.

The data transfer operations may be split into three categories:

1. Read data from a remote axis. A variable or a memory location from the remote axis is saved
into a local variable

2. Write data to a remote axis or group of axes. A variable or a memory location of a remote axis
or group of axes is written with the value of a local variable

 Technosoft 2022 300 ESM User Manual

3. Send TML commands from local drive to a remote drive or group of drives

Check data transfer commands, and select From slave to read from the slave axis specified, the
value of a variable or the data / program / E2ROM memory contents located at an address
set in a pointer variable. The data is saved in the local TML variable indicated in to local
variable field. The local variable can be either a 16-bit or a 32-bit TML data. Its type, dictates the
data transfer size. Check then increment the pointer variable to automatically increment the
pointer by one or two function of the local variable type, after the transfer is performed. The
memory type is split into 3 categories: data – for the RAM area with TML data, program – for the
RAM area with TML programs and E2ROM – for the EEPROM area with TML programs.

Select Send the local variable to copy on a slave axis or several slave axes, the value of the
local variable specified. The data is saved either in an external/remote variable or in the data /
program / E2ROM memory location(s) from address set in the pointer variable indicated. The
local variable can be either a 16-bit or a 32-bit TML data. Its type, dictates the data transfer size.
Check then increment the pointer variable to automatically increment the pointer by one or two
function of the local variable type, after the transfer is performed. The memory type is split into 3
categories: data – for the RAM area with TML data, program – for the RAM area with TML
programs and E2ROM – for the EEPROM area with TML programs. Push the buttons to select
the destination of the data transfer operation.

Select Send TML command to program the motion controller to transmit the TML command(s)
you type in the associated field towards the selected slaves. destination specified at the
axis/group field. The transmission is done when the command is executed.

Remarks:

• This command offers a very powerful tool through which the motion controller may control the
slaves from the network. For example it can start or stop the other drives motion or check their
status

• You may type multiple TML commands separated by semicolon (;). These will be sent one by
one in the order of occurrence in the edit.

• Via this type of messages, you can send all the TML instructions having an instruction code of
maximum 4 words. In this category enter most of the TML commands (see TML Instruction
Coding and the detailed description of the TML Instructions).

OK: Close this dialogue and save the operations selected in your motion sequence list.

Cancel: Close this dialogue without saving anything in your motion sequence list.

Help: Open this help page.

See also:
Axis Identification
Data Transfer Between Axes – TML Programming Details
Remote Control
Motion Programming

 Technosoft 2022 301 ESM User Manual

6.2.15. Importing G-code files

The “Import G-code file” dialogue allows you to convert G-code sequences into TML motion
language.

This option is enabled if your project includes a multi-axis Motion Controller.

In the multi-axis Motion Controller application window left side, select “M Motion”, for motion
programming. Choose in the “Application/Motion/Import G-code file…” menu option, which will
open the “Import G-code file” dialogue.

Use the Browse button to select the G-code file. The file extension shall be .gnc. Just one G-code
file could be imported at one time.

 Technosoft 2022 302 ESM User Manual

For each G-code program imported you can:

Set the specific axes

The dialog allows you to set the linear axes (X, Y, Z), the rotational axes (A, B, C) and the
spindle axis. For each selection, you can choose from a drop-down list, one of the axes
previously defined in Axis Selection

Remark: For the Spindle axis the list will contain only the rotational axes that have the speed loop
closed.

Activate switches

The dialog allows you to set the following switches:

• Feed override switch. The default value is 100%. You can modify this value by checking
the specific switch and changed the percentage value. By enabling this switch with a
value different than 100%, you can limit the feed values to a percentage of the defined
value.

• Speed override switch. The default value is 100%. You can modify this value by
checking the specific switch and changed the percentage value. By enabling this switch
with a value different than 100%, you can limit the speed values to a percentage of the
defined value.

• Block delete switch. By default this switch is disabled. If enabled, the lines that start
with slash (the block delete character) will not be interpreted.

• Optional program stop switch. By default this switch is disabled, and the stop words
are not interpreted. If enabled, the program execution will stop when M1 code is
encountered. The program execution will be resumed when the cycle start button is
pushed (See below Devices connected though I/O lines).

Define devices connected though I/O lines

• Input for cycle start button. Set the specific axis, the input line and the polarity (when
the input line is active).

Remark: If optional stop switch enable, M1 encounter and no cycle start button defined the
program will jump to the beginning of the code.

 Technosoft 2022 303 ESM User Manual

• Output for coolant valve. Set the specific axis, the input line and the polarity (when the
output line is active).

Set various movement parameters:

• Length units. You can choose between millimeter and inch.

• Spindle speed (S) and rotational direction. Choose between clockwise or counter
clockwise, depending on your mechanical stand. By default the positive sense of rotation
is clockwise.

• Traverse rate (T)

• Feed rate (F)

See also:

G-code supported blocks

Axis Selection

Project Concept

 Technosoft 2022 304 ESM User Manual

6.2.16. G-code supported blocks

 The TML to G-Code converter supports the following G-code words, implemented with the
restrictions presented below:

G-code words supported

M-code words supported

 Technosoft 2022 305 ESM User Manual

Other words supported

Remarks:

1. The home position parameters are set via #5161 - #5186. For details see below the table
G-code parameters supported.

2. The coordinate system parameters are set via #5211 - #5386. For details see below the
table G-code parameters supported.

3. If Stop program or End program M-words are used, and no cycle start button is defined
the program restarts from the beginning of the G-code program imported.

 Technosoft 2022 306 ESM User Manual

4. G-code block M30 is converted to M2. G-code block M60 is converted to M0.Pallet shuttle
commands are not supported.

5. Coolant valve can be set from the “Import G-Code file” dialog. You can set the axis to
which the button is connected, the input line and the polarity.

6. The override percent can be changed from “Import G-Code file” dialog. By default the
override percent is set to 100%.

7. The block delete switch can be enabled from the “Import G-Code file” dialog. By default
this switch is disabled.

8. The optional program stop switch can be enabled from the “Import G-Code file” dialog. By
default this switch is disabled.

9. In “Import G-Code file” dialog you can set values: traverse rate, spindle rate, feed rate,
and the rotation sense. By default the positive sense for the spindle speed is clockwise.

10. The default units are millimeters. In the “Import G-Code file” dialog you can choose
between inch and millimeter.

The G-code letters supported by the G-code to TML converter are:

 Technosoft 2022 307 ESM User Manual

G-code letters supported

The G-code to TML converter supports the following G-code parameters, which could be set
anywhere, in the program:

 Technosoft 2022 308 ESM User Manual

G-code parameters supported

The G-code to TML converter supports the following operands:

- unary: # (parameter setting) , + , - , [(expression start),] (expression end), ABS (absolute
value), ACOS (arc cosine), ASIN (arc sine), ATAN (arc tangent), COS (cosine), EXP (e
raised to the given power), FIX (round down), FUP (round up), LN (natural logarithm),

 Technosoft 2022 309 ESM User Manual

ROUND (round to the nearest whole number), SIN (sine), SQRT (square root), TAN
(tangent), NOT

- binary: + (addition), - (subtraction), * (multiplying), / (division), **(power), AND, OR, XOR,
MOD,

G-code to TML converter restrictions

G-code blocks not supported. The following G-code or M-code blocks are ignored: G38.2, G40,
G41, G42, G43, G45, G49, G61, G61.1, G64, M6.

If the G-code file contains other G-code then the one presented above, an error message will
appear: “Error at line x: unknown G-code yy !” (x is the line number from the G-code file and the
yy the G-code that couldn’t be interpreted or ignored).

The converter doesn’t support any start or program end indicators.

The converter imports only files with .gnc extension.

G-code program length. The length of the G-code program is limited to the multi-axis Motion
Controller available memory for TML programs. You can set this information by selecting in the
Project window left side the Motion Controller application, and press the Memory Settings…
button. The table below shows how many memory locations are needed for G-code
implementation:

G-code block size

 Technosoft 2022 310 ESM User Manual

Remark: Every time the G-code sets a new motion moving plane, an initialization of 36 - 64 words
has to be added. Therefore G-code programs with many plane changes will use more memory
than those with few plane changes. At maximum, a simple G-code file can have up to 760 lines.

See also:

Importing G-code files

 Technosoft 2022 311 ESM User Manual

6.3. Technosoft Motion Language

6.3.1. Basic Concepts

6.3.1.1. Overview

The Technosoft Motion Language (TML) is a high-level language allowing you to:

• Setup a Technosoft intelligent drive/motor for a given application

• Program and execute motion sequences

The setup part consists in assigning the right values for the TML registers and parameters.
Through this process you can:

• Describe your application configuration (as motor and sensors type)

• Select specific operation settings (as motor start mode, PWM mode, sampling rates, etc.)

• Setup the controllers’ parameters (current, speed, position), etc.

The output of the setup process is a set of values – the setup data – to be written in the TML
registers and parameters. The setup data can be:

a) Stored in the drive/motor non-volatile EEPROM, from where it is automatically loaded into
the TML registers and parameters at power-on, if the data integrity check is passed

b) Included at the beginning of a TML program as a set of assignment instructions through
which the TML registers and parameters are initialized with the desired values

Remark: EasySetUp – the latest generation setup tool for Technosoft intelligent drives/motors –
handles the setup process according with option a). IPM Motion Studio – the previous generation
setup tool – handles the setup process according with option b).

The motion programming part allows you to:

• Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)

• Change the motion modes and/or the motion parameters

• Execute homing sequences

• Control the program flow through:

o Conditional jumps and calls of TML functions

o TML interrupts generated on pre-defined or programmable conditions (protections
triggered, transitions on limit switch or capture inputs, etc.)

o Waits for programmed events to occur

 Technosoft 2022 312 ESM User Manual

• Handle digital I/O and analogue input signals

• Execute arithmetic and logic operations

• Perform data transfers between axes

• Control motion of an axis from another one via motion commands sent between axes

• Send commands to a group of axes (multicast). This includes the possibility to start
simultaneously motion sequences on all the axes from the group

• Synchronize all the axes from a network

Due to a powerful instruction set, the motion programming in TML is quick and easy even for
complex motion applications. The result is a high-level motor-independent program which once
conceived may be used in other applications too.

Basic Concepts next topics:

TML Environment

Program Execution

TML Program Structure

TML Instruction Coding

TML Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

TML Description

 Technosoft 2022 313 ESM User Manual

6.3.1.2. TML Environment

The TML environment includes three basic components:

1. “TML processor”

2. Trajectory generator

3. Motor control kernel

The software-implemented “TML processor” represents the core of the TML environment. It
decodes and executes the TML commands. Like any processor, it includes specific elements as
program counter, stack, ALU, interrupt management and registers.

The trajectory generator computes the position, speed, torque or voltage reference at each
sampling step, depending on the selected motion mode.

The motor-control kernel implements the control loops including: the acquisition of the feedback
sensors, the controllers, the PWM commands, the protections, etc.

When the “motion processor” executes a motion command, it translates them into actions upon
the trajectory generator and/or the motor control kernel.

Basic Concepts next topics:

Program Execution

TML Program Structure

TML Instruction Coding

TML Data

Memory Map– Firmware FAxx

Memory Map – Firmware FBxx

AUTORUN mode

See also:

Basic Concepts

TML Description

 Technosoft 2022 314 ESM User Manual

6.3.1.3. Program Execution

The TML programs are executed sequentially, one instruction after the other. A 16-bit instruction
pointer (IP) controls the program flow. As the binary code of a TML instruction may have up to 5
words, during its execution the IP is increased accordingly. When the execution of a TML
instruction ends, the IP always points to the next TML instruction, or more exactly to the first word
of its binary code.

The sequential execution may be interrupted by one of the following causes:

• A TML command received through a communication channel (on-line commands);

• A branch to the interrupt service routine (ISR) when a TML interrupt occurs;

• The need to send the master position to the slave axes when the current axis is set as
master for electronic gearing or camming

• A GOTO, CALL or CALLS instruction;

• A return from a TML function – RET or from a TML interrupt – RETI;

• During the execution of the instructions: WAIT! (wait event), SEG (new contour segment),
PVTP or PT (new PVT or PT point) if the buffer is full, and data transfers between axes of
type local_variable = [x]remote_variable, which all keep the IP unchanged
(i.e. loop on the same instruction) until a specific condition is achieved

• After execution of the END instruction.

The on-line commands have the highest priority and act like interrupts: when an on-line command
is received through any communication channel, it starts to be executed immediately after the
current TML instruction is completed.

If an on-line command is received during a wait loop, the wait loop is temporary suspended, to
permit the execution of the on-line command.

The TML works with 3 types of commands, presented in table below.

The immediate commands may be sent via a communication channel, or can reside in a TML
program. These commands don’t require any wait loops to complete. Their execution is
straightforward and can’t be interrupted by other TML commands.

 Technosoft 2022 315 ESM User Manual

The sequential commands require a wait loop to complete i.e. will not permit the IP to advance
until the wait condition becomes true. In this category enter commands like:

WAIT!; // Wait a programmed event to occur

SEG Time, Increment; // Set a contour segment with parameters Time and

//Increment to be executed when the previous one ends

local_variable = [x]remote_variable; // Get value of remote_variable
from

//axis x and put it in local_variable

The sequential commands can reside only in a TML program saved in the local memory.

Remark: If a sequential command is sent via a communication channel, it is immediately
executed as if the wait loop condition is always true.

The on-line commands may be sent only via a communication channel. These commands can’t
be included in a TML program. The on-line commands do not have an associated mnemonic and
syntax rules as they are do not need to be recognized by the TML compiler. Their code is known
only by the “TML processor”.

Remark: Some of the on-line commands are implemented in debugging tools like the Command
Interpreter, which was specifically designed to allow sending commands via a communication
channel. These commands are presented with a “mnemonic” like that used in the Command
Interpreter. The Command Interpreter is a component present in all the Technosoft applications
for drives/motors setup and TML programming: EasySetUp, EasyMotion Studio, IPM Motion
Studio.

Basic Concepts next topics:

TML Program Structure

TML Instruction Coding

TML Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

Basic Concepts

TML Description

 Technosoft 2022 316 ESM User Manual

6.3.1.4. TML Program Structure

The main section of a TML program starts with the instruction BEGIN and ends with the
instruction END. It is divided into two parts:

• Setup part
• Motion programming part

The setup part starts after BEGIN and lasts until the ENDINIT instruction, meaning “END of
INITitialization”. This part of the TML program consists mainly of assignment instructions, which
shall set the TML registers and the TML parameters in accordance with your application data.
When the ENDINIT command is executed, key features of the TML environment are initialized
according with the setup data. After the ENDINIT execution, the basic configuration involving the
motor and sensors types or the sampling rates cannot be changed unless a reset is performed.

Remark: The setup part can be void when setup data is saved in the EEPROM. In this case, the
setup data is automatically loaded into the TML registers and parameters, at power-on. However,
even in this case in some situations it may still be necessary to perform some setup operations
like:

• Copy of cam tables from the drive/motor EEPROM into the working RAM memory

• Copy of the whole TML program into the RAM in special cases where the EEPROM
memory can’t be used during run time

The motion programming part starts after the ENDINIT instruction until the END instruction. All the
TML programs (the main section) should end with the TML instruction END. When END
instruction is encountered, the sequential execution of a TML program is stopped.

Apart from the main section, a TML program also includes the TML interrupt vectors table, the
interrupt service routines (ISRs) for the TML interrupts and the TML functions. A typical structure
for a TML program is presented in figure below.

Typical structure of a TML Program

 Technosoft 2022 317 ESM User Manual

Basic Concepts next topics:

TML Instruction Coding

TML Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

Basic Concepts

TML Description

 Technosoft 2022 318 ESM User Manual

6.3.1.5. TML Instruction Coding

The TML instruction code consists of 1 to 5, 16-bit words. The first word is the operation code.
The rest of words (if present) represent the instruction data words. The operation code is divided
into two fields: Bits 15-9 represent the code for the operation category.

For example all TML instructions that perform addition of two integer variables share the same
operation category code. The remaining bits 8-0 represent the operand ID that is specific for each
instruction.

Basic Concepts next topics:

TML Data

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

See also:

Basic Concepts

TML Description

 Technosoft 2022 319 ESM User Manual

6.3.1.6. TML Data

The TML works with the following categories of data:

• TML Registers

• TML Parameters

• TML Variables

• User Variables

All TML data are identified by their name. The names of the TML registers, parameters or
variables are predefined and do not require to be declared. The names of the user variables are
at your choice. You need to declare the user variables before using them.

The TML uses the following data types:

• int 16-bit signed integer

• uint 16-bit unsigned integer

• fixed 32-bit fixed-point data with the 16MSB for the integer part and the 16LSB for the
factionary part.

• long 32-bit signed integer

• ulong 32-bit unsigned integer

The data type uint or ulong are reserved for the TML predefined data. The user-defined
variables are always signed. Hence you may declare them of type: int, fixed or long.

Remark: An unsigned TML data means that in the firmware its value is interpreted as unsigned.
Typical examples: register values, time-related variables, protection limits for signals that may
have only positive values like temperature or supply voltage, etc. However, the same data will
interpreted as signed if it is used in a TML instruction whose operands are treated as signed
values.

Each TML data has an associated address. This represents the address of the data memory
location where the TML data exists. Address ranges for TML registers, variables and parameters
are from 0x0200 to 0x03AF and from 0x0800 to 0x09FF. For user-defined variables the address
range is between 0x03B0 and 0x03FF. In TML the data components may be addressed in several
ways:

• direct, using their name in the TML instruction mnemonic

Example:

CPOS = 2000; // write 2000 in CPOS parameter (command position)

 Technosoft 2022 320 ESM User Manual

• indirect, using a pointer variable. The pointer value is the address of the data component
to work with

Example:

user_var = 0x29E; // write hexadecimal value 0x29E representing CPOS
address in

 // the user-defined pointer variable user_var

(user_var),dm = 2000; // write 2000 in the data memory address pointed by

 // user_var i.e. in the CPOS parameter

• direct with extended address, using the TML data name

Example:

CPOS,dm = 2000; // write 2000 in CPOS using direct mode with extended address

In the TML instructions the operands (variables) are grouped into 2 categories:

• V16. In this category enter all the 16-bit data from all the categories: TML registers, TML
parameters, TML variables, and user parameters. From the execution point of view, the
TML makes no difference between them.

• V32. In this category enter all the 32-bit data either long or fixed from all the categories:
TML registers, TML parameters, TML variables, and user parameters. From the execution
point of view, the TML makes no difference between them.

Remarks:

• It is possible to address only the high or low part of a 32-bit data, using the suffix (H) or
(L) after the variable name.

Examples:

CPOS(L) = 0x4321; // write hexadecimal value 0x4321 in low part of CPOS

CPOS(H) = 0x8765; // write hexadecimal value 0x8765 in high part of CPOS

 // following the last 2 commands, CPOS = 0x87654321

• The TML compiler always checks the data type. It returns an error if an operand has an
incompatible data type or if the operands are not of the same type

• A write operation using indirect addressing is performed on one or two words function of
the data type. If the data is a 16-bit integer, the write is done at the specified address. If
the data is fixed or long the write is performed at the specified address and the next one.
A fixed data is recognized by the presence of the dot, for example: 2. or 1.5. A long
variable is automatically recognized when its size is outside the 16-bit integer range or in
case of smaller values by the presence of the suffix L, for example: 200L or –1L.

 Technosoft 2022 321 ESM User Manual

 Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var),dm = 1000000;// write 1000000 (0xF4240) in the CPOS parameter i.e.

 // 0x4240 at address 0x29E and 0xF at next
address 0x29F

(user_var),dm = -1;// write -1 (0xFFFF) in CPOS(L). CPOS(H) remains unchanged

(user_var),dm = -1L;// write –1 seen as a long variable (0xFFFFFFFF) in CPOS i.e.

 // CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF

user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e.

 // 0x8000 at address 0x2A0 and 0x1 at next address
0x2A1

• In an indirect addressing, if the pointer variable if followed by + sign, it is automatically
incremented by 1 or 2 depending on the data type: 1 for integer, 2 for fixed or long data.

 Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var+),dm = 1000L; // write 1000 seen as long in CPOS, then increment

 // user_var by 2

(user_var+),dm = 1000; // write 1000 seen as int at address 0x29A (0x29E+2) ,

 // then increment user_var by 1

TML Data categories:

TML Registers

TML Parameters

TML Variables

User Variables

Basic Concepts next topics:

Memory Map – Firmware version FAxx

Memory Map – Firmware version FBxx

AUTORUN mode

 Technosoft 2022 322 ESM User Manual

See also:

Basic Concepts

TML Description

6.3.1.6.1. TML Registers

There are 3 categories of TML registers:

• Configuration registers

• Command registers

• Status registers

The configuration registers contain essential configuration information like motor and sensors
type, or basic operation settings like PWM mode, motor start method, etc. The configuration
registers must be set up during the setup part before the ENDINIT instruction

The command registers hold configuration settings that may be changed during motion. These
settings refer to the activation/deactivation of software protections, to the use of TML interrupts
and to communication options.

The status registers provide information about drive/motor condition: errors and protections
triggered, communication, active motion mode and control loops, TML interrupts. The status
registers can be used to detect events and to make decisions in a TML program.

Configuration registers (R/W):

ACR – Auxiliary Control Register. Defines extra settings like: the configuration for automatic start
and the external reference, operation options for the S-curve and the electronic camming modes.

OSR – Operating Settings Register. Defines some specific operating settings regarding motor
control and data acquisition

SCR – System Configuration Register. Defines the basic application configuration regarding the
motor type and the feedback sensors used

UPGRADE – Upgrade Register. Defines new options and extended features which are activated
when their corresponding bits are set to 1

Command registers (R/W):

CCR – Communication Control Register. Contains settings for the SPI link with the EEPROM

ICR – Interrupt Control Register. Enables/disables TML interrupts

MCR – Motion Command Register. Configures the motion modes: reference mode, active control
loops, positioning type - absolute or relative, etc.

 Technosoft 2022 323 ESM User Manual

PCR.7-0 – Protections Control Register. Activates different drive/motor protections like: over-
current, I2t drive and motor, over- and under-voltage and over-temperature.

Status registers (RO):

AAR – Axis Address Register. Contains the Axis ID and the group ID of the drive/motor.

CBR – CAN Baud rate Register. Contains the current settings for CANbus baud-rate.

CER – Communication Error Register. Contains error flags for the communication channels.

CSR – Communication Status Register. Contains status flags for the communication channels.

ISR – Interrupt Status Register. Contains interrupt flags set by the TML interrupt conditions.

MER – Motion Error Register. Groups all the errors conditions.

MSR – Motion Status Register. Gives indications about the motion status and some specific
events like: control error condition, position wrap-around, limit switches and captures triggered by
programmed transitions, etc.

PCR.14-8 – Protections Control Register. Contains flags set by the protections set in PCR.7-0.

SRL – Status Register Low. Low part of a 32-bit register grouping together all the key status
information concerning the drive/motor

SRH – Status Register High. High part of a 32-bit register grouping together all the key status
information concerning the drive/motor

SSR – Slave Status Register. Groups initialization information related to slave axes commanded
by the motion controller

The TML registers are treated like any other TML parameter or variable in the TML program. The
configuration and command registers may be read or written. The status registers may only be
read.

Remark: The setup tools set automatically the configuration and command registers. The most
important status information is grouped in 2 registers: MER - the Motion Error Register and SRL,
SRH – the Status Register Low and High part. They have been specifically designed to provide
you all the key information about the drive/motor status.

See also:

TML Data

TML Parameters

TML Variables

User Variables

 Technosoft 2022 324 ESM User Manual

6.3.1.6.2. TML Parameters

The TML parameters allow you to setup the parameters of the TML environment according with
your application data. Though most of the TML parameters have their own address, there are
some that share the same memory address. They are used in application configurations that
exclude each other, and thus are not needed at the same time.

Some TML parameters must be setup during the initialization phase. They are used to define the
real-time kernel, including the PWM frequency and the control loops sampling periods, and should
not be changed after the execution of the ENDINIT command. The other parameters can be
initialized, used and changed any time, before or after the ENDINIT command.

See also:

TML Data

TML Registers

TML Variables

User Variables

6.3.1.6.3. TML Variables

The TML variables provide you status information about the TML environment like the motor
position, speed and current, the position, speed and current commands, etc. These values may
be used to take decisions in the motion program or for analysis and debug.

The TML variables are read-only (RO). Modifying their value during motion execution may cause
an improper operation of the drive/motor. There are however, specific situations when some TML
variables may also be written (R/W variables).

Most of the TML variables are internally initialized after power-on, or during the setup phase up to
the execution of the ENDINIT command.

Activating the on-chip logger module, real-time data tracking can also be implemented for any of
these variables.

See also:

TML Data

TML Registers

TML Parameters

User Variables

 Technosoft 2022 325 ESM User Manual

6.3.1.6.4. TML User Variables

Besides the TML pre-defined variables, you can also define your own user variables. You can use
your variables in any TML instruction accepting variables of the same type.

The user variables type can be: integer, fixed (point) or long (integer) (see table below).

The address of the user variables is automatically set in the order of declaration starting with
0x03B0. First integer variable takes address 0x3B0, next one 0x3B1, etc. An int variable takes
one memory location. A long or fixed variable takes 2 consecutive memory locations. In this
case the variable address is the lowest one.

Example:
 int user_var1; // user_var1 address is 0x3B0

 long user_var2; // user_var2 address is 0x3B1

 fixed user_var3; // user_var3 address is 0c3B3

 int user_var4; // user_var4 address is 0x3B5

Remark: you have to declare a user variable before using it first time.

See also:

TML Data

TML Registers

TML Parameters

TML Variables

 Technosoft 2022 326 ESM User Manual

6.3.1.7. Memory Map - Firmware FAxx

Technosoft drives/motors work with 2 separate address spaces: one for TML programs and the
other for data. Each space accommodates a total of 64K 16-bit word.

The first 16K of the TML program space (0 to 3FFFh) is reserved and can’t be used. The next
16K, from 4000h to 7FFFh are mapped to a serial SPI-connected EEPROM with the maximum
size 32K bytes (seen as 16K 16-bit words). The exact amount of EEPROM memory is specific for
each drive/motor. This space is used to store TML programs, cam tables, the setup data and the
product ID.

The recommended way to use the EEPROM memory space is:

• TML programs from the beginning of the EEPROM, starting with first address 4000h

• Cam tables, after the TML program, until the beginning of the setup data

• Setup data and product ID. Other data until the end of the EEPROM

Remarks:

• The space needed for the setup data and the product ID is automatically computed by
EasySetUp

• The overall dimension of a TML program includes apart from the main section, the TML
interrupt vectors table, the interrupt service routines (ISRs) for the TML interrupts and the
TML functions

For most of the Technosoft drives/motors, the next 2K of the TML program space from 8000h to
87FFh represent the drive/motor internal RAM memory. From it, the first 270h, from 8000h to
826Fh are reserved for the internal use. The rest from 8270h to 87FFh may be used to temporary
store TML programs. The remaining TML program space from 8800h to FFFFh is invalid. Some
Technosoft drives have an extended internal RAM going from 8000h to FFFFh. From it, the first
270h are reserved for the internal use. In this case, the TML programs space goes from 8270h to
FFFFh.

The data memory space is used to store the TML data (registers, parameters, variables), the cam
tables during runtime (after being copied from the EEPROM memory) and for data acquisitions.
The TML data are stored in a reserved area, while the others are using the same internal RAM
memory used for TML programs. Though physically the RAM memory is the same for both, the
TML programs and data, the first 2K are mapped at different address ranges: The TML program
space from 8000h to 87FFh is seen in the data space from 800h to 9FFh. As the first 270h from it
are reserved, the effective data memory space goes from A70h to FFFh. Apart from this space,
the drives with extended internal RAM have another 32k of data memory, from 0x8000 to 0xFFFF.

Remark: As the same RAM memory is used both for TML programs and for data, it is the user
responsibility to decide how to split these spaces in order to avoid their overlap.

The recommended way to use the RAM memory (both for TML programs and data) is:

 Technosoft 2022 327 ESM User Manual

• TML programs from the beginning of the SRAM memory

• Data acquisitions, after the TML programs

• Cam tables, after data acquisitions, until the end of the RAM

In the case of the drives/motors with normal RAM memory, you should start by checking if or how
much space you need to reserve for cam tables, and use the rest of the SRAM for data
acquisitions. As concerns the TML programs, it is highly preferable to store them in the EEPROM.

Remark: In configurations with feedback devices like the SSI or EnDat encoders, the TML
programs must execute from SRAM memory. This is because these feedback devices are using
the same SPI interface to read the feedback position like the EEPROM, which is disabled after the
execution of ENDINIT command. Therefore, at power-on, the TML program needs to be copied
from the EEPROM into the RAM where it is executed

Basic Concepts next topics:

AUTORUN mode

See also:

Basic Concepts

TML Description

 Technosoft 2022 328 ESM User Manual

6.3.1.8. Memory Map - Firmware FBxx

Technosoft drives/motors work with 2 separate address spaces: one for TML programs and the
other for data. Each space accommodates a total of 64K 16-bit word.

The first 16K of the TML program space (0 to 3FFFh) is reserved and can’t be used. The next
16K, from 4000h to 7FFFh are mapped to a serial SPI-connected EEPROM with the maximum
size 32K bytes (seen as 16K 16-bit words). The exact amount of EEPROM memory is specific for
each drive/motor. This space is used to store TML programs, cam tables, the setup data and the
product ID.

The recommended way to use the EEPROM memory space is:

• TML programs from the beginning of the EEPROM, starting with first address 4000h

• Cam tables, after the TML program, until the beginning of the setup data

• Setup data and product ID. Other data until the end of the EEPROM

Remarks:

• The space needed for the setup data and the product ID is automatically computed by
EasyMotion Studio

• The overall dimension of a TML program includes apart from the main section, the TML
interrupt vectors table, the interrupt service routines (ISRs) for the TML interrupts and the
TML functions

For most of the Technosoft drives/motors, the next 4K of the TML program space, from 9000h to
9FFFh, represents the drive/motor internal RAM memory. The memory space may be used to
temporary store TML programs.

The data memory space is used to store the PVT buffer, the cam tables during runtime (after
being copied from the EEPROM memory) and for data acquisitions. The TML data are stored in a
reserved area, while the others are using the same internal RAM memory used for TML
programs.

Remark: As the same RAM memory is used both for TML programs and for data, it is the user
responsibility to decide how to split these spaces in order to avoid their overlap.

The recommended way to use the RAM memory (both for TML programs and data) is:

• TML programs from the beginning of the SRAM memory

• Data acquisitions, after the TML programs

• Cam tables, after data acquisitions, until the end of the RAM

You should start by checking if or how much space you need to reserve for cam tables, and use
the rest of the SRAM for data acquisitions. As concerns the TML programs, it is highly preferable
to store them in the EEPROM.

 Technosoft 2022 329 ESM User Manual

Remark: In configurations with feedback devices like the SSI or EnDat encoders, the TML
programs must execute from SRAM memory. This is because these feedback devices are using
the same SPI interface to read the feedback position like the EEPROM, which is disabled after the
execution of ENDINIT command. Therefore, at power-on, the TML program needs to be copied
from the EEPROM into the RAM where it is executed

Basic Concepts next topics:

AUTORUN mode

See also:

Basic Concepts

TML Description

 Technosoft 2022 330 ESM User Manual

6.3.1.9. AUTORUN Mode

The Technosoft drives/motors have 2 startup modes, at power on: AUTORUN and slave

In the AUTO(matic) RUN(ning) mode, the drive/motor reads the first EEPROM memory location at
address 0x4000 and checks if the binary code is 0x649C corresponding to the TML instruction
BEGIN. If this condition is true, the TML program saved in the EEPROM memory is executed
starting with the next instruction after BEGIN. If the condition is false, the drive/motor enters in
the slave mode and waits to receive commands from a host via a communication channel. The
AUTORUN mode, offers the possibility to execute automatically after power-on a TML program
saved into the drive/motor EEPROM memory.

In the slave mode, even if there is a valid TML program in the EEPROM, this is not executed,
because the drive/motor forces the execution of the END command which stops the TML program
execution.

Some of the Technosoft drives/motors are automatically set in the AUTORUN mode. Others have
a dedicated switch or jumper through which you can set either the AUTORUN mode or the slave
mode.

During a TML program execution, a drive/motor can enter in the slave mode and stop the TML
program execution in the following cases:

• After the execution of the END command

• After receiving a STOP command from an external device, via a communication channel

• After an entering in FAULT status, due to a protection triggered

Remark: When a drive/motor is set in AUTORUN mode, to change the TML program you have to
do to the following operations:

Send via a communication channel the TML command END, to stop the current program
execution, followed by AXISOFF to disable the drive power stage

Download the new TML program

Reset the drive. The new TML program will start to execute.

See also:

Basic Concepts

TML Description

 Technosoft 2022 331 ESM User Manual

6.3.2. TML Description

6.3.2.1. Overview

The TML provides instructions for the following categories of operations:

• Motion programming and control. These instructions allow you to program Technosoft
motion controllers or intelligent drives/motors in order to set different motion modes and
trajectories. These are divided into 2 categories function of how the motion reference is
generated:

• Motion modes with reference provided by an external device via an analog input,
pulse & direction signals, a master encoder or via a communication channel

• Motion modes with reference computed by the internal reference generator. In this
category enter all the other motion modes

You can program one of the following motion modes:

• Trapezoidal Position Profile

• Trapezoidal Speed Profile

• S-Curve Profile

• Position-Time (PT) Interpolated

• Position-Velocity-Time (PVT) Interpolated

• External

• Electronic Gearing (alone or superposed with another motion mode)

• Electronic Camming

• Homing

• Contouring

• Test

• Linear Interpolation

• Vector Mode

and control their execution via a set of Motor Commands.

Remark: The Linear Interpolation and Vector Mode are coordinated motion modes
available in applications developed for Technosoft Motion Controller.

• Program flow control. In the TML you can control the program execution in 3 ways:

 Technosoft 2022 332 ESM User Manual

• By setting an event to be monitored and waiting the event occurrence

• Through jumps and TML function calls

• Through the TML interrupts which can be triggered in certain conditions

• I/O handling

Firmware FAxx

• General-purpose I/O

• Special I/O: enable, capture and limit switch inputs

 Firmware FBxx

• General-purpose I/O

• Special I/O MC3: enable, capture and limit switch inputs

• Assignment and data transfer

• Setup 16 bit variable

• Setup 32 bit variable

• Arithmetic and logic manipulation

• Multi axis control

• Axis identification

• Axis synchronization

• Data transfer between axes

• Remote control

• Monitoring. You can check the motion progress as well as the drive/motor status via

• Position Triggers

• Status Register

• Error Register

• Messages sent to the host

 Technosoft 2022 333 ESM User Manual

• Slaves Management. From the motion controller application you can perform:

• Slaves Initialization

• Program events on slave axes and wait for their occurrence

• Homing and Function Calls from slave axes

• Slave Error Handling

• Miscellaneous including:

• Declare user variable

• Reset FAULT status

• Save actual setup data from RAM into EEPROM in the setup table

• Change the CAN bus and serial RS232 / RS485 communication settings

See also:

Basic Concepts

6.3.2.2. Motion programming – drives with built-in Motion Controller

6.3.2.2.1. Trapezoidal Position Profiles - TML Programming
Details

In the trapezoidal position profile, the load/motor is controlled in position. The built-in reference
generator computes a position profile with a trapezoidal shape of the speed, due to a limited
acceleration. You specify either a position to reach in absolute mode or a position increment in
relative mode, plus the slew (maximum travel) speed and the acceleration/deceleration rate. In
relative mode, the position to reach can be computed in 2 ways: standard (default) or additive. In
standard relative mode, the position to reach is computed by adding the position increment to the
instantaneous position in the moment when the command is executed. In the additive relative
mode, the position to reach is computed by adding the position increment to the previous position
to reach, independently of the moment when the command was issued. The additive relative
mode is activated by setting ACR.11 = 1.

Remarks:

• The motion mode and its parameters become effective after the execution of the update
command UPD

 Technosoft 2022 334 ESM User Manual

• The additive relative mode is automatically disabled after an the update command UPD,
which sets ACR.11 = 0 restoring the standard relative mode

You can switch at any moment, including during motion, from another motion mode to the
trapezoidal position profile. This operation is possible due to the target update mode 0 TUM0
which is automatically activated when a new motion mode is set.

During motion, you can change on the fly the position command, the slew speed and the
acceleration/deceleration rate. These changes become effective at next update command UPD.

Position profile with trapezoidal shape of the speed

Once set, the motion parameters are memorized. If you intend to use the same values as
previously defined for the acceleration rate, the slew speed, the position increment or the position
to reach, you don’t need to set their values again in the following trapezoidal profiles.

Remark: The additive mode for relative positioning is not memorized and must be set each time a
new additive relative move is set.

See also:

Trapezoidal Position Profiles – Related TML Instruction and Data

Trapezoidal Position Profiles – On the fly change of the motion parameters

Trapezoidal Position Profiles – Automatic elimination of round-off errors

TML Description

 Technosoft 2022 335 ESM User Manual

6.3.2.2.2. Trapezoidal Position Profiles - Related TML
Instructions and Data

Parameters

CPOS Command position – desired position (absolute or relative) for the load. Measured in
position units.

CSPD Command speed – desired slew speed for the load. The command speed can have only
positive values. Measured in speed units.

CACC Command acceleration – desired acceleration / deceleration for the load. The command
acceleration can have only positive values. Measured in acceleration units

ACR Auxiliary Control Register – includes several TML programming options

Variables

TPOS Target load position – position reference computed by the reference generator at
each slow loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at
each slow loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in
acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units

ASPD_MT Actual motor speed. Measured in motor speed units Alternate name: ASPD

Instructions

CPR Command position is relative

CPA Command position is absolute

MODE PP Set position profile mode

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from
the actual values of position and speed reference (i.e. don’t update the reference
values with load/motor position and speed)

 Technosoft 2022 336 ESM User Manual

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from
the actual values of load/motor position and speed (i.e. update the reference
values with load/motor position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a TML data

Remarks:

• CSPD and CACC must be positive. Negative values are taken in modulus

• The difference between CPOS and TPOS values in modulus must be maximum 231-1.

• The sum between CSPD and CACC values must be maximum 32767.99998
(0x7FFF.FFFF) i.e. the maximum value for fixed number

• Once a position profile is started, you can find when the motion is completed, by setting
an event on motion complete and waiting until this event occurs.

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
MODE PP command and BEFORE the UPD command. When MODE PP is executed, it
automatically sets TUM0 mode. However, as the new motion mode becomes effective
only after the UPD command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

TUM1; //set Target Update Mode 1

 Technosoft 2022 337 ESM User Manual

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

Trapezoidal Position Profiles – TML Programming Details

Trapezoidal Position Profiles – On the fly change of the motion parameters

Trapezoidal Position Profiles – Automatic elimination of round-off errors

TML Description

 Technosoft 2022 338 ESM User Manual

6.3.2.2.3. Trapezoidal Position Profiles - On the fly change of
the motion parameters

In the trapezoidal position profile mode, the motion parameters CPOS, CSPD, CACC can be
changed any time during motion. The reference generator automatically re-computes the position
trajectory in order to reach the new commanded position, using the new values for slew speed
and acceleration.

The figure below shows an example where slew speed and acceleration rate are changed, while
the commanded position is kept the same.

 Trapezoidal position profile. On-the-fly change of motion parameters

Programming Example
// Position profile already set. CACC and CSPD

// are changed during motion

CACC = 2; //acceleration rate = 2 [internal units]

CSPD = 8; //slew speed = 8 [internal units]

UPD; //execute immediate

If the trapezoidal position profile is already set and you intend to change only the motion
parameters, you don’t need to set again neither the motion mode with TML instruction MODE PP,
nor the target update mode 1 (when required) with TML instruction TUM1.

If during motion, a new position command is issued that requires reversing the motor movement,
the reference generator does automatically the following operations:

• stops the motor with the programmed deceleration rate

• accelerates the motor in the opposite direction till the slew speed is reached, or till the
motor has to decelerate

 Technosoft 2022 339 ESM User Manual

• stops the motor on the commanded position

See also:

Trapezoidal Position Profiles – TML Programming Details

Trapezoidal Position Profiles – Related TML Instruction and Data

Trapezoidal Position Profiles – Automatic elimination of round-off errors

TML Description

 Technosoft 2022 340 ESM User Manual

6.3.2.2.4. Trapezoidal Position Profiles - Automatic
elimination of round-off errors

In trapezoidal position profile mode, the reference generator automatically eliminates the round-off
errors, which may occur when the commanded position cannot be reached with the programmed
slew speed and acceleration/deceleration rate. This situation is illustrated by the example below,
where the position feedback is an incremental encoder. Therefore, the internal units for position
are [encoder counts], for speed are [encoder counts / slow loop sampling], for acceleration are
[encoder counts / square of slow loop sampling]

Example:
The commanded position is 258 counts, with the slew speed 18 counts/sampling and the
acceleration rate 4 counts/sampling2. To reach the slew speed, two options are available:

• Accelerate to 16 in 4 steps, then from 16 to 18 in a 5th step. Acceleration space is 49
counts

• Accelerate from 0 to 2 in 1st step, then from 2 to 18 in 4 steps. Acceleration space is 41
counts

For the deceleration phase, the options and spaces are the same. But, no matter which option is
used for the acceleration and deceleration phases, the space that remains to be done at constant
speed is not a multiple of 18, i.e. the position increment at each step.

So, when to start the deceleration phase? Table below presents the possible options, and the
expected errors.

TML comes with a different approach. It monitors the round-off errors and automatically eliminates
them by introducing, during deceleration phase, short periods where the target speed is kept
constant. Hence, the target position is always reached precisely, without any errors.

 Technosoft 2022 341 ESM User Manual

Trapezoidal Position profile. Automatic elimination of round-off errors

The figure above shows the target speed generated by TML for the above example. During the
deceleration phase, the target speed:

• decelerates from 18 to 6 in 3 steps (target position advances by 36 counts)

• is kept constant for 1 step (target position advances by 6 counts)

• decelerates from 6 to 2 in one step (target position advances by 4 counts)

• decelerates from 2 to 0 in the last step (target position advances by 1 count)

Hence the deceleration space is 47 counts, which, added to 49 counts for acceleration phase and
to the 162 counts for constant speed, gives exactly the 258-count commanded position.

See also:

Trapezoidal Position Profiles – TML Programming Details

Trapezoidal Position Profiles – Related TML Instruction and Data

Trapezoidal Position Profiles – On the fly change of the motion parameters

TML Description

 Technosoft 2022 342 ESM User Manual

6.3.2.2.5. Trapezoidal Speed Profiles - TML Programming
Details

In the speed profile, the load/motor is controlled in speed. The built-in reference generator
computes a speed profile with a trapezoidal shape, due to a limited acceleration. You specify the
jog speed (speed sign specifies the direction) and the acceleration/deceleration rate. The
load/motor accelerates until the jog speed is reached. During motion, you can change on the fly
the slew speed and/or the acceleration/deceleration rate. The motion will continue until a STOP
command. An alternate way to stop motion is to set the jog speed to zero.

Speed profile with trapezoidal shape

Remark: The motion mode and its parameters become effective after the execution of the update
command UPD. Changes of the slew speed and/or acceleration/deceleration rate also become
effective at next update command.

You can switch at any moment, including during motion, from another motion mode to the
trapezoidal speed profile. This operation is possible due to the target update mode 0 TUM0 which
is automatically activated when a new motion mode is set.

Once set, the motion parameters are memorized. If you intend to use the same values as
previously defined for the acceleration rate and the jog speed, you don’t need to set their values
again in the following trapezoidal profiles.

See also:

Trapezoidal Speed Profiles – Related TML Instructions and Data

TML Description

 Technosoft 2022 343 ESM User Manual

6.3.2.2.6. Trapezoidal Speed Profiles - Related TML
Instructions and Data

Parameters

CSPD Command speed – desired slew speed for the load. The sign specifies the direction.
Measured in speed units

CACC Command acceleration – desired acceleration / deceleration for the load. The command
acceleration can have only positive values. Measured in acceleration units.

Variables

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period. TPOS is computed by integrating the target speed TSPD.Measured in
position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the reference
generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS.

ASPD_LD Actual load speed – measured in speed units.

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

MODE SP Set speed profile mode

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values
of position and speed reference (i.e. don’t update the reference values with load/motor position
and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values
of load/motor position and speed (i.e. update the reference values with load/motor position and
speed)

UPD Update motion parameters and start new motion mode

STOP STOP the motion.

 Technosoft 2022 344 ESM User Manual

Remarks:

• The sum between CSPD and CACC values must be maximum 32767.99998
(0x7FFF.FFFF) i.e. the maximum value for fixed number.

• After a STOP command or after setting jog speed command to zero, you can find when
the motion is completed, by setting an event on motion complete and waiting until this
event occurs.

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
MODE SP command and BEFORE the UPD command. When MODE SP is executed, it
automatically sets TUM0 mode. However, as the new motion mode becomes effective
only after the UPD command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
// Speed profile with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

CACC = 0.1591;//acceleration rate = 500[rad/s^2]

CSPD = 40;//jog speed = 1200[rpm]

MODE SP; // set trapezoidal speed profile mode

TUM1; //set Target Update Mode 1

UPD; //execute immediate

See also:

Trapezoidal Speed Profiles – TML Programming Details

TML Description

 Technosoft 2022 345 ESM User Manual

6.3.2.2.7. S-curve Profiles - TML Programming Details

In the S-curve profile, the load/motor is controlled in position. The built-in reference generator
computes a position profile with an S-curve shape of the speed. This shape is due to the jerk
limitation, leading to a trapezoidal or triangular profile for the acceleration and an S-curve profile
for the speed. You specify either a position to reach in absolute mode or a position increment in
relative mode, plus the slew (maximum travel) speed, the maximum acceleration/deceleration rate
and the jerk rate. The jerk rate is set indirectly via the jerk time, which represents the time needed
to reach the maximum acceleration starting from zero.

Remarks:

• The motion mode and its parameters become effective after the execution of the update
command UPD

• The jerk rate results by dividing the maximum acceleration rate to the jerk time.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion. During an S-curve execution, you can switch at any moment to another motion mode
(except PVT and PT interpolated modes) or stop the motion with a STOP command.

Following a STOP command, the deceleration phase can be done in 2 ways:

• Smooth, using an S-curve speed profile, when ACR.1 = 0 (default), or

• Fast using a trapezoidal speed profile, when ACR.1 = 1

 Technosoft 2022 346 ESM User Manual

Position profile with S-curve shape of the speed

Once set, the motion parameters are memorized. If you intend to use the same values as
previously defined for the acceleration rate, the slew speed, the position increment or the position
to reach, you don’t need to set their values again in the following trapezoidal profiles.

See also:

S Curve Profile – Related TML Instructions and Data

TML Description

 Technosoft 2022 347 ESM User Manual

6.3.2.2.8. S Curve Profile - Related TML Instructions and Data

Parameters

CPOS Command position – desired position (absolute or relative) for the load. Measured in
position units

CSPD Command speed – desired slew speed for the load. Measured in speed units

CACC Command acceleration – maximum desired acceleration / deceleration for the load.
Measured in acceleration units

CDEC Command deceleration for quick stop mode. Measured in acceleration units

TJERK Jerk time needed to accelerate from zero up to the CACC value. Measured in time units

ACR Auxiliary Control Register – includes several TML programming options

Variables

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD
Instructions

CPR Command position is relative

CPA Command position is absolute

MODE PSC Set S-curve mode.

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a TML data

 Technosoft 2022 348 ESM User Manual

Remarks:

• CSPD, CACC and TJERK must be positive

• The difference between CPOS and TPOS values in modulus must be maximum 231-1.

• The sum between CSPD and CACC values must be maximum 32767.99998
(0x7FFF.FFFF) i.e. the maximum value for fixed number

• Once a position profile is started, you can find when the motion is completed, by setting
an event on motion complete and waiting until this event occurs.

• The S-curve profile uses always TUM1 mode, i.e. preserves the values of TPOS and
TSPD. If these values don’t match with the actual feedback values, precede the S-curve
command with another motion command accepting TUM0 to update TPOS and TSPD.
This command may be for example a trapezoidal profile that keeps position unchanged

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
// S-curve profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

TJERK = 50;//jerk = 2e+004[rad/s^3]

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PSC; // set S-curve profile mode

SRB ACR, 0xFFFE, 0x0000; //Stop using an S-curve profile

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

S Curve Profile – TML Programming Details

TML Description

 Technosoft 2022 349 ESM User Manual

6.3.2.2.9. Position-Time (PT) Interpolated - TML Programming
Details

In the PT motion mode the load/motor is controlled in position. The built-in reference generator
computes a positioning path using a series of points. Each point specifies the desired Position,
and Time, i.e. contains a PT data. Between the PT points the reference generator performs a
linear interpolation.

The PT Interpolated mode is typically used together with a host, which sends PT points via a
communication channel. Due to the interpolation, the PT mode offers the possibility to describe an
arbitrary position contour using a reduced number of points. It is particularly useful when the
motion reference is computed on the fly by the host like for example in vision systems. By
reducing the number of points, both the computation power and the communication bandwidth
needed are substantially reduced optimizing the costs. When the PT motion mode is used
simultaneously with several drives/motors having the time synchronization mechanism activated,
the result is a very powerful multi-axis system that can execute complex synchronized moves.

The PT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode. The PT mode can be relative (following a
CPR command) or absolute (following a CPA command). In the absolute mode, each PT point
specifies the position to reach. The initial position may be either the current position reference
TPOS or a preset value read from the TML parameter PVTPOS0. In the relative mode, each PT
point specifies the position increment relative to the previous point. In both cases, the time is
relative to the previous point i.e. represents the duration of a PT segment. For the first PT point,
the time is measured from the starting of the PT mode.

Each time when a new PT point is read from a TML program or received via a communication
channel, it is saved into the PT buffer. The reference generator empties the buffer as the PT
points are executed. The PT buffer is of type FIFO (first in, first out). The default length of the PT
buffer is 7 PT points. The drive/motor automatically sends messages to the host when the buffer
is full, low or empty. The messages contain the PT status (TML variable PVTSTS). The host
address is taken from the TML parameter MASTERID. The buffer full condition occurs when the
number of PT points in the buffer is equal with the buffer size. The buffer low condition occurs
when the number of PT points in the buffer is less or equal with a programmable value – the low
level. The buffer empty condition occurs when the buffer is empty and the execution of the last PT
point is over. When the PT buffer becomes empty the drive/motor keeps the position reference
unchanged.

Remarks:

• The PVT and PT modes share the same buffer. Therefore the TML parameters and variables
associated with the buffer management are the same.

• Before activating the PT mode, you must place at least one PT point in the buffer

• The buffer low condition is set by default when the last PT point from the buffer is read and
starts to be executed

 Technosoft 2022 350 ESM User Manual

• Both the PT buffer size and its start address are programmable via TML parameters
PVTBUFBEGIN and PVTBUFLEN. Therefore if needed, the PT buffer size can be substantially
increased.

Each PT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PT point is sent to the drive/motor. If the
integrity counter error checking is activated, the drive compares its internally computed integrity
counter value with the one sent with the PT point (i.e. with the PTP command). This comparison is
done every time a PTP instruction is received. If the values of the two integrity counters do not
match, the integrity check error is triggered, the drive/motor sends the PVTSTS to the host with
PVTSTS.12 =1 and the received PT point is discarded. Each time a PT point is accepted (the
integrity counters match or the integrity counter error checking is disabled), the drive automatically
increments its internal integrity counter. The default value of the internal integrity counter after
power up is 0. Its current value can be read from the TML variable PVTSTS (bits 6..0). The
integrity counter can also be set to any value using TML command SETPT.

See also:

PT – Related TML Instructions and Data

TML Description

6.3.2.2.10. Position-Velocity-Time(PVT) Interpolated - TML
Programming Details

In the PVT motion mode the load/motor is controlled in position. The built-in reference generator
computes a positioning path using a series of points. Each point specifies the desired Position,
Velocity and Time, i.e. contains a PVT data. Between the PVT points the reference generator
performs a 3rd order interpolation.

The PVT Interpolated mode is typically used together with a host, which sends PVT points via a
communication channel. Due to the 3rd order interpolation, the PVT mode offers the possibility to
describe complex position contours using a reduced number of points. It is particularly useful
when the motion reference is computed on the fly by the host like for example in vision systems.
By reducing the number of points, both the computation power and the communication bandwidth
needed are substantially reduced optimizing the costs. When the PVT motion mode is used
simultaneously with several drives/motors having the time synchronization mechanism activated,
the result is a very powerful multi-axis system that can execute complex synchronized moves.

A key factor for getting a correct positioning path in PVT mode is to set correctly the distance in
time between the points. Typically this is 10-20ms, the shorter the better. If the distance in time
between the PVT points is too big, the 3rd order interpolation may lead to important variations
compared with the desired path.

 Technosoft 2022 351 ESM User Manual

The PVT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode. The PVT mode can be relative (following a
CPR command) or absolute (following a CPA command). In the absolute mode, each PVT point
specifies the position to reach. The initial position may be either the current position reference
TPOS or a preset value read from the TML parameter PVTPOS0. In the relative mode, each PVT
point specifies the position increment relative to the previous point. In both cases, the time is
relative to the previous point i.e. represents the duration of a PVT segment. For the first PVT
point, the time is measured from the starting of the PVT mode.

Each time when a new PVT point is read from a TML program or received via a communication
channel, it is saved into the PVT buffer. The reference generator empties the buffer as the PVT
points are executed. The PVT buffer is of type FIFO (first in, first out). The default length of the
PVT buffer is 7 PVT points. Each entry in the buffer is made up of 9 words, so the default length
of the PVT buffer in terms of how much memory space is reserved is 63 (3Fh) words. The
drive/motor automatically sends messages to the host when the buffer is full, low or empty. The
messages contain the PVT status (TML variable PVTSTS). The host address is taken from the
TML parameter MASTERID. The buffer full condition occurs when the number of PVT points in
the buffer is equal with the buffer size. The buffer low condition occurs when the number of PVT
points in the buffer is less or equal with a programmable value – the low level. The buffer empty
condition occurs when the buffer is empty and the execution of the last PVT point is over. When
the PVT buffer becomes empty the drive/motor:

• Remains in PVT mode if the velocity of last PVT point executed is zero and waits for new
points to receive

• Enters in quick stop mode if the velocity of last PVT point executed is not zero

Therefore, a correct PVT sequence must always end with a last PVT point having velocity zero.

Remarks:

• The PVT and PT modes share the same buffer. Therefore the TML parameters and variables
associated with the buffer management are the same.

• Before activating the PVT mode, you must place at least one PVT point in the buffer

• The buffer low condition is set by default when the last PVT point from the buffer is read and
starts to be executed

• Both the PVT buffer size and its start address are programmable via TML parameters
PVTBUFBEGIN and PVTBUFLEN. Therefore if needed, the PVT buffer size can be
substantially increased.

Each PVT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PVT point is sent to the drive/motor. If the
integrity counter error checking is activated, the drive compares its internally computed integrity
counter value with the one sent with the PVT point (i.e. with the PVTP command). This
comparison is done every time a PVTP instruction is received. If the values of the two integrity
counters do not match, the integrity check error is triggered, the drive/motor sends the PVTSTS to

 Technosoft 2022 352 ESM User Manual

the host with PVTSTS.12 =1 and the received PVT point is discarded. Each time a PVT point is
accepted (the integrity counters match or the integrity counter error checking is disabled), the
drive automatically increments its internal integrity counter. The default value of the internal
integrity counter after power up is 0. Its current value can be read from the TML variable PVTSTS
(bits 6..0). The integrity counter can also be set to any value using TML command SETPVT.

See also:

PVT – Related TML Instructions and Data

TML Description

6.3.2.2.11. Motion PT - TML Instructions and Data

Parameters

MASTERID Contains the axis ID of the host/master where the drive/motor must send the PT
messages. It must be set before starting the PT mode. The MASTERID value must be set as:
host ID << 4 + 1, where host ID is a number between 1 and 255 representing the host ID. By
default, after power-on the host ID is set equal with the drive address causing all the PT
messages to be sent via RS-232

PVTBUFBEGIN Specifies the start address of the PT buffer

PVTBUFLEN Specifies the PT buffer length expressed in PT points

PVTPOS0 Specifies for absolute mode, the initial position from which to start computing the
distance to move up to the first PT point. An alternate option is to consider TPOS as initial
position. Selection between these 2 options is done at PT initialization via TML command SETPT.
The default value of PVTPOS0 is 0.

PVTSENDOFF When set to 1, disables transmission of messages during PT mode. By default is
set to 0 and the transmission is enabled

Variables

PVTSTS Contains the PT motion mode status.

PVTSTS bit description

 Technosoft 2022 353 ESM User Manual

PVTMODE PVT operation mode as was set with the SETPT command

TPOS Target load position – position reference computed by the reference generator at
each slow loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at
each slow loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in
acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

 Technosoft 2022 354 ESM User Manual

Instructions

SETPT value Set PT operation as specified by value:

PT operation mode (a copy of value is saved in the TML variable PVTMODE)

CPR PT mode is relative

CPA PT mode is absolute

MODE PT Set PT motion mode.

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values
of position and speed reference (i.e. don’t update the reference values with load/motor
position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values
of load/motor position and speed (i.e. update the reference values with load/motor
position and speed)

PTP Position, Time, Counter Defines a PT point, where:

Position – is the PT point position, measured in position units. In absolute mode, it is
the position to reach. In relative mode, it is the position increment from the previous PT
point. The position value is a 32-bit long integer.

 Technosoft 2022 355 ESM User Manual

Time – is the PT point time measured in time units. The time value is a 16-bit unsigned
integer

Counter – is the PVT point integrity counter. It is a 7-bit unsigned integer with values
between 0 and 127.

UPD Update motion parameters and start new motion mode

STOP Stop motion

Remarks:

• When a PT sequence of points is executed from a TML program, the first PTP commands
are processed one after the other, until the PT buffer fills up. At this point the TML
program stops until the PT buffer starts to empty. Therefore, the next PTP commands are
processed in the cadence of the PT points execution. At the end of the sequence, the PT
buffer starts to empty and next TML instructions start to execute. This may lead to
incorrect operation if for example a new motion mode is set while there are still points in
the PT buffer waiting to be executed. In order to avoid this situation, it is mandatory to
end the PVT sequence with an event on motion complete and wait until this event
occurs.

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
MODE PT command and BEFORE the UPD command. When MODE PT is executed, it
automatically sets TUM0 mode. However, as the new motion mode becomes effective
only after the UPD command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
// PT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

SETPVT 0xC000; //Clear PT buffer, disable counter check

 //Don’t change counter & buffer low condition

MODE PT; // Set PT Mode

TUM1;//Start from actual value of position reference

CPR;

PTP 2000L, 100U, 0; //PT(1[rot], 0.1[s])

 Technosoft 2022 356 ESM User Manual

UPD; //Execute immediate

PTP 0L, 100U, 0; //PT(1[rot],0.2[s])

PTP -2000L, 100U, 0; //PT(0[rot],0.3[s])

!MC; WAIT!; //wait for completion

See also:

PT – TML Programming Details

TML Description

6.3.2.2.12. Mode PVT - Related TML Instructions and Data

Parameters

MASTERID Contains the axis ID of the host/master where the drive/motor must send the PVT
messages. It must be set before starting the PVT mode. The MASTERID value must be
set as: host ID << 4 + 1, where host ID is a number between 1 and 255 representing the
host ID. By default, after power-on the host ID is set equal with the drive address causing
all the PVT messages to be sent via RS-232

PVTBUFBEGIN Specifies the start address of the PVT buffer

PVTBUFLEN Specifies the PVT buffer length expressed in PVT points

PVTPOS0 Specifies for absolute mode, the initial position from which to start computing the
distance to move up to the first PVT point. An alternate option is to consider TPOS as
initial position. Selection between these 2 options is done at PVT initialization via TML
command SETPVT. The default value of PVTPOS0 is 0.

PVTSENDOFF When set to 1, disables transmission of messages during PVT mode. By default is
set to 0 and the transmission is enabled

Variables

PVTSTS Contains the PVT motion mode status.

PVTSTS bit description

 Technosoft 2022 357 ESM User Manual

PVTMODE PVT operation mode as was set with the SETPVT command

TPOS Target load position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at each slow
loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

 Technosoft 2022 358 ESM User Manual

Instructions

SETPVT value Set PVT operation as specified by value:

PVT operation mode (a copy of value is saved in the TML variable PVTMODE)

CPR PVT mode is relative

CPA PVT mode is absolute

MODE PVT Set PVT motion mode.

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values
of position and speed reference (i.e. don’t update the reference values with load/motor
position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual values
of load/motor position and speed (i.e. update the reference values with load/motor
position and speed)

PVTP Position, Velocity, Time, Counter Defines a PVT point, where:

Position – is the PVT point position, measured in position units. In absolute mode, it is
the position to reach. In relative mode, it is the position increment from the previous PVT
point. The position value is a signed long integer limited to 24 bits, i.e. in the range –
8388608 to + 8388607. Values outside this range are truncated causing unpredictable
results.

 Technosoft 2022 359 ESM User Manual

Velocity – is the PVT point velocity, measured in speed units. The velocity is a fixed
value like command speed CSPD and target speed TSPD

Time – is the PVT point time measured in time units The time value is a 9-bit unsigned
integer having values between 1 and 511.

Counter – is the PVT point integrity counter. It is a 7-bit unsigned integer with values
between 0 and 127.

UPD Update motion parameters and start new motion mode

STOP Stop the motion

Remarks:

• When a PVT sequence of points is executed from a TML program, the first PVTP
commands are processed one after the other, until the PVT buffer fills up. At this point the
TML program stops until the PVT buffer starts to empty. Therefore, the next PVTP
commands are processed in the cadence of the PVT points execution. At the end of the
sequence, the PVT buffer starts to empty and next TML instructions start to execute. This
may lead to incorrect operation if for example a new motion mode is set while there are
still points in the PVT buffer waiting to be executed. In order to avoid this situation, it is
mandatory to end the PVT sequence with an event on motion complete and wait until
this event occurs.

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
MODE PVT command and BEFORE the UPD command. When MODE PVT is executed,
it automatically sets TUM0 mode. However, as the new motion mode becomes effective
only after the UPD command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
// PVT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MASTERID = 4081; // Set host address to 255 (255<<4+1)

SETPVT 0xC000; //Clear PVT buffer, disable counter check

 //Don’t change counter & buffer low condition

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

 Technosoft 2022 360 ESM User Manual

CPR; // Relative mode

PVTP 400L, 60, 10U, 0;//PVT(0.2[rot], 1800[rpm], 0.01[s])

UPD; //Execute immediate

PVTP 400L, 0, 10U, 0;//PVT(0.4[rot], 0[rpm], 0.02[s])

!MC; WAIT!; //wait for completion

See also:

PVT – TML Programming Details

TML Description

6.3.2.2.13. External - TML Programming Details

In the external modes, you program the drives/motors to work with an external reference provided
by another device. There are 3 types of external references:

• Analogue – read by the drive/motor via a dedicated analogue input (10-bit resolution)

• Digital – computed by the drive/motor from:

• Pulse & direction signals

• Quadrature signals like A, B signals of an incremental encoder

• Online – received online via a communication channel from a host and saved in a
dedicated TML variable

When the reference is analogue or online, you can set a:

• Position external mode, where the motor is controlled in position and the external
reference is interpreted as a position reference

• Speed external mode, where the motor is controlled in speed and the external reference
is interpreted as a speed reference

• Torque external mode, where the motor is controlled in torque and the external reference
is interpreted as a current reference.

• Voltage external mode, where the motor is controlled in voltage and the external
reference is interpreted as a voltage reference.

When the external reference is digital, the option for the input signals: pulse & direction or
quadrature encoder is established during the drive/motor setup. The drive/motor performs only
position control having as goal to follow the position reference computed from the input signals

 Technosoft 2022 361 ESM User Manual

with a preset gear ratio. In this case, the drive/motor actually works in electronic gearing mode,
where you can find further details.

In position external mode with analogue or online reference, you can limit the maximum speed at
sudden changes of the position reference and thus to reduce the mechanical shocks. This feature
is activated by setting UPGRADE.2=1 and the maximum speed value in CSPD.

In speed external mode with analogue or online reference, you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition. This
feature is activated by setting UPGRADE.2=1 and the maximum acceleration value in CACC.

In torque or voltage external mode with analogue reference, you can choose how often to read
the analogue input: at each slow loop sampling period or at each fast loop sampling period.

When using the analogue reference, during the setup phase, you specify the reference values
corresponding to the upper and lower limits of the analogue input. Depending on the control mode
selected, these values may be position or speed or torque or voltage references. You may also
select a dead-band symmetrical interval and it’s center point inside the analogue input range.
While the analogue signal is inside the dead-band interval, the output reference is kept constant
and equal with value corresponding to the dead-band center point. This option is especially useful
when you need to set a precise reference, which doesn’t change in the presence of some noise
on the analogue input signal. If dead-band width is set to zero, the dead-band is disabled.

Remark: Setup tools like EasySetUp, automatically compute the value of the TML parameters
needed to convert the analogue input range into the desired reference range.

See also:

External – Related TML Instructions and Data

TML Description

 Technosoft 2022 362 ESM User Manual

6.3.2.2.14. External - TML Instructions and Data

Parameters

CADIN Half of the reference range expressed in internal units, divided by 2SFTADIN. The
division result should lead to a value less than 32767. Depending on control mode
selected, the reference range can be a:

• Position range expressed in position units

• Speed range expressed in speed units

• Torque range expressed in current units

• Voltage range expressed in voltage command units

SFTADIN The smallest power of 2 for which:

 (Half of the reference range in internal units) / 2STFADIN < 32767

AD5OFF Reference value expressed in internal units, corresponding to the lower limit of the
analogue input. Depending on control mode selected, the reference value can be a:

• Position value expressed in position units

• Speed value expressed in speed units

• Torque value expressed in current units

• Voltage value expressed in voltage command units

FILTER1 Cutoff frequency for the low-pass filter on analogue input, computed with:

FILTER1 = 32767 * (1 - exp(-fc*T)),

where fc is the cutoff frequency in radians/s

 T is the slow loop sampling period in seconds.

 Remark: For the external torque mode with analogue input read in fast loop, T is the
fast loop sampling period in seconds.

LEVEL_AD5 Dead-band point in internal units computed with:

LEVEL_AD5=(DB_Point–InputLow)*65472/InputRange

where DB_Point – is the dead band point expressed in V

 InputLowLimit – is the low limit of the drive/motor analogue input expressed in V

 InputRange – s the drive/motor analogue input range expressed in V.

E_LEVEL_AD5 Dead-band range in internal units computed with formula:

 Technosoft 2022 363 ESM User Manual

E_LEVEL_AD5 = DB_Range * 65472 / InputRange,

where DB_Range – is the desired dead-band range expressed in V

 InputRange – is the drive/motor analogue input range expressed in V.

UPGRADE TML register. When UPGRADE.2=1, a speed limitation may be set in position
external mode and an acceleration limitation in speed external mode. When
UPGRADE.2=0, speed or acceleration limitation is disabled

CSPD Maximum speed in position external when UPGRADE.2=1

CACC Maximum acceleration in speed external when UPGRADE.2=1

Variables

AD5 16-bit unsigned integer value representing the value read from the analogue
input. The output of the 10-bit A/D converter is set in the 10 MSB (most significant
bits) of the AD5

EREFP TML variable where an external device writes the position reference in external mode
on-line. Measured in position units

EREFS TML variable where an external device writes the speed reference in external mode on-
line. Measured in speed units

EREFT TML variable where an external device writes the torque reference in external mode on-
line. Measured in current units

EREFV TML variable where an external device writes the voltage reference in external mode
on-line. Measured in voltage command units

TPOS Target load position – position reference computed by the reference generator at
each slow loop sampling period, when position external mode is performed.
TPOS is set function of the analogue input value, with analogue reference or with
the EREFP value with online reference. Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at
each slow loop sampling period, when position or speed external mode is
performed. In speed control, TSPD is set function of the analogue input value,
with analogue reference or with the EREFS value with online reference.
Measured in speed units In position control, TSPD is computed as the position
variation over a slow loop sampling period. Measured in speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period, when position or speed
external mode is performed. Measured in acceleration units

 Technosoft 2022 364 ESM User Manual

IQREF Current reference – updated at each fast or slow loop function of the analogue
input value or set with EREFT value, when torque external mode is performed.
Measured in current units

UQREF Voltage reference – updated at each fast or slow loop function of the analogue
input value or set with EREFV value, when voltage external mode is performed.
Measured in voltage command units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

IQ Motor current – measured in current units

Instructions

MODE PE Set position external mode

MODE GS Set position external mode with digital reference

MODE SE Set speed external mode

MODE TES Set torque external mode with reference read in slow loop

MODE TEF Set torque external mode with reference read in fast loop

MODE VES Set voltage external mode with reference read in slow loop

EXTREF 0 Set external reference type on-line

EXTREF 1 Set external reference type analogue

EXTREF 2 Set external reference type digital

UPD Update motion parameters and start new motion mode

STOP Stop motion

Remarks:

• In the absence of an external device, EREFP, EREFS, EREFT, EREFV may also be used
as TML parameters through which you can set a position, speed, torque or voltage
reference in the external mode online. This is a simple way to impose step references

• The TML variables EREFP, EREFS, EREFT, EREFV are alternate ways to address the
TML variable EREF in which the external devices must place the reference. The new

 Technosoft 2022 365 ESM User Manual

mnemonics have been added to clearly differentiate how EREF is interpreted function of
control mode selected:

o Position control: EREFP = EREF. EREFP is a 32-bit long integer

o Speed control: EREFS=EREF. EREF is a 32-bit fixed

o Torque control: EREFT = EREF(H). EREFT is a 16-bit integer

o Voltage control: EREFV = EREF(H). EREFV is a 16-bit integer

• CSPD and CACC must be positive

• The sum between CSPD and CACC values must be maximum 32767.99998
(0x7FFF.FFFF) i.e. the maximum value for fixed number

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example 1
// External mode. Read position reference from the analogue input

// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MODE PE; //External position

CSPD = 100;// Limit = 3000[rpm]

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

UPD; //execute immediate

Programming Example 2
// External mode online. Read speed reference from variable EREFS

// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

EREFS = 33.3333;// EREFS initial = 1000[rpm]

EXTREF 0;

MODE SE; //External speed

CACC = 0.3183;// Limit = 1000[rad/s^2]

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

UPD; //execute immediate

See also:

External – TML Programming Details

 Technosoft 2022 366 ESM User Manual

TML Description

6.3.2.2.15. Electronic Gearing - TML Programming Details

In the electronic gearing a drive/motor may operate as master or as slave.

When set as master, the drive/motor sends its position via a multi-axis communication channel,
like the CANbus. When set as slave, the drive/motor follows the master position with a
programmable gear ratio.

Master operation

The master operation can be enabled with the TML command SGM followed by an UPD (update)
and can be disabled by the TML command RGM followed by an UPD. In both cases, these
operations have no effect on the motion executed by the master.

Once at each slow loop sampling time interval, the master sends either its load position APOS (if
OSR.15 = 0) or its position reference TPOS (if OSR.15 = 1) to the axis or the group of axes
specified in the TML parameter SLAVEID. The SLAVEID contains either the axis ID of one slave
or the value of a group ID+256 i.e. the group of slaves to which the master should send its data.

Remark: The group ID is an 8-bit unsigned value. Each bit set to 1 represents a group: bit 0 –
group 1, bit 1 – group 2, etc. In total there are 8 groups. For example, if the master sends its
position to group 3, the group ID = 4 (00000100b) and the SLAVEID is 4+256 = 260.

The master operation can be synchronized with that of the slaves. The synchronization process is
performed in two steps. First, the master sends a synchronization message to all axes, including
to itself. When this message is received, all the axes read their own internal time. Next, the
master sends its internal time to all the slaves, which compare it with their own internal time. If
there are differences, the slaves correct slightly their sampling periods in order to keep them
synchronized with those of the master. As effect, when synchronization procedure is active, the
execution of the control loops on the slaves is synchronized with those of the master within a
10μs time interval. Due to this powerful feature, drifts between master and slave axes are
eliminated. The synchronization procedure is activated with the TML command SETSYNC value
where value represents the time interval in internal units between the synchronization messages
sent by the master. Recommended value is 20ms.

If the master is going to be activated with slaves already set in electronic gearing, an initialization
is necessary before enabling the master operation: the master must set the TML parameter
MPOS0 on all the slaves with a non-zero value, for example 1.

Slave operation

The slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction (if ACR.2=1) or quadrature
encoder (if ACR.2 = 0). Both options have dedicated inputs. The pulse & direction signals
are usually provided by an indexer and must be connected to the pulse & direction inputs

 Technosoft 2022 367 ESM User Manual

of the drive/motor. The quadrature encoder signals are usually provided by an encoder on
the master and must be connected to the 2nd encoder inputs.

You can activate the first option with the TML command: EXTREF 0 and the second option with
the TML command EXTREF 2. Both become effective at the next UPD command.

In slave mode the drive/motor performs a position control. At each slow loop sampling period, the
slave computes the master position increment and multiplies it with its programmed gear ratio.
The result is the slave position reference increment, which added to the previous slave position
reference gives the new slave position reference.

Remark: The slave executes a relative move, which starts from its actual position

The gear ratio is specified via 3 TML parameters: GEAR, GEARSLAVE and GEARMASTER.
GEARSLAVE and GEARMASTER represent the numerator and denominator of the Slave /
Master ratio. GEARSLAVE is a signed integer, while GEARMASTER is an unsigned integer.
GEARSLAVE sign indicates the direction of movement: positive – same as the master, negative –
reversed to the master. GEAR is a fixed value containing the result of the ratio i.e. the result of the
division GEARSLAVE / GEARMASTER. GEAR is used to compute the slave reference
increment, while GEARSLAVE and GEARMASTER are used by an automatic compensation
procedure which eliminates the round off errors which occur when the gear ratio is an irrational
number like: 1/3 (Slave = 1, Master = 3).

The TML parameter MASTERRES provides the master resolution which is needed to compute
correctly the master position and speed (i.e. the position increment). MASTERRES is a 32-bit
long integer value, expressed in the master position units. If master position is not cyclic (i.e. the
resolution is equal with the whole 32-bit range of position), set master resolution to 0x80000001.

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. It may be changed to a different value by writing the desired
value in the TML variable APOS2.

TML commands REG_ON/REG_OFF enable/disable the superposition of the electronic gearing
mode with a second motion mode. When this superposed mode activated, the position reference
is computed as the sum of the position references for each of the 2 superposed motions.

You may enable the superposed mode at any moment, independently of the
activation/deactivation of the electronic gearing slave. If the superposed mode is activated during
an electronic gearing motion, any subsequent motion mode change is treated as a second move
to be superposed over the basic electronic gearing move, instead of replacing it. If the
superposed mode is activated during another motion mode, a second electronic gearing mode will
start using the motion parameters previously set. This move is superposed over the first one. After
the first move ends, any other subsequent motion will be added to the electronic gearing.

When you disable the superposed mode, the electronic gearing slave move is stopped and the
drive/motor executes only the other motion. If you want to remain in the electronic gearing slave
mode, set first the electronic gearing slave move and then disable the superposed mode.

 Technosoft 2022 368 ESM User Manual

You can smooth the slave coupling with the master, by limiting the maximum acceleration on the
slave. This is particularly useful when the slave is must couple with a master running at high
speed. The feature is activated by setting UPGRADE.2=1 and the maximum acceleration value in
CACC.

Remark: When slave coupling with the master is complete SRH.12 = 1. The same bit is reset to
zero if the slave is decoupled from the master. The bit has no significance in other motion modes.

See also:

Electronic Gearing – Related TML Instructions and Data

TML Description

6.3.2.2.16. Electronic Gearing - Related TML Instructions and
Data

Parameters

CACC Maximum acceleration in slave mode when UPGRADE.2=1

SLAVEID The axis or group ID to which the master sends its position. When group ID is
used, the SLAVEID is set with group ID value + 256.

GEAR Slave(s) gear ratio value. Negative values means opposite direction
compared with the master

GEARMASTER Denominator of gear ratio

GEARSLAVE Numerator of gear ratio. Negative values means opposite direction compared
with the master

MASTERRES Master resolution used by slave(s) Measured in master position units

MPOS0 Initialization parameter. Must be set by the master with a non-zero value before
enabling the master mode, if the slaves are already set in electronic gearing.

OSR TML register. When OSR.15=1, the master sends the position reference.
When OSR.15=0, the master sends the actual load position

UPGRADE TML register. When UPGRADE.2=1, an acceleration limitation may be set on
slave. When UPGRADE.2=0, the acceleration limitation is disabled

ACR Auxiliary Control Register – includes several TML programming options. When ACR.2 =
0, the external reference is quadrature encoder. When ACR.2 = 1, the external reference
is pulse & direction

Variables

MREF Master position received or computed by the slave(s). Measured in master
position units

 Technosoft 2022 369 ESM User Manual

MSPD Master speed computed by the slaves. Measured in master speed units

APOS2 Master position computed by the slaves from pulse & direction or quadrature
encoder inputs. At power-on it is set to 0. May be set to a different value, before
starting the master. Measured in master position units

TPOS Target position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

TSPD Target speed – speed reference computed by the reference generator at each
slow loop sampling period. Measured in speed units

TACC Target acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in
acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

EXTREF 0 Get master position via a communication channel

EXTREF 2 Compute master position from pulse & direction or quadrature encoder signals

MODE GS Set electronic gear slave mode

SGM Set electronic gear master mode

RGM Reset electronic gear master mode

REG_ON Enable superposed mode

REG_OFF Disable superposed mode

SETSYNC value Send synchronization messages at the time interval indicated by the 16-
bit value. Measured in time units

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual values
of position and speed reference (i.e. don’t update the reference values with load/motor position
and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual
values of load/motor position and speed (i.e. updates the reference values with load/motor
position and speed)

UPD Update motion parameters and start new motion mode

 Technosoft 2022 370 ESM User Manual

STOP Stop the motion

SRB Set/reset bits from a TML data

Remarks:

• Do not change GEAR, GEARSLAVE and GEARMASTER during slave operation

• CACC must be positive

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
MODE GS command and BEFORE the UPD command. When MODE GS is executed, it
automatically sets TUM0 mode. However, as the new motion mode becomes effective
only after the UPD command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
//Electronic gearing. Master position is received via
//communication channel inputs.

//Master resolution: 2000 counts/rev

// On slave axis (Axis ID = 1):

GEAR = 0.3333; // gear ratio

GEARMASTER = 3; //gear ratio denominator

GEARSLAVE = 1; //gear ratio numerator

EXTREF 0; // master position got via communication channel

MASTERRES = 2000; // master resolution

REG_ON; //Enable superposition

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

CACC = 0.9549; //Limit maximum acceleration at 3000[rad/s^2]

UPD; //execute immediate

 Technosoft 2022 371 ESM User Manual

// On master axis:

SLAVEID = 1;

SGM; //Enable Master in Electronic Gearing mode

SRB OSR, 0xFFFF, 0x8000; // OSR.15=1 -> Send Position Reference

[1]MPOS0 = TPOS;

UPD; //execute immediate

SETSYNC 20; //Send synchronization messages every 20[ms]

See also:

Electronic Gearing – TML Programming Details

TML Description

6.3.2.2.17. Electronic Camming - TML Programming Details

In the electronic camming a drive/motor may operate as master or as slave.

When set as master, the drive/motor sends its position via a multi-axis communication channel,
like the CAN bus. When set as slave, the drive/motor executes a cam profile function of the
master position. The cam profile is defined by a cam table – a set of (X, Y) points, where X is cam
table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation.

Master operation

The master operation can be enabled with the TML command SGM followed by an UPD (update)
and can be disabled by the TML command RGM followed by an UPD. In both cases, these
operations have no effect on the motion executed by the master.

Once at each slow loop sampling time interval, the master sends either its load position APOS (if
OSR.15 = 0) or its position reference TPOS (if OSR.15 = 1) to the axis or the group of axes
specified in the TML parameter SLAVEID. The SLAVEID contains the axis ID of one slave or the
value of a group ID+256 i.e. the group of slaves to which the master should send its data.

Remark: The group ID is an 8-bit unsigned value. Each bit set to 1 represents a group: bit 0 –
group 1, bit 1 – group 2, etc. In total there are 8 groups. For example, if the master sends its
position to group 3, the group ID = 4 (00000100b) and the SLAVEID is 4+256 = 260.

The master operation can be synchronized with that of the slaves. The synchronization process is
performed in two steps. First, the master sends a synchronization message to all axes, including
to itself. When this message is received, all the axes read their own internal time. Next, the
master sends its internal time to all the slaves, which compare it with their own internal time. If
there are differences, the slaves correct slightly their sampling periods in order to keep them
synchronized with those of the master. As effect, when synchronization procedure is active, the
execution of the control loops on the slaves is synchronized with those of the master within a
10μs time interval. Due to this powerful feature, drifts between master and slave axes are

 Technosoft 2022 372 ESM User Manual

eliminated. The synchronization procedure is activated with the TML command SETSYNC value
where value represents the time interval in internal units between the synchronization messages
sent by the master. Recommended value is 20ms.

Slave operation

The slaves can get the master position in two ways:

1. Via a communication channel, from a drive/motor set as master

2. Via an external digital reference of type pulse & direction (if ACR.2=1) or quadrature
encoder (if ACR.2 = 0). Both options have dedicated inputs. The pulse & direction signals
are usually provided by an indexer and must be connected to the pulse & direction inputs
of the drive/motor. The quadrature encoder signals are usually provided by an encoder on
the master and must be connected to the 2nd encoder inputs.

You can activate the first option with the TML command: EXTREF 0 and the second option with
the TML command EXTREF 2. Both become effective at the next UPD command.

The TML parameter MASTERRES provides the master resolution which is needed to compute
correctly the master position and speed (i.e. the position increment). MASTERRES is a 32-bit
long integer value, expressed in the master position units. If master position is not cyclic (i.e. the
resolution is equal with the whole 32-bit range of position), set master resolution to 0x80000001.

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. It may be changed to a different value by writing the desired
value in the TML variable APOS2.

Through the TML parameter CAMOFF you can shift the cam profile versus the master position, by
setting an offset for each slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

In slave mode the drive/motor performs a position control. Based on the master position X, it
calculates the cam table output Y = f(X). It is not mandatory to define the cam table for 360
degrees of the master. You may also define shorter cam tables, with a start angle Xmin > 0 and
an end angle Xmax < 360 degrees. In this case, the cam table output remains unchanged outside
the active area of the cam, being computed as follows:

• Y = Ymin = f(Xmin), if 0 < X < Xmin

• Y = f(X), if Xmin ≤ X ≤ Xmax

• Y = Ymax = f(Xmax), if Xmax < X < 360

The electronic camming can be: relative (if ACR.12 = 0) or absolute (if ACR.12 = 1).

In the relative mode, the output of the cam table is added to the slave actual position. At each
slow loop sampling period the slave computes a position increment dY = Y – Yold. This is the

 Technosoft 2022 373 ESM User Manual

difference between the actual cam table output Y and the previous one Yold. The position
increment dY is added to the old target position to get a new target position: TPOS = TPOS + dY.
The slave detects when the master position rolls over, from 360 degrees to 0 or vice-versa and
automatically compensates in dY the difference between Ymax and Ymin. Therefore, in relative
mode, you can continuously run the master in one direction and the slaves will execute the cam
profile once at each 360 degrees with a glitch free transition when the cam profile is restarted.

When electronic camming is activated in relative mode, the slave initializes Yold with the first cam
output computed: Yold = Y = f(X). The slave will keep its position until the master starts to move
and then it will execute the remaining part of the cam. For example if the master moves from X to
Xmax, the slave moves with Ymax – Y.

In the absolute mode, the output of the cam table Y is the target position to reach: TPOS = Y.

Remark: The absolute mode must be used with great care because it may generate abrupt
variations on the slave target position if:

• Slave position is different from Y at entry in the camming model

• Master rolls over and Ymax ≠ Ymin

In the absolute mode, you can introduce a maximum speed limit to protect against accidental
sudden changes of the positions to reach. The feature is activated by setting UPGRADE.2=1 and
the maximum speed value in CSPD.

Remark: When the slave can’t reach the target position corresponding to the cam profile due to
the speed limitation, SRH.14 = 1. The same bit is reset to zero when the slave returns to normal
operation following the cam profile with a speed below the maximum limit. The bit has no
significance in other motion modes.

One way to avoid abrupt variations at activation of absolute mode is to move the slave(s) in the
position corresponding to the master actual value, before enabling the camming slave mode. This
approach requires finding the cam table output before entering in the camming mode. You can get
this information in the following way:

1. Set the slave(s) in trapezoidal position profile mode, for example to keep its actual
position

2. Set TML parameter GEAR (also used as gear ratio in electronic gearing) at 0.

3. Introduce an wait of 1ms (more exactly one slow-loop sampling period)

4. Read the cam table output for the actual master position from TML variable EREF

Remark: Before executing point 2, make sure that the cam table is present in the RAM memory
and CAMSTART is initialized accordingly (see below for details).

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y
is the cam output i.e. the slave position. The X points are expressed in the master internal position
units, while the Y points are expressed in the slave internal position units. Both X and Y points
32-bit long integer values. The X points must be positive (including 0) and equally spaced at: 1, 2,

 Technosoft 2022 374 ESM User Manual

4, 8, 16, 32, 64 or 128 i.e. having the interpolation step a power of 2 between 0 and 7. The
maximum number of points for one cam table is 8192.

As cam table X points are equally spaced, they are completely defined by two data: the Master
start value or the first X point and the Interpolation step providing the distance between the X
points. This offers the possibility to minimize the cam size, which is saved in the drive/motor in the
following format:

• 1st word (1 word = 16-bit data):

 Bits 15-13 – the power of 2 of the interpolation step. For example, if these bits have
the binary value 010 (2), the interpolation step is 2 = 4, hence the master X values
are spaced from 4 to 4: 0, 4, 8, 12, etc.

 Bits 12-0 – the length -1 of the table. The length represents the number of points

• 2nd and 3rd words: the Master start value (long), expressed in master position units.
2nd word contains the low part, 3rd word the high part

• 4th and 5th words: Reserved. Must be set to 0

• Next pairs of 2 words: the slave Y positions (long), expressed in position units. The 1st
word from the pair contains the low part and the 2nd word from the pair the high part

• Last word: the cam table checksum, representing the sum modulo 65536 of all the cam
table data except the checksum word itself

Before enabling electronic camming slave mode, the cam table must be downloaded into the
drive/motor RAM memory and the TML variable CAMSTART must be set with the value of the
cam start address. It is possible to download more than one cam table in the drive/motor RAM
memory and through CAMSTART to select which one to use at one moment.

Typically, the cam tables are first downloaded into the EEPROM memory of the drive, together
with the rest of the TML program. Then using the TML command (included in the TML program):

INITCAM LoadAddress, RunAddress

the cam tables are copied from the EEPROM memory into the drive/motor RAM memory. The
LoadAddress is the EEPROM memory address where the cam table was loaded and
RunAddress is the RAM memory address where to copy the cam table. After the execution of
this command the TML variable CAMSTART takes the value of the RunAddress.

Remarks:

• Motion programming tool EasyMotion Studio automatically computes the start addresses
in RAM and EEPROM of the selected cam tables and for each cam generates an
INITCAM command. The INITCAM commands are included in the TML application
before ENDINIT. Therefore when this command is executed, all the selected cams are
already copied from the EEPROM into the RAM.

• During electronic camming slave mode, only one cam table can be active at time

 Technosoft 2022 375 ESM User Manual

You can compress/extend the cam table input. Specify through TML parameter CAMX, an input
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through the TML parameter CAMY,
an output correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

See also:

Electronic Camming – Related TML Instructions and Data

TML Description

6.3.2.2.18. Electronic Camming - Related TML Instructions and
Data

Parameters

CSPD Maximum speed in slave mode when UPGRADE.2=1

CAMOFF Cam offset. The input in the cam table before applying the scaling
MPOS0 is computed by subtracting cam offset from the master position.
Measured in master position units

CAMSTART Pointer to cam table start address in RAM memory. When several cam
tables are loaded in RAM, CAMSTART indicates which one is used. You
can switch between cam tables by setting CAMSTART to the start
address of another cam table. CAMSTART is automatically set by the
INITCAM command, which copies the cam table from the EEPROM to
the RAM memory

CAMX Cam input correction factor. Cam input X (TML variable CAMINPUT) is:

X = CAMINPUT = MPOS0 * CAMX

where MPOS0 = MREF - CAMOFF

CAMY Cam output correction factor. Cam table output Y is:

Y = f(X) * CAMY

MASTERRES Master resolution used by slave(s) (long) Measured in master position
units.

 Technosoft 2022 376 ESM User Manual

SLAVEID The axis or group ID to which the master sends its position. When group ID is
used, the SLAVEID is set with group ID value + 256.

OSR TML register. When OSR.15=1, the master sends the position
reference. When OSR.15=0, the master sends the actual load position

UPGRADE TML register. When UPGRADE.2=1, a speed limitation may be set on slave.
When UPGRADE.2=0, the speed limitation is disabled

ACR Auxiliary Control Register – includes several TML programming options. When
ACR.12 = 0, the camming is relative. When ACR.12 = 1, the camming is absolute. When ACR.2
= 0, the external reference is quadrature encoder. When ACR.2 = 1, the external reference is
pulse & direction

Variables

MREF Master position received or computed by the slave(s). Measured in
master position units

MSPD Master speed computed by the slaves. Measured in master speed units

MPOS0 Master position on the slave(s) after subtracting cam offset CAMOFF.
Measured in master position units

CAMINPUT Cam table input

APOS2 Master position computed by the slaves from pulse & direction or
quadrature encoder inputs. At power-on it is set to 0. May be set to a different
value, before starting the master. Measured in master position units

TPOS Target position – position reference computed by the reference generator
at each slow loop sampling period. Measured in position units

TSPD Target speed – speed reference computed by the reference generator at
each slow loop sampling period. Measured in speed units

TACC Target acceleration – acceleration/deceleration reference computed by the
reference generator at each slow loop sampling period. Measured in
acceleration units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

EXTREF 0 Get master position via a communication channel

 Technosoft 2022 377 ESM User Manual

EXTREF 2 Compute master position from pulse & direction or quadrature encoder signals

MODE CS Set electronic camming slave mode

SGM Set electronic gearing/camming master mode

RGM Reset electronic gearing/camming master mode

SETSYNC value Send synchronization messages at the time interval indicated by the 16-
bit value. Measured in time units

INITCAM LoadAddress, RunAddress Copy a cam table from EEPROM starting with
LoadAddress to RAM starting with RunAddress. Both values are unsigned integers

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual
values of position and speed reference (i.e. don’t update the reference values with load/motor
position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual
values of load/motor position and speed (i.e. updates the reference values with load/motor
position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion

SRB Set/reset bits from a TML data

Remarks:

• CSPD must be positive

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
MODE CS command and BEFORE the UPD command. When MODE CS is executed, it
automatically sets TUM0 mode. However, as the new motion mode becomes effective
only after the UPD command, a TUM1 command will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example
// Electronic camming slave. Master position is read from 2nd

// encoder inputs. Master resolution : 2000 counts/rev

CAMSTART = 0xF000; //Initialize CAM table start address

 Technosoft 2022 378 ESM User Manual

EXTREF 2; // master position read from P&D or 2nd encoder

CAMOFF = 200; //Cam offset from master

CAMX = 0.5; //Cam input correction factor

CAMY = 1.5; //Cam output correction factor

MASTERRES = 2000; // master resolution

MODE CS; //Set electronic camming slave mode

TUM1; //Set Target Update Mode 1

SRB ACR, 0xEFFF, 0x0000; //Camming mode: Relative

UPD; //execute immediate

See also:

Electronic Camming – TML Programming Details

TML Description

6.3.2.2.19. Homing and Function Calls

Technosoft Motion Controller is able to start the execution of homing routines and TML functions
stored in the slaves’ non-volatile memory. A maximum of 10 homing/functions can be called
access from Motion Controller

Once the homing/function execution starts the Motion Controller application can be halted by
using an event on function complete. The Motion complete resumes the application execution
when the event occurs or it time outs.

See also:

TML Description

6.3.2.2.20. Homing - TML Programming Details

The homing is a sequence of motions, usually executed after power-on, through which the load is
positioned into a well-defined point – the home position. Typically, the home position is the
starting point for normal operation.

The search for the home position can be done in numerous ways. In order to offer maximum
flexibility, the TML does not impose the homing procedures but lets you define your own,
according with your application needs.

Basically a homing procedure is a TML function and by calling it you start executing the homing
procedure. The call must be done using the TML command CALLS – a cancelable call. This
command offers the possibility to abort at any moment the homing sequence execution (with TML

 Technosoft 2022 379 ESM User Manual

command ABORT) and return to the point where the call was initiated. Therefore, if the homing
procedure can’t find the home position, you have the option to cancel it.

During the execution of a homing procedure SRL.8 = 1. Hence you can find when a homing
sequence ends, either by monitoring bit 8 from SRL or by programming the drive/motor to send a
message to your host when SRL.8 changes. As long as a homing sequence is in execution, you
should not start another one. If this happens, the last homing is aborted and a warning is
generated by setting SRL.7 = 1.

Remark: In motion programming tools like EasyMotion Studio, Technosoft provides for each
intelligent drive/motor a collection of up to 32 homing procedures. These are predefined TML
functions, which you may call after setting the homing parameters. You may use any of these
homing procedures as they are, or use them as a starting point for your own homing routines.

Typically a homing function requires setting the following parameters before calling it:

• CACC – acceleration/deceleration rate for the position / speed profiles during homing

• CDEC – deceleration rate for quick stop when a limit switch is reached

• CSPD – High/normal speed for the position / speed profiles done during homing

• HOMESPD – Low speed for the final approach towards the home position

• HOMEPOS – New home position set at the end of the homing procedure

See also:

Homing – Related TML Instructions and Data

TML Description

6.3.2.2.21. Homing - Related TML Instructions and Data

Parameters

CACC Acceleration/deceleration command for the position / speed profiles during
homing. Measured in acceleration units

CDEC Deceleration rate during quick stop. Measured in acceleration units

CSPD High/normal speed command for the position / speed profiles during homing.
Measured in speed units

HOMEPOS New home position set at the end of the homing procedure. Measured in position
units

HOMESPD Low speed command for the final approach towards the home position. Measured
in speed units

Instructions

 Technosoft 2022 380 ESM User Manual

CALLS Cancelable call of a TML function

ABORT Abort execution of a function called with CALLS

SAP V32 Set actual position equal with the value or a 32-bit long variable
V32. The value is measured in position units

Programming Example
// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

//Select homing parameters

CACC = 0.3183;//Acceleration rate = 1000[rad/s^2]

CDEC = 0.3183;//Deceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//High speed = 1000[rpm]

HOMESPD = 3;//Low speed = 90[rpm]

HOMEPOS = 0;//Home position = 0[rot]

//Execute homing mode 1

CALLS HomeMode1; // call HomeMode1 function

WaitHomingEnd:

user_var = SRL;

SRB user_var, 0x100, 0; // isolate SRL.8

GOTO WaitHomingEnd, user_var, NEQ; // wait as long as SRL.8=1

HomingEnded:

...

HomeMode1: // this function implements the homing procedure

...

SAP HOMEPOS; // Set home position = HOMEPOS value

RET;

See also:

Homing – TML Programming Details

TML Description

 Technosoft 2022 381 ESM User Manual

6.3.2.2.22. Contouring

In the contouring mode, you can program an arbitrary path via a series of points. Between the
points, linear interpolation is performed, leading to a contour described by a succession of linear
segments. The contouring mode may be executed only from a TML program. You can’t send
contouring points from a host via a communication channel, like in the case of the PT mode.
Depending on the control mode chosen, four options are available:

• Position contouring – the load/motor is controlled in position. The path represents a
position reference

• Speed contouring – the load/motor is controlled in speed. The path represents a speed
reference.

• Torque contouring – the motor is controlled in torque. The path represents a current
reference.

• Voltage contouring – the motor is controlled in voltage. The path represents a voltage
reference.

A contouring segment is described via the TML command SEG, which has 2 parameters: time
and reference increment. The time represents the segment duration expressed in time units i.e.
in number of slow loop sampling periods. The reference increment represents the amount of
reference variation per time unit i.e. per slow loop sampling period.

The contouring mode has been foreseen mainly for setup tests. However, you can also use the
position contouring and the speed contouring for normal operation, as part of your motion
application. You can switch at any moment to and from these 2 modes. The torque contouring
and the voltage contouring have been foreseen only for setup tests. The torque contouring may
be used, for example, to check the response of the current controllers to different input signals.
Similarly, the voltage contouring may be used, for example, to check the motors behavior under a
constant voltage or any other voltage shape.

0

4

8

12

16

20

24

0 2 4 6 8 10 12 14

Reference generation in contouring modes

 Technosoft 2022 382 ESM User Manual

In position contouring or speed contouring, the starting point is either the current value of the
target position/speed (if TUM1 command is set between the motion mode setting and the UPD
command), or the actual value of the load position/speed (if TUM1 is omitted). Therefore the
contour is relative to the starting point.

In torque/voltage contouring, the starting point may be set by the user in REF0(H). After reset, the
default value of REF0(H) is zero.

In the TML program, first the contouring mode must be set, followed by the first point. Then the
contouring mode can be activated with the UPD command, followed by the next points. The
sequence of points must end with a final point having the time interval 0.

Remarks:

• When the last segment execution ends, the reference is kept constant at the last
computed value.

• When a contouring sequence ends without having time value set to 0 on the last
segment, the drive/motor remains in contouring mode waiting for new points. When the
last segment has time value set to 0, the drive gets out from contouring mode. In order to
execute other segments, the contouring mode must be set again.

When a sequence of contour points is executed, the TML instruction pointer IP advances as the
segments described by the points are executed. When the reference generator starts working with
a new segment, at TML program level the IP advances to the execution of the SEG instruction.
The execution of a TML instruction for a contour segment means to copy the segment data into a
local buffer and then wait (i.e. loop on the same instruction) until the previous segment, currently
under execution at reference generator level will end. This procedure permits to immediately start
the execution of the next contour segment when the current one ends because the next segment
data are already available in a local buffer. Each time the reference generator starts to execute a
new segment, the IP advances to the next contour segment and its data are transferred into the
local buffer.

See also:

Contouring – Related TML Instructions and Data

TML Description

 Technosoft 2022 383 ESM User Manual

6.3.2.2.23. Contouring - TML Instructions and Data

Parameters

REF0(H) Starting value for torque or voltage contouring. Measured in current units or
voltage command units

Variables

TPOS Target load position – position reference computed by the reference generator at

each slow loop sampling period in position or speed contouring. In speed
contouring, TPOS is computed by integrating the target speed TSPD.Measured in
position units

TSPD Target load speed – speed reference computed by the reference generator at

each slow loop sampling period in position or speed contouring. Measured in
speed units

TACC Target load acceleration – acceleration/deceleration reference computed by the

 reference generator at each slow loop sampling period in position and speed
contouring. Measured in

acceleration units

IQREF Current reference – computed by the reference generator at each slow loop
sampling period in torque contouring. Measured in current units

UQREF Voltage reference – computed by the reference generator at each slow loop
sampling period in voltage contouring. Measured in voltage command units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS.

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

IQ Motor current. Measured in current units

Instructions

MODE PC Set position contouring mode

MODE SC Set speed contouring mode

MODE TC Set torque contouring mode

 Technosoft 2022 384 ESM User Manual

MODE VC Set voltage contouring.

SEG Time, Increment Set a contour segment where:

Time – is the segment time. It is an unsigned integer measured in time units
Increment – is the segment reference increment per time unit. It is 32-bit fixed value

measured in:

 speed units for position contouring

 acceleration units for speed contouring

 current units / time units for torque contouring

 voltage units / time units for voltage contouring

TUM1 Target Update Mode 1 (TUM1). Generates new trajectory starting from the actual
values of position and speed reference (i.e. don’t update the reference values with load/motor
position and speed)

TUM0 Target Update Mode 0 (TUM0). Generates new trajectory starting from the actual
values of load/motor position and speed (i.e. updates the reference values with

load/motor position and speed)

UPD Update motion parameters and start new motion mode

STOP Stop the motion.

Remarks:

• In order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER setting
one of the contouring modes and BEFORE the UPD command. When the TML command
setting a contouring mode is executed, it automatically sets TUM0 mode. However, as the
new motion mode becomes effective only after the UPD command, a TUM1 command
will overwrite the TUM0 mode

• Under TUM0 mode, at the UPD command TPOS=APOS_LD and TSPD=ASPD_LD. In
open loop control of steppers, TUM0 is ignored as there is no position and/or speed
feedback

• In setup configurations where there is no transmission ratio between the motor and the
load, it is supposed that these are directly connected. In these cases:
APOS_MT=APOS_LD and ASPD_MT=ASPD_LD

Programming Example

// Position contouring with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

 Technosoft 2022 385 ESM User Manual

MODE PC;//Set Position Contouring

TUM1;//Start from actual value of position reference

SEG 100U, 20.00000;// 1st point

UPD; //Execute immediate

SEG 100U, 0.00000; // 2nd point

SEG 0, 0.0; //End of contouring

See also:

Contouring – TML Programming Details

TML Description

6.3.2.2.24. Test Mode - TML Programming Details

The torque and voltage test modes have been designed to facilitate the testing during the setup
phase. In these test modes, either a voltage or a torque (current) command can be set using a
test reference consisting of a limited ramp (see figure below).

Reference profile in test modes

For AC motors (like for example the brushless motors), the test mode offers also the possibility to
rotate a voltage or current reference vector with a programmable speed. As a result, these motors
can be moved in an “open-loop” mode without using the position sensor. The main advantage of
this test mode is the possibility to conduct in a safe way a series of tests, which can offer
important information about the motor parameters, drive status and the integrity of the its
connections.

Electrical angle setup in test modes with brushless AC motors

 Technosoft 2022 386 ESM User Manual

Remark: The Motion test is a special test mode to be used only in some special cases for drives
setup. The Motion Test mode is not supposed to be used during normal operation

See also:

Test Mode – Related TML Instructions and Data

TML Description

6.3.2.2.25. Test Mode - TML Instructions and Data

Parameters

REFTST_V Maximum voltage reference. Measured in voltage units

REFTST_A Maximum current reference. Measured in current units

RINCTST_V Voltage reference increment at each slow-loop sampling period. Measured in
voltage units / time units

RINCTST_A Current reference increment at each slow-loop sampling period. Measured in
current units / time units

THTST Initial value for the electrical angle. Measured in electrical angle units

TINCTST Electrical angle increment at each fast-loop sampling period. Measured in
electrical angle increments units.

Instructions

MODE VT Set voltage test mode

MODE TT Set torque test mode

UPD Update motion mode and parameters. Start motion

Programming Example
//Torque test mode, brushless AC motor. Drive IDM640-8EI

//with peak current 16.5A -> 32736 internal current units

//360° electric angle -> 65536 internal units

// fast loop sampling period = 0.1ms. Motor has 2 pole pairs

MODE TT; //Torque Test Mode

REFTST_A = 1984;//Reference saturation = 1[A]

 Technosoft 2022 387 ESM User Manual

RINCTST_A = 20;//Reference increment = 10[A/s]

THTST = 0;//Electric angle = 0[deg]

TINCTST = 7;//Electric angle increment ~= 2e+002[deg/s]

UPD; //update immediate

See also:

Test Mode – TML Programming Details

TML Description

6.3.2.2.26. Motor Commands

You can apply one of following commands to the motor:

• Activate/deactivate the control loops and the power stage PWM output commands
(AXISON / AXISOFF)

• Stop the motor with deceleration set in TML parameter CACC

• Issue an update command, immediate (UPD) or when a previously programmed event
occurs (UPD!)

• Change the value of the motor position and position reference

The AXISON command activates the control loops and the PWM output commands. After power
on, the AXISON command has to be executed after the ENDINIT (end of initialization) command.

Remark: You may set the first motion mode either before or after the AXISON command. If the
first AXISON is executed before setting the motion mode, the drive/motor enters in the default
motion mode: voltage external online with voltage reference zero. Therefore, the drive gets zero
voltage commands, until you’ll set a new motion mode. If you first set a motion mode, followed by
update UPD and then activate control with AXISON, the drive/motor enters directly in the desired
motion mode.

The AXISON command may be used to restore the normal drive operation following an AXISOFF
command. Typically, this situation occurs at recovery from an error, following the fault reset
command FAULTR, or after the drive/motor ENABLE input goes from status disabled to status
enabled.

When AXISON is set after an AXISOFF command, the reference generator resumes its
calculations from the same conditions left when the AXISOFF command was executed. As
consequence, the values of the target position and speed provided by the reference generator
may differ quite a lot from the actual values of the load position and speed which continue to be
measured during the AXISOFF condition. In order to eliminate these differences:

 Technosoft 2022 388 ESM User Manual

• Set the motion mode, even if it is the same. The motion mode commands, automatically
set the target update mode zero (TUM0), which updates the target position and speed
with the actual measured values of the load position and speed

• Execute update command UPD

• Execute AXISON command

Example: A motor controlled in speed with a trapezoidal profile, was stopped with an AXISOFF
command. In order to resume the normal operation, with the same parameters, the TML program
can be:

// Resume speed profile operation from AXISOFF

MODE SP; // set speed profile mode

UPD; // update immediate

AXISON; // motion starts.

//The initial value for target speed is 0 because was

//updated with the actual motor speed which is 0

//because the motor is still

The AXISOFF command deactivates the control loops, the reference generator and the PWM
output commands (all the switching devices are off). However, all the measurements remain
active and therefore the motor currents, speed, position as well as the supply voltage continue to
be updated and monitored. If the AXISOFF command is applied during motion, it leaves the motor
free running. Typically, the AXISOFF command is used when a fault condition is detected, for
example when a protection is triggered.

Fault conditions trigger TML interrupts. Each drive/motor has a built-in set of TML interrupt service
routines (ISR), which are automatically activated after power-on. In these routines, the default
action for fault conditions is an AXISOFF command. If needed, you may replace any built-in ISR
with your own ISR and thus, adapt the fault treatment to your needs.

Remark: The AXISOFF command is automatically generated when the Enable input goes from
enabled to disabled status. If the Enable input returns to the enabled status, the AXISON
command is automatically generated if

• ACR.3 =1, or

• ACR.1 = 1 i.e. the drive/motor is set to start automatically after power-on with an external

Remark: SRL.15 shows the AXISON/AXISOFF condition and SRH.15 shows a fault condition

The STOP command stops the motor with the deceleration rate set in TML parameter CACC. The
drive/motor decelerates following a trapezoidal position or speed profile. If the STOP command is
issued during the execution of an S-curve profile, the deceleration profile may be chosen between
a trapezoidal or an S-curve profile (see S-curve dialogue settings). You can detect when the
motor has stopped by setting a motion complete event (!MC)and waiting until the event occurs (

 Technosoft 2022 389 ESM User Manual

WAIT!). The STOP command can be used only when the drive/motor is controlled in position or
speed.

Remarks:

• In order to restart after a STOP command, you need to set again the motion mode. This
operation disables the stop mode and allows the motor to move

• When STOP command is sent via a communication channel, it will automatically stop any
TML program execution, to avoid overwriting the STOP command from the TML program

If an error requiring the immediate stop of the motion occurs (like triggering a limit switch or
following a command error), the drive/motor enters automatically in the quick stop mode. This
mode stops the motor with a trapezoidal profile, using the deceleration rate set in the TML
parameter CDEC.

When an immediate update command UPD is executed, the last motion mode programmed
together with the latest motion parameters are taken into consideration. During motion execution,
you can freely change the motion mode and/or its parameters. These changes will have no effect
until an update command is executed.

If you intend to perform an update when a specific condition occurs, you can set an event which
monitors the condition, followed by an update on event command UPD!. When the monitored
condition occurs, the update will be automatically performed. Once you have set an update on
event UPD!, you can either wait for the monitored event to occur, or perform other operations.

The TML command SAP offers you the possibility to set / change the referential for position
measurement by changing simultaneously the load position APOS and the target position TPOS
values, while keeping the same position error.

You can specify the new position either as an immediate value or via a 32-bit long variable. SAP
command can be executed at any moment during motion. When SAP command is executed, the
following operations are performed:

• Under TUM1, i.e. if TUM1 command has been executed after the last motion mode
setting and before the last UPD, the target/reference position TPOS is set equal with the
new position value and the actual motor position APOS is set equal with the new position
reference minus the position error (POSERR)

TPOS = new_value;

APOS = TPOS – POSERR;

• Under TUM0, i.e. if TUM1 command has not been executed after the last motion mode
setting and before the last UPD, the actual load position APOS is set equal with the new
position value and the target/reference position TPOS is set equal with the new position
plus the position error (POSERR)

APOS = new_value;

TPOS = APOS + POSERR;

 Technosoft 2022 390 ESM User Manual

The TML command STA sets the target position equal with the actual position: TPOS = APOS.

See also:

Motor Commands – Related TML Instructions and Data

TML Description

6.3.2.2.27. Motor Commands - Related TML Instructions and
Data

Parameters

CACC Deceleration rate following a STOP command

CDEC Deceleration rate during quick stop

TML Variables

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

TPOS Target position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

POSERR Represents the value of load position error, computed as the difference between
the target position and the measured position of the load

Instructions

AXISON Set axis ON. Activate control loops and PWM commands

AXISOFF Set axis OFF. Deactivate control loops and PWM commands

STOP Stop motion with the acceleration/deceleration set in CACC

UPD Update immediate motion mode and parameters. Start motion

UPD! Update the motion mode and parameters when the
programmed event occurs

SAP V32 Set V32 in the actual or target position. V32 is either a 32-bit
immediate value or a long TML data (user variable) containing
the value to set

STA Set target position TPOS equal with the actual position APOS

 Technosoft 2022 391 ESM User Manual

Programming Example
// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 6000;//position command = 3[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

...

STOP; // stop motion before reaching the final position

//Define event: When actual position remains inside

//a settle band around the position to reach

SRB UPGRADE, 0xFFFF, 0x0800;

!MC;

WAIT!;//Wait until the event occurs i.e. motor stops

SAP 0; // Set actual position value to 0[rot]

...

MODE PP;

UPD; //execute immediate – restart motion after a STOP command

See also:

Motor Commands – TML Programming Details

TML Description

 Technosoft 2022 392 ESM User Manual

6.3.2.3. Motion programming – multi-axis Motion Controller

6.3.2.3.1. Vector Mode - TML Programming Details

In Vector Mode the motion controller together with the slave axes execute a 2D path. The
trajectory is defined through a series of linear and/or circular segments. Optionally, for each
segment a vector speed and acceleration can be specified. The motion controller splits each
segment in PVT (Position, Velocity and Time) points and sends them to the slave axes. On
receiving the PVT points the slaves rebuild their path using 3rd order interpolation.

For applications that require a third axis tangent to the path, the Vector Mode allows to define the
tangent axis. The tangent axis must have a rotary load.

The 2D path can be stored locally in the non-volatile memory of the motion controller or it can be
received via communication channel from a host.

Remarks:

• The 2D path must begin when the slave loads/motors are not moving and must complete with
the End Segment – a segment with zero increment.

• You can switch at any moment to another motion mode.

Upon reception, each segment is stored in a reception buffer. The segment buffer is of type FIFO
(first in, first out). The reference generator from the motion controller empties the buffer as the
segments are executed. The motion controller automatically sends warning messages when the
buffer is full, low or empty. The host address is taken from the TML parameter MASTERID. The
buffer full condition occurs when the number of segments in the buffer is equal with the buffer
size. The buffer low condition occurs when the number of segments in the buffer is less or equal
with a programmable value. The buffer empty condition occurs when the buffer is empty and the
execution of the last segment is over. When the buffer becomes empty the motion controller:

 Technosoft 2022 393 ESM User Manual

• Remains in Vector Mode if the last segment executed was the end segment and waits for
new segments to receive

• Enters in quick stop mode if the last segment executed was not the end segment

Remarks:

• The buffer size is programmable and if needed can be increased. By default it is set to 4
segments.

• The buffer low condition is set by default when the last segment from the buffer is read and
starts to be executed

• The Linear Interpolation mode requires the slave drives/motors to be setup for position control.
Otherwise, the slaves will not be available for X, Y and tangent axes selection.

• If one of the slave axes fails during the coordinated move the motion controller will execute the
TML code defined by the user in Int12 – Error on slave has occurred. If Int12 – Error on slave
has occurred is not enabled or there is no TML code defined then the motion controller will
continue the execution of the profile.

See also:

Vector Mode– Related TML Instructions and Data

TML Description

6.3.2.3.2. Vector Mode - Related TML Instructions and Data

Parameters

MASTERID Contains the axis ID of the host/master where the motion controller must send the
messages related to segment buffer. It must be set before starting the Linear Interpolation
mode. The MASTERID value must be set as: host ID << 4 + 1, where host ID is a number
between 1 and 255 representing the host ID. By default, after power-on the host ID is set
equal with the drive address causing all the messages to be sent via RS-232

SEGBUFBEGIN Specifies the start address of the segment buffer

SEGBUFLEN Specifies the segment buffer length expressed in segments

RESRATIOX, RESRATIOY, RESRATIONZ Defines the position feedback resolution ratio for
each axis. The motion controller will use the best resolution for splitting the segments in
PVT points. The fines encoder resolution will be used to compute the scaling factors for
the other axes.

NLINESTAN Encoder resolution for tangent axis

VSPD – vector speed for current segment. Measured in speed units

 Technosoft 2022 394 ESM User Manual

VACC – vector acceleration for current segment. Measured in acceleration units
Variables

SEGBUFSTS Contains the segment buffer status.

SEGBUFSTS bit description

MACOMMAND Vector Mode configuration as was set with the SETMODE command

VTPOS Vector Target load position – vector position reference computed by the reference
generator at each slow loop sampling period. Measured in position units

Instructions

SETMODE value Set Vector Mode operation as specified by value:

Vector Mode operation mode (a copy of value is saved in the TML variable
MACOMMAND)

 Technosoft 2022 395 ESM User Manual

VPLANE(X_axis, Y_axis, Z_axis) Set the coordinate system for 2D/3D move.

MODE VM Set Vector motion mode.

VSEG1 (X_inc, Y_inc) VSEG2 (X_inc, Y_inc) Describes a linear segment.

CIRCLE1 (Radius, Theta_inc) CIRCLE2 (Radius, Theta_start) Describes a circular
segment.

UPD Update motion parameters and start new motion mode

STOP Stop the motion

Remarks:

• When a sequence of segments is executed from a TML program they are processed one
after the other, until the segment buffer fills up. At this point the TML program stops until
the buffer starts to empty. Therefore, the next segment is processed in the cadence of the
segments execution. At the end of the sequence, the buffer starts to empty and next TML
instructions start to execute. This may lead to incorrect operation if for example a new
motion mode is set while there are still segments in the buffer waiting to be executed. In
order to avoid this situation, it is mandatory to end the segments sequence with an event
on motion complete and wait until this event occurs.

• The motion complete event is set when all the slave axes signal the end of their
movement.

Programming Example
// Vector Mode sequence executed from non-volatile

// memory of the drive. X and Y axis have identical feedback

 Technosoft 2022 396 ESM User Manual

// resolution identical (2000 counts/rev)

 SETMODE 0xCF00; //Clear buffer

 VPLANE (A, B, D);// Axes A and B define the coordinate system.

//D axis is the tangent axis.

 RESRATIOX=0u;

 RESRATIOY=0u;

 NLINESTAN=2000; // Tangent axis resolution

 MODE VM; // Set Vector Mode

 VACC = 0.0006; // Vector Acceleration = 2[m/s^2]

 VSPD = 0.3183; // Vector Speed = 1[m/s]

 // Increment position with (X, Y) = (100[IU], 100[IU])

 VSEG1 100L, 100L; VSEG2 100L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (101[IU], 101[IU])

 VSEG1 101L, 101L; VSEG2 101L, 101L;

 VACC = 0.0064; // Vector Acceleration = 20[m/s^2]

 // Circular segment of radius 9.42478[mm], with initial angle
20[deg] and angle increment 50[deg])

 CIRCLE1 3L, 50.; CIRCLE2 3L, 20.;

 VACC = 0.0006; // Vector Acceleration = 2[m/s^2]

 VSPD = 0.3183; // Vector Speed = 1[m/s]

 // Increment position with (X, Y) = (102[IU], 102[IU])

 VSEG1 102L, 102L; VSEG2 102L, 102L;

 VSPD = 0.9549; // Vector Speed = 3[m/s]

 // Circular segment of radius 1e+001[mm], with initial angle
21[deg] and angle increment 51[deg])

 CIRCLE1 4L, 51.; CIRCLE2 4L, 21.;

 // Insert End Segment

 VSEG1 0L, 0L; VSEG2 0L, 0L;

See also:

Vector Mode – TML Programming Details

TML Description

 Technosoft 2022 397 ESM User Manual

6.3.2.3.3. Linear Interpolation - TML Programming Details

In Linear Interpolation mode the motion controller together with the slave axes execute a 2D/3D
coordinated move. The trajectory is defined through a series of linear segments. Optionally, for
each segment a vector speed and acceleration can be specified. The motion controller splits each
segment in PVT (Position, Velocity and Time) points and sends them to the slave axes. On
receiving the PVT points the slaves rebuild their path using 3rd order interpolation.

The 2D/3D path can be stored locally in the non-volatile memory of the motion controller or it can
be received via communication channel from a host. When used together with a host, an unlimited
number of incremental segments may be given in a continuous move sequence, making the linear
interpolation mode ideal for following a piece-wise linear path.

Remarks:

• The path sequence must begin when the slave loads/motors are not moving and must complete
with the End Segment – a segment with zero increment.

• You can switch at any moment to another motion mode.

Upon reception, each segment is stored in a reception buffer. The segment buffer is of type FIFO
(first in, first out). The reference generator from the motion controller empties the buffer as the
segments are executed. The motion controller automatically sends warning messages when the
buffer is full, low or empty. The host address is taken from the TML parameter MASTERID. The
buffer full condition occurs when the number of segments in the buffer is equal with the buffer
size. The buffer low condition occurs when the number of segments in the buffer is less or equal
with a programmable value. The buffer empty condition occurs when the buffer is empty and the
execution of the last segment is over. When the buffer becomes empty the motion controller:

• Remains in Linear Interpolation mode if the last segment executed was the end segment
and waits for new segments to receive

• Enters in quick stop mode if the last segment executed was not the end segment.

Remarks:

• The buffer size is programmable and if needed can be increased. By default it is set to 4
segments.

• The buffer low condition is set by default when the last segment from the buffer is read and
starts to be executed

• The Linear Interpolation mode requires the slave drives/motors to be setup for position control.
If one of the slaves has a configuration different then position control will not be available for X,
Y or Z axes selection.

• If one of the slave axes fails during the coordinated move the motion controller will execute the
TML code defined by the user in Int12 – Error on slave has occurred. If Int12 – Error on slave
has occurred is not enabled or there is no TML code defined then the motion controller will
continue the execution of the profile.

 Technosoft 2022 398 ESM User Manual

See also:

Linear Interpolation– Related TML Instructions and Data

TML Description

6.3.2.3.4. Linear Interpolation - Related TML Instructions and
Data

Parameters

MASTERID Contains the axis ID of the host/master where the motion controller must send the
messages related to segment buffer. It must be set before starting the Linear Interpolation
mode. The MASTERID value must be set as: host ID << 4 + 1, where host ID is a number
between 1 and 255 representing the host ID. By default, after power-on the host ID is set
equal with the drive address causing all the messages to be sent via RS-232

SEGBUFBEGIN Specifies the start address of the segment buffer

SEGBUFLEN Specifies the segment buffer length expressed in segments

RESRATIOX, RESRATIOY, RESRATIONZ Defines the position feedback resolution for each
axis. The motion controller will use the best resolution for computing the segments in PVT
points.

VSPD – vector speed for current segment. Measured in speed units

VACC – vector acceleration for current segment. Measured in acceleration units

Variables

SEGBUFSTS Contains the status of segment buffer.

SEGBUFSTS bit description

 Technosoft 2022 399 ESM User Manual

MACOMMAND Linear Interpolation operation mode as was set with the SETMODE command

VTPOS Vector target load position – position reference computed by the reference generator at
each slow loop sampling period. Measured in position units

Instructions

SETMODE value Set Linear Interpolation operation as specified by value:

Linear Interpolation operation mode (a copy of value is saved in the TML variable
MACOMMAND)

 Technosoft 2022 400 ESM User Manual

LPLANE (X_axis, Y_axis, Z_axis) Set the coordinate system for 2D/3D move.

MODE LI Set Linear Interpolation motion mode.

LPOS1 (X_inc, Y_inc, Z_inc) LPOS2 (X_inc, Y_inc, Z_inc) Describes a linear segment.

UPD Update motion parameters and start new motion mode

STOP Stop the motion

Remarks:

• When a sequence of segments is executed from a TML program they are processed one
after the other, until the segment buffer fills up. At this point the TML program stops until
the buffer starts to empty. Therefore, the next segment is processed in the cadence of the
segments execution. At the end of the sequence, the buffer starts to empty and next TML
instructions start to execute. This may lead to incorrect operation if for example a new
motion mode is set while there are still segments in the buffer waiting to be executed. In
order to avoid this situation, it is mandatory to end the segments sequence with an event
on motion complete and wait until this event occurs.

• The motion complete event is set when all the slave axes signal the end of their
movement.

Programming Example
// Linear Interpolation sequence executed from non-volatile

// memory of the drive. All slave execute a linear movement and

// have the feedback resolution identical (2000 counts/rev)

 SETMODE 0xCF00; //Clear buffer

 Technosoft 2022 401 ESM User Manual

 LPLANE (A, B, D); //Axes A, B and D define the coordinate

//system of the movement

 RESRATIOX=0u; // All axes have the same feedback resolution

 RESRATIOY=0u; // therefore the resolution ratio is 0

 RESRATIOZ=0u;

 MODE LI; // Set Linear Interpolation Mode

 VACC = 0.0002; // Vector Acceleration = 0.5[m/s^2]

 VSPD = 1.2732; // Vector Speed = 4[m/s]

 // Increment position with (X, Y, Z) = (1e+002[mm], 3e+001[mm],
3e+001[mm])

 LPOS1 32L, 10L, 11L; LPOS2 32L, 10L, 11L;

 UPD; //Execute immediate

 // Increment position with (X, Y, Z) = (3e+001[mm], 3e+001[mm],
1e+002[mm])

 LPOS1 10L, 8L, 32L; LPOS2 10L, 8L, 32L;

 // Insert End Segment

 LPOS1 0L, 0L, 0L; LPOS2 0L, 0L, 0L;

See also:

Linear Interpolation Mode– TML Programming Details

TML Description

6.3.2.4. Program flow control

6.3.2.4.1. Events on drives with built-in Motion Controller

6.3.2.4.1.1. List of Events

An event is a programmable condition, which once set, is monitored for occurrence. You can do
the following actions in relation with an event:

A) Change the motion mode and/or the motion parameters, when the event occurs

B) Stop the motion when the event occurs

C) Wait for the programmed event to occur

Remark: The programmed event is automatically erased if the event is reached, if the timeout for
the wait is reached or if a new event is programmed.

 Technosoft 2022 402 ESM User Manual

Only a single event can be programmed at a time. The Table below presents all the events with
their mnemonic and a short description.

 Technosoft 2022 403 ESM User Manual

 Technosoft 2022 404 ESM User Manual

If you want to change the motion mode and/or the motion parameters when an event occurs, you
must do the following:

• Program/define one of the above events

• Set the new motion mode and/or the motion parameters

• Set one of the TML commands: UPD! (Update on event) or STOP! (Stop on event), which
will become effective when the programmed event occurs

Remark: After you have programmed a new motion mode and/or new motion parameters with
update on event, you need to wait until the programmed event occurs, using the TML command
WAIT!. Otherwise, the program will continue with the next instructions that may override the event
monitoring.

The instruction WAIT!, stops the TML program further execution, until the programmed event
occurs. During this period, only the TML commands received via a communication channel are
processed. You may also specify the time limit for the wait, by adding a time value after the WAIT!
command: WAIT! time_limit. If the monitored event doesn’t occur in the time limit set, the wait
loop is interrupted, the event checking is reset and the TML program passes to the next
instruction.

See also:

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load position Related TML Instructions and Data

Events – Function of motor or load speed Related TML Instructions and Data

Events – After a wait time Related TML Instructions and Data

Events – Function of reference Related TML Instructions and Data

Events – Function of inputs status Related TML Instructions and Data

Events – Function of 32-bit variable value Related TML Instructions and Data

6.3.2.4.1.2. When the actual motion is completed

Setting this event allows you to detect when a motion is completed. You can use, for example,
this event to start your next move only after the actual move is finalized.

The motion complete condition is set in the following conditions:

• During position control:

 If UPGRADE.11=1, when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a preset
stabilize time interval

 If UPGRADE.11=0, when the position reference arrives at the position to reach
(commanded position)

 Technosoft 2022 405 ESM User Manual

• During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started i.e. when the update
command – UPD is executed.

Remark: In case of steppers controlled open-loop, the motion complete condition for positioning
is always set when the position reference arrives at the position to reach independently of the
UPGRADE.11 status.

Parameters

POSOKLIM Specifies the settle band when UPGRADE.11=1. Measured in position units

TONPOSOK Specifies the stabilize time UPGRADE.11=1. Measured in time units

UPGRADE TML register. When UPGRADE.11=1, the motion complete is set when
commanded/target position is reached and the position error is inside a settle
band for a preset stabilize time. When UPGRADE.11=0, the motion complete is
set when commanded/target position speed is reached

Instructions

!MC Set event when the actual position is completed

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example 1

 //Execute successive position profiles

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

 Technosoft 2022 406 ESM User Manual

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; // set event and wait for motion complete

// start here next move

Programming Example 2

//Execute successive position profiles

// Position feedback: 500 lines encoder (2000 counts/rev)

// First move

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //start first move

// set motion complete parameters

POSOKLIM = 20; //Set settle band to 0.01[rot]

TONPOSOK = 10; //Set stabilize time to 10[ms]

SRB UPGRADE, 0xFFFF, 0x0800;

!MC; // set event when motion is complete

// Prepare data for second move

CPOS = 10000;//new position command = 5[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs. When the event

// occurs the second move will start

 Technosoft 2022 407 ESM User Manual

See also:

Events – Function of motor or load position. Related TML Instructions and Data

Events – Function of motor or load speed. Related TML Instructions and Data

Events – After a wait time. Related TML Instructions and Data

Events – Function of reference. Related TML Instructions and Data

Events – Function of inputs status. Related TML Instructions and Data

Events – Function of 32-bit variable value. Related TML Instructions and Data

Events – TML Programming Details

 Technosoft 2022 408 ESM User Manual

6.3.2.4.1.3. Function of motor or load position

Setting any of these events allows you to detect when the load or motor absolute or the relative
position is equal or over/under a value or the value of a variable.

The absolute load or motor position is the measured position of the load or motor. The relative
position is the load displacement from the beginning of the actual movement. For example if a
position profile was started with the absolute load position 50 revolutions, when the absolute load
position reaches 60 revolutions, the relative motor position is 10 revolutions.

Remark: The origin for the relative position measurement (TML variable POS0) is set function of
the target update mode. Under TUM1, POS0 = TPOS. Under TUM0, POS0=APOS_LD.

Variables

POS0 Origin for the relative position measurement for the position events.
Measured in position units

RPOS Relative load position for the position events. It is computed with formula:
RPOS = APOS_LD – POS0. Measured in position units

TPOS Target position – position reference computed by the reference generator
at each slow loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions

!AMPOvalue32 Set event when motor absolute position is equal or over value32. Value32 is a
long integer. Measured in motor position units

!AMPOvar32 Set event when motor absolute position is equal or over var32. Var32 is a long
integer TML parameter or variable. Measured in motor position units

!ALPOvalue32 Set event when load absolute position is equal or over value32. Value32 is a long
integer. Measured in position units

!ALPOvar32 Set event when load absolute position is equal or over var32. Var32 is a long
integer TML parameter or variable. Measured in position units

!AMPUvalue32 Set event when motor absolute position is equal or under value32. Value32 is a
long integer. Measured in motor position units

!AMPUvar32 Set event when motor absolute position is equal or under var32. Var32 is a long
integer TML parameter or variable. Measured in motor position units

!ALPUvalue32 Set event when load absolute position is equal or under value32.
Value32 is a long integer. Measured in position units

 Technosoft 2022 409 ESM User Manual

!ALPUvar32 Set event when load absolute position is equal or under var32. Var32 is
a long integer TML parameter or variable. Measured in position units

!RPOvalue32 Set event when load relative position is equal or over value32. Value32
is a long integer. Measured in position units

!RPOvar32 Set event when load relative position is equal or over var32. Var32 is a
long integer TML parameter or variable. Measured in position units

!RPUvalue32 Set event when load relative position is equal or under value32. Value32
is a long integer. Measured in position units

!RPUvar32 Set event when load relative position is equal or under var32. Var32 is a
long integer TML parameter or variable. Measured in position units

UPD! Update the motion mode and/or the motion parameters when the
programmed event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by
value16, the wait ends after the time interval specified in this 16-bit
integer value. Value16 is measured in time units

Programming Example

//Stop motion when motor position > 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!AMPO 6000; //Set event: when motor absolute position is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

See also:

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load speed Related TML Instructions and Data

Events – After a wait time Related TML Instructions and Data

Events – Function of reference Related TML Instructions and Data

Events – Function of inputs status Related TML Instructions and Data

Events – Function of 32-bit variable value Related TML Instructions and Data

Events – TML Programming Details

 Technosoft 2022 410 ESM User Manual

6.3.2.4.1.4. Function of motor or load speed

Setting any of these events allows you to detect when the load or motor speed is equal or
over/under a value or the value of a variable.

Variables

ASPD_LD Actual load speed – measured in speed units

APOS_MT Actual motor position. Measured in motor position units.

ASPD_MT Actual motor speed. Measured in motor speed units. Alternate name: ASPD

Instructions

!MSOvalue32 Set event when motor speed is equal or over value32. Value32 is a fixed value.
Measured in motor speed units

!MSOvar32 Set event when motor speed is equal or over var2. Var32 is a fixed TML
parameter or variable. Measured in motor speed units

!LSOvalue32 Set event when load speed is equal or over value32. Value32 is a fixed value.
Measured in speed units

!LSOvar32 Set event when load speed is equal or over var2. Var32 is a fixed TML parameter
or variable. Measured in speed units

!MSUvalue32 Set event when motor speed is equal or under value32. Value32 is a fixed value.
Measured in motor speed units

!MSUvar32 Set event when motor speed is equal or under var2. Var32 is a fixed TML
parameter or variable. Measured in motor speed units

!LSUvalue32 Set event when load speed is equal or under value32. Value32 is a fixed value.
Measured in speed units

!LSUvar32 Set event when load speed is equal or under var2. Var32 is a fixed TML
parameter or variable. Measured in speed units

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example

 Technosoft 2022 411 ESM User Manual

//Motor is decelerating. Start a position profile when motor

//speed <= 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!MSU 20; //Set event: when motor speed is <= 600 rpm

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

See also:

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load position Related TML Instructions and Data

Events – After a wait time Related TML Instructions and Data

Events – Function of reference Related TML Instructions and Data

Events – Function of inputs status Related TML Instructions and Data

Events – Function of 32-bit variable value Related TML Instructions and Data

Events – TML Programming Details

6.3.2.4.1.5. After a wait time

Setting this event allows you to introduce a delay in the execution of the TML program.

The monitored event is: when relative time (TML variable RTIME) is equal or over a value or the
value of a variable. The relative time RTIME is computed with formula:

RTIME = ATIME – TIME0,

where ATIME is a 32-bit absolute time counter, incremented by 1 at each slow loop sampling
period and TIME0 is the ATIME value when the wait event was set. After power on, TIME0 is set
to 0. RTIME is updated together with ATIME, at each slow loop sampling period.

Remark:

 Technosoft 2022 412 ESM User Manual

• ATIME and RTIME start ONLY after the execution of the ENDINIT (end of initialization)
command. Therefore you should not set wait events before executing this command

• After setting a wait time event, in order to effectively execute the time delay, you need to
wait for the event to occur, using WAIT!

Variables

ATIME Absolute time counter. Incremented at each slow loop sampling period.
Starts after execution of ENDINIT command. Measured in time units

RTIME Relative time. RTIME = ATIME – TIME0. Measured in time units

TIME0 Absolute time when last wait event was set. Measured in time units

Instructions

!RT value32 Introduce a time delay equal with value32. Value32 is a 32-bit long
 integer number. Measured in time units

!RT var32 Introduce a time delay equal with value of var32. Var32 is a 32-bit long integer
TML variable or parameter. Measured in time units

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16 is
measured in time units

Programming Example

 //Introduce a 100 ms delay

!RT 100; // set event: After a wait of 100 slow-loop periods

// 1 slow-loop period = 1ms

WAIT!; // wait the event to occur

See also:

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load position Related TML Instructions and Data

Events – Function of motor or load speed Related TML Instructions and Data

Events – Function of reference Related TML Instructions and Data

Events – Function of inputs status Related TML Instructions and Data

 Technosoft 2022 413 ESM User Manual

Events – Function of 32-bit variable value Related TML Instructions and Data

Events – TML Programming Details

6.3.2.4.1.6. Function of reference

Setting any of these events allows you to detect when the position or speed or torque reference is
equal or over/under a value or the value of a variable. Use:

• Position reference events, only when position control is performed

• Speed reference events, only when speed control is performed

• Torque reference events, only when torque control is performed

Remark: Setting an event based on the position or speed reference is particularly useful for open
loop operation where motor position and speed is not available

Variables

TPOS Target load position – position reference computed by the reference generator at
each slow loop sampling period, when position or speed control is performed.
Measured in position units

TSPD Target load speed – speed reference computed by the reference generator at
each slow loop sampling period, when position or speed control is performed.
Measured in speed units

IQREF Current reference – Measured in current units

TREF Target reference. It is a:

 Position reference, when position control is performed

 Speed reference, when speed control is performed

 Current/torque reference, when torque control is performed

 Voltage reference, when voltage control is performed

Function of the control mode, it is measured in position units or speed units or current
units or voltage command units

Instructions

!PROvalue32 Set event if position reference is equal or over value32. Value32 is a long integer
value. Measured in position units

!PROvar32 Set event if position reference is equal or over var32. Var32 is a long integer TML
parameter or variable. Measured in position units

 Technosoft 2022 414 ESM User Manual

!PRUvalue32 Set event if position reference is equal or under value32. Value32 is a long
integer value. Measured in position units

!PRUvar32 Set event if position reference is equal or under var32. Var32 is a long integer
TML parameter or variable. Measured in position units

!SROvalue32 Set event when speed reference is equal or over value32. Value32 is a fixed
value. Measured in speed units

!SROvar32 Set event when speed reference is equal or over var32. Var32 is a fixed TML
parameter or variable. Measured in speed units

!SRUvalue32 Set event when speed reference is equal or under value32. Value32 is a fixed
value. Measured in speed units

!SRUvar32 Set event when torque reference is equal or under var32. Var32 is a fixed TML
parameter or variable. Measured in speed units

!TROvalue32 Set event when torque reference is equal or over value32. Value32 is a fixed
value. Measured in current units

!TROvar32 Set event when speed reference is equal or over var32. Var32 is a fixed TML
parameter or variable. Measured in current units

!TRUvalue32 Set event when torque reference is equal or under value32. Value32 is a fixed
value. Measured in current units

!TRUvar32 Set event when speed reference is equal or under var32. Var32 is a fixed TML
parameter or variable. Measured in current units

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example

// Motor will reach a hard stop. Disable control when torque

// reference > 1 A = 1984 internal current units

!TRO 1984.0; // set event when torque reference > 1 A

WAIT!;//Wait until the event occurs

AXISOFF; // disable control

See also:

 Technosoft 2022 415 ESM User Manual

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load position Related TML Instructions and Data

Events – Function of motor or load speed Related TML Instructions and Data

Events – After a wait time Related TML Instructions and Data

Events – Function of inputs status Related TML Instructions and Data

Events – Function of 32-bit variable value Related TML Instructions and Data

Events – TML Programming Details

6.3.2.4.1.7. Function of inputs status

Setting any of these events allows you to detect when:

• A transition occurs on one of the 2 capture inputs. On these inputs, are usually connected
the 1st and 2nd encoder index signals

• A transition occurs on one of the 2 limit switch inputs

• A general purpose digital input changes its status

Capture and limit switch inputs events

The capture inputs and the limit switch inputs can be programmed to sense either a low to high or
high to low transition. When the programmed transition occurs on either of these inputs, the
following happens:

• Motor position APOS_MT is captured and memorized in the TML variable CAPPOS,
except the case of open-loop systems, where reference position TPOS is captured
instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the
TML variable CAPPOS2, except the case of steppers controlled open loop with an
encoder on the load, when load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in
CAPPOS2 only for the setup configurations which use different sensors for load and motor and
foresee a transmission ratio between them. For all the other setup configurations, the master
position is saved in CAPPOS2. The master position is automatically computed when pulse and
direction signals or quadrature encoder signals are connected to their dedicated inputs. More
details about the capture process are presented at Special I/O – TML Programming Details

Remarks:

• If both capture inputs are activated in the same time, the capture event is set by the
capture input that is triggered first. The capture event makes no difference between the
two capture inputs.

 Technosoft 2022 416 ESM User Manual

• If the drive/motor accepts CANopen protocol, the home input is the same with the 2nd
encoder index. Therefore, the home input can be programmed like a capture input to
sense transitions and to memorize the load and master position when the transition
occurs.

In order to set an event on a capture input, you need to:

1) Enable the capture input for the detection of a low->high or a high-> low transition,
using one of the TML instructions: ENCAPI0, ENCAPI1, EN2CAPI0, EN2CAPI1
2) Set a capture event, with the TML instruction: !CAP
3) Wait for the event to occur, with the TML instruction: WAIT!

Remarks:

• When the programmed transition is detected, the capture input is automatically disabled. In
order to use it again, you need to enable it again for the desired transition

• You may also disable a capture input (i.e. its capability to detect a programmed transition)
previously enabled, using the TML commands: DISCAPI, DIS2CAPI

In order to set an event on a limit switch input, you need to:

1) Enable the limit switch input for the detection of a low->high or a high-> low transition,
using one of the TML instructions: ENLSP0, ENLSP1, ENLSN0, ENLSNI1
2) Set a limit switch event with one of the TML instructions: !LSP, !LSN
3) Wait for the event to occur, with the TML instruction: WAIT!

Remarks:

• When the programmed transition is detected, the limit switch input is automatically disabled
(for sensing transitions). In order to use it again, you need to enable it again for the desired
transition

• You may also disable a limit switch input (i.e. its capability to detect a programmed
transition) previously enabled, using the TML commands: DISLSP, DISLSN

Variables

CAPPOS Position captured when programmed transition occurs on 1st capture/encoder
index input. Measured in motor position units, except the case of stepper
motors, when it is measured in position units

CAPPOS2 Position captured when programmed transition occurs on 2nd capture/encoder
index input. Measured in position units when load position is captured, or in
master position units when master position is captured

APOS2 Master position computed by the slaves from pulse & direction or quadrature
encoder inputs. Measured in master position units

 Technosoft 2022 417 ESM User Manual

TPOS Target position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions:

!CAP Set event on capture inputs

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

ENLSP0 Enable positive limit switch input to detect a high to low transition

ENLSN0 Enable negative limit switch input to detect a high to low transition

ENLSP1 Enable positive limit switch input to detect a low to high transition

ENLSN1 Enable negative limit switch input to detect a low to high transition

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSP Disable positive limit switch input to detect transitions

DISLSN Disable negative limit switch input to detect transitions

UPD! Update the motion mode and/or the motion parameters when the
programmed event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example

//Stop motion on next encoder index

 Technosoft 2022 418 ESM User Manual

ENCAPI1; //Set event: When the encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

// now load/motor is in deceleration

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

General purpose digital inputs events

You can program an event on any general-purpose digital input. The event can be set when the
input is high (after a low to high transition) or low (after a high to low transition).

A general purpose input event is checked at each slow loop sampling period, when the status of
the selected input is compared with the one set in the event. A match triggers the event.

Instructions

!IN#n 1 Set event when the Input #n is high

!IN#n 0 Set event when input #n is low

UPD! Update the motion mode and/or the motion parameters when the
programmed event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

Programming Example

// Start motion when digital input #36 is high

!IN#36 1; // set event when input #36 is high

//Position profile. Position feedback: 500-lines encoder

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

 Technosoft 2022 419 ESM User Manual

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

See also:

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load position Related TML Instructions and Data

Events – Function of motor or load speed Related TML Instructions and Data

Events – After a wait time Related TML Instructions and Data

Events – Function of reference Related TML Instructions and Data

Events – Function of 32-bit variable value Related TML Instructions and Data

Events – TML Programming Details

Special I/O – TML Programming Details

6.3.2.4.1.8. Function of variable value

Setting any of these events allows you to detect when a selected variable is equal or over/under a
value or the value of a variable. The selected variable can be any 32-bit TML variable, long or
fixed.

Instructions

!VO var32, value32 Set event when 32-bit TML parameter or variable var32 is equal or over
value32. Value32 is either a long or a fixed, depending on var32 type.

!VO var32, var32c Set event when 32-bit TML parameter or variable var32 is equal or over
var32c. Var32c is a 32-bit TML parameter of variable of the same type like var32.

!VU var32, value32 Set event when 32-bit TML parameter or variable var32 is equal or under
value32. Value32 is either a long or a fixed, depending on var32 type.

!VU var32, var32c Set event when 32-bit TML parameter or variable var32 is equal or under
var32c. Var32c is a 32-bit TML parameter of variable of the same type like var32.

 Technosoft 2022 420 ESM User Manual

UPD! Update the motion mode and/or the motion parameters when the
programmed event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by
value16, the wait ends after the time interval specified in this 16-bit
integer value. Value16 is measured in time units

Programming Example

//Wait until master position MREF > 500 counts, then activate

//electronic gearing slave mode

!VO MREF, 500; //Set event when variable MREF is <= 500

GEAR = 1; // gear ratio

GEARMASTER = 1; // Gear ratio denominator

GEARSLAVE = 1; // Gear ratio numerator

EXTREF 2; // read master from 2nd encoder or pulse & dir

MASTERRES = 2000; // master resolution

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004;//UPGRADE.2=1 enables CACC limitation

CACC = 0.3183; //Limit maximum acceleration at 1000[rad/s^2]

UPD!; //execute on event

See also:

Events – When the actual motion is completed. Related TML Instructions and Data

Events – Function of motor or load position Related TML Instructions and Data

Events – Function of motor or load speed Related TML Instructions and Data

Events – After a wait time Related TML Instructions and Data

Events – Function of reference Related TML Instructions and Data

Events – Function of inputs status Related TML Instructions and Data

Events – TML Programming Details

 Technosoft 2022 421 ESM User Manual

6.3.2.4.2. Events on multi-axis Motion Controller

6.3.2.4.2.1. List of Events

An event is a programmable condition, which once set, is monitored for occurrence. You can do
the following actions in relation with an event:

A) Change the motion mode and/or the motion parameters, when the event occurs

B) Stop the motion when the event occurs

Remark: The programmed event is automatically erased if the event is reached, if the timeout for
the wait is reached or if a new event is programmed.

Only a single event can be programmed at a time. The table below presents all the events with
their mnemonic and a short description.

 Technosoft 2022 422 ESM User Manual

If you want to change the motion mode and/or the motion parameters when an event occurs, you
must do the following:

 Technosoft 2022 423 ESM User Manual

• Program/define one of the above events

• Set the new motion mode and/or the motion parameters

• Set one of the TML commands: UPD! (Update on event) or STOP, which will become
effective when the programmed event occurs

Once an event is programmed the TML program execution is halted, until the event occurs.
During this period, only the TML commands received via a communication channel are
processed. You may specify the time limit for the wait. If the monitored event doesn’t occur in the
time limit set, then the wait loop is interrupted, the event checking is reset and the TML program
continues with the next instruction.

6.3.2.4.3. Jumps and Function Calls

The TML offers the possibility to make unconditional or conditional jumps and calls of functions.

The jumps are executed with TML command GOTO, followed by a jump address. The jump
address may be specified with an immediate value, through a label or via 16-bit TML variable
containing it. A label can be any user-defined string of up to 32 characters starting with an
alphanumeric character or with underscore. A label starts from the first column of a text line and
ends with a colon (:). It contains the TML program address of the next TML instruction. Using an
assignment instruction of type: user_var = label; you can set a jump address in an integer
TML variable.

In a conditional jump, a condition is tested. If the condition is true the jump is executed, else the
next TML command is carried out. The condition is specified by a test variable and a test
condition both added after the jump address. The test variable is always compared with zero. The
possible test conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0.

The calls are executed with TML command CALL, followed by a TML function address. A TML
function is a set of TML commands which starts with a label and ends with the RET instruction.
The label gives the TML function address and name. Like the jump address, the TML function
address may be specified with an immediate value, through a label or via 16-bit TML variable
containing it.

In a conditional call, a condition is tested. If the condition is true the TML function is executed,
else the next TML command is carried out. The condition is specified by a test variable and a test
condition added after the TML function address. The test variable is always compared with zero.
The possible test conditions are: < 0, <= 0, >0, >=0, =0, ≠ 0.

Using TML command CALLS, you can do a cancelable call. Use this command if the exit from the
called function depends on conditions that may not be reached. In this case, using TML command
ABORT you can terminate the function execution and return to the next instruction after the call.

See also:

Jumps and Function Calls – Related TML Instructions and Data

 Technosoft 2022 424 ESM User Manual

TML Description

6.3.2.4.4. Jumps and Function Calls - Related TML
Instructions and Data

Instructions

GOTO label Unconditional jump to the address indicated by the label.

GOTO value16 Unconditional jump to the address set in value16. Value16 is a 16-bit
unsigned integer.

GOTO var16 Unconditional jump to the address indicated by var16. Var16 is a 16-bit
TML variable whose value is the jump address

GOTO label, var, cond Conditional jump to the address indicated by the label. Var is a 16 or 32-
bit TML variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ,
LT, LEQ

GOTO value16, var, cond Conditional jump to the address set in value16. Var is a 16 or 32-
bit TML variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ,
LT, LEQ

GOTO var16, var, cond Conditional jump to the address indicated by var16. Var is a 16 or
32-bit TML variable compared with 0. Test condition is: EQ, NEQ, GT,
GEQ, LT, LEQ

CALL label Unconditional call from the address indicated by the function
starting label (i.e. function name)

CALL value16 Unconditional call from the address set in value16. Value16 is a 16-bit
unsigned integer.

CALL var16 Unconditional call from the address indicated by var16. Var16 is a 16-bit
TML variable whose value is the TML function address

CALL label, var, cond Conditional call from the address indicated by the function starting label.
Var is a 16 or 32-bit TML variable compared with 0. Test condition is: EQ,
NEQ, GT, GEQ, LT, LEQ

CALL value16, var, cond Conditional call from the address set in value16. Var is a 16 or 32-
bit TML variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ,
LT, LEQ

CALL var16, var, cond Conditional call from the address indicated by var16. Var is a 16 or 32-bit
TML variable compared with 0. Test condition is: EQ, NEQ, GT, GEQ,
LT, LEQ

CALLS label Cancelable call from the address indicated by the function starting label.

 Technosoft 2022 425 ESM User Manual

CALLS value16 Cancelable call from the address set in value16. Value16 is a 16-bit
unsigned integer.

CALLS var16 Cancelable call from the address indicated by var16. Var16 is a 16-bit
TML variable whose value is the TML function address

ABORT Abort the execution of a TML function called with CALLS

RET Return from a TML function

Remarks:

• All labels mentioned in the GOTO or CALL instructions must exist i.e. must be defined
somewhere in the TML program.

• The label values are assigned after TML program compilation

• When you call a TML function, the return address pointed by the IP (instruction pointer) is
saved into the TML stack. When RET is executed, the IP is set with the last value from
the TML stack, hence the TML program execution continues with the next instruction after
the call. The TML stack dimension is 12 words. Each function call and TML interrupt
service routine call uses one word of the TML stack

• The body of the TML subroutines must be placed outside the main TML program, for
example, after the END instruction.

Programming Examples

GOTO label1, var1, LT; // jump to label1 if var1 < 0

GOTO label2, var1, LEQ; // jump to label2 if var1 <= 0

GOTO label3, var1, GT; // jump to label3 if var1 > 0

GOTO label4; // unconditional jump to label4

CALL fct1, var2, GEQ; // call function fct1, if var2 >= 0

CALL fct1, var2, EQ; // call function fct1, if var2 = 0

CALL fct1, var2, NEQ; // call function fct1, if var2 != 0

CALL fct1; // unconditional call of function fct1

CALLS fct2; // unconditional cancelable call of fct1

...

END; // end of main program

fct1:

...

...

RET;

 Technosoft 2022 426 ESM User Manual

fct2:

...

ABORT; // abort function, return to next TML

// command after the CALLS

RET;

See also:

Jumps and Function Calls - TML Programming Details

TML Description

6.3.2.4.5. TML Interrupts

In TML, you can monitor simultaneously up to 13 conditions. Each condition triggers a TML
interrupt. When a TML interrupt occurs, the normal TML program execution is suspended to
execute a TML function associated with the interrupt, called the interrupt service routine (in
short ISR). The TML interrupt mechanism is the following:

• The intelligent drive continuously monitors 12 conditions that may generate TML
interrupts. The motion controller has an additional condition that triggers the TML interrupt
Int12 when an error on the slaves occurs

• When an interrupt condition occurs, a flag (bit) is set in the ISR (Interrupt Status Register)

• If the interrupt is enabled e.g. the same bit (as position) is set in the ICR (Interrupt Control
Register) and also if the interrupts are globally enabled (EINT instruction was executed),
the interrupt condition is qualified and it generates a TML interrupt

• The interrupt causes a jump to the associated interrupt service routine. On entry in this
routine, the TML interrupts are globally disabled (DINT) and the interrupt flag is reset

• The interrupt service routine must end with the TML instruction RETI, which returns to
normal program execution and in the same time globally enables the TML interrupts

The 13 monitored conditions are:

1. Int0 – Enable input has changed: either transition of the Enable input sets the interrupt
flag

2. Int1 – Short-circuit: when the drive/motor hardware protection for short-circuit is triggered

3. Int2 – Software protections: when any of the following protections is triggered:

a. Over current

b. I2t motor

 Technosoft 2022 427 ESM User Manual

c. I2t drive

d. Over temperature motor

e. Over temperature drive

f. Over voltage

g. Under voltage

4. Int3 – Control error: when the control error protection is triggered

5. Int4 – Communication error: when a communication error occurs

6. Int5 – Wrap around: when the target position computed by the reference generator wraps
around because it bypasses the limit of the 32-bit long integer representation

7. Int6 – LSP programmed transition detected: when the programmed transition (low to
high or high to low) is detected on the limit switch input for positive direction (LSP)

8. Int7 – LSN programmed transition detected: when the programmed transition (low to
high or high to low) is detected on the limit switch input for negative direction (LSN)

9. Int8 – Capture input transition detected: when the programmed transition (low to high or
high to low) is detected on the 1st capture / encoder index input or on the 2nd capture /
encoder index input

10. Int9 – Motion is completed: in position control, when motion complete condition is set and
in speed control when target speed reaches zero.

11. Int10 – Time period has elapsed: periodic time interrupt with a programmable time period
set in the TML parameter TMLINTPER

12. Int11 – Event set has occurred: when last defined event has been occurred

13. Int12 – Error on slave occurred: when a slave reports an error.

The interrupt service routines (ISR) of the TML interrupts are similar with the TML functions: the
starting point is a label and the ending point is the TML instruction RETI (return from interrupt).
When a TML interrupt occurs, the TML instruction pointer (IP) jumps to the start address of the
associated ISR. This information is read from an interrupt table, which contains the values of the
starting labels for all the ISR. The beginning of the interrupt table is pointed by the TML parameter
INTTABLE. Like the TML functions, the interrupt table and the interrupt service routines must be
positioned outside the main section of the TML program (see the programming example below).

At power-on, each drive/motor starts with a built-in interrupt table and a set of default ISR. The
TML interrupts are globally enabled together with the first 4 interrupts: Int 0 to Int 3. For Int 2, all
the protections are activated, except over temperature motor, which depends on the presence or
not of a temperature sensor on the motor; hence this protection may or may not be activated. For
each of these 4 interrupts there is a default ISR which is executed when the corresponding
interrupt occurs.

 Technosoft 2022 428 ESM User Manual

Remark: A basic description of these defaults ISR is presented below. Their exact content is
product dependent and can be seen using TML development platforms like EasyMotion Studio
which include the possibility to view and/or modify the contents of the default ISR for each type of
drive/motor.

If you intend to enable other TML interrupts or to modify the default ISR for the first 4 TML
interrupts, you need to create another TML interrupt table which will point towards your own ISR.
In this new interrupt table, put the starting labels for your ISR and use the global symbols:
default_intx (x=0 to 11) as labels for those ISR you don’t want to change. These global symbols
contain the start addresses of the default ISR.

Remark: Some of the drive/motor protections may not work properly if the TML Interrupts are
handled incorrectly. In order to avoid this situation keep in mind the following rules:

• The TML interrupts must be kept globally enabled to allow execution of the ISR for those
TML interrupts triggered by protections. As during a TML interrupt execution, the TML
interrupts are globally disabled, you should keep the ISR as short as possible, without
waiting loops. If this is not possible, you must globally enable the interrupts with EINT
command during your ISR execution.

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you keep the
original TML commands from the default ISR. Put in other words, you may add your own
commands, but these should not interfere with the original TML commands. Moreover, the
original TML commands must be present in all the ISR execution paths.

The interrupt flags are set independently of the activation or not of the TML interrupts. Therefore,
as a general rule, before enabling an interrupt, reset the corresponding flag. This operation will
avoid triggering an interrupt immediately after activation, due to an interrupt flag set in the past.

To summarize, in order to work with a TML interrupt, you need to:

• Edit your own ISR or decide to use the default ISR.

• Create your own interrupt table, and set the TML parameter INTTABLE equal with your
interrupt table start address. Exception: if you use only default ISR

• Reset the interrupt flag to avoid entering in an interrupt due to a flag set in the past

• Enable the TML interrupt. As the TML interrupts must be globally enabled, the TML
interrupt is now activated and your ISR will execute when the interrupt flag will be set.

Default ISR Description

ISR for Int0 – Enable input has changed: When enable input goes from disable to enable
status, executes AXISON if ACR.1 = 1 (i.e. the drive/motor is set to start automatically after
power-on with an external reference) or if ACR.3 = 1 (i.e. specific request to execute AXISON at
recover from disable status). Before executing AXISON, if the drive/motor is set in electronic
gearing slave mode, the motion mode is set again (followed by an update command – UPD) to
force a re-initialization for smooth recoupling with the master.

 Technosoft 2022 429 ESM User Manual

ISR for Int1 – Short-circuit: Set Ready output (if present) to not ready status and turn off the
green led (if present). Set Error output (if present) to error status and turn on the red led (if
present). Execute AXISOFF and set SRL.3 =1 to set the drive/motor into the FAULT condition.

ISR for Int2 – Software protections: Same as ISR for Int1

ISR for Int3 – Control error: Same as ISR for Int1

See also:

TML Interrupts – Related TML Instructions and Data

TML Description

6.3.2.4.6. TML Interrupts - Related TML Instructions and Data

Parameters

INTTABLE Pointer to the start address of the interrupt table

TMLINTPER Time period for the periodic time interrupt Int10. Measured in
time_units

Instructions

EINT Globally enables the TML interrupts. Sets ICR.15 = 1

DINT Globally disables the TML interrupts. Sets ICR.15 = 0

SRB ICR, ANDm, ORm Individually enable/disable TML interrupts, by setting/resetting
bits from ICR register according with AND mask ANDm and OR
mask ORm

SRB ISR, ANDm, 0; Reset interrupt flags in the ISR register according with AND mask
ANDm

RETI Return from a TML interrupt service routine

Programming Example

Set TML Int10 to generate a time interrupt at each 0.5s. In the ISR, switch the status of output
#25/Ready to signal that the drive/motor is in standby. Leave the other TML interrupts with their
default ISR.

BEGIN; // TML program start

INTTABLE = InterruptTable; // set start address for the new interrupt table

ENDINIT; // end of initialization

 Technosoft 2022 430 ESM User Manual

...

int Ready_status; // Define integer variable Ready_status

Ready_status = 0; // initialize Ready_status

TMLINTPER = 500; //Set a time interrupt at every 0.5[s]

SRB ICR, 0x8FFF, 0x0400; // Set ICR.10 to enable Int10

...

END; // end of the main section

InterruptTable: // start of the interrupt table

@default_int0;

@default_int1;

@default_int2;

@default_int3;

@default_int4;

@default_int5;

@default_int6;

@default_int7;

@default_int8;

@default_int9;

@int10;

@default_int11;

int10:

GOTO Turn_on, Ready_status, EQ; // Branch to Turn_on if Ready_status == 0

SOUT#25; //Set Low to I/O line #25

Ready_status = 0; // set Ready_status = 0

RETI; // return from interrupt

Turn_on: //Define label Turn_on

ROUT#25; //Set High to I/O line #25

Ready_status = 1; // set Ready_status = 1

RETI;

 Technosoft 2022 431 ESM User Manual

See also:

TML Interrupts – Related TML Instructions and Data

TML Description

 Technosoft 2022 432 ESM User Manual

6.3.2.5. I/O Programming

6.3.2.5.1. General I/O (Firmware FAxx)

In TML you can access up to 40 digital I/O lines, numbered: #0 to #39. Each intelligent
drive/motor has a specific number of inputs and outputs, therefore only a part of the 40 I/Os is
used. The I/O numbering is common for all the products; hence each product has its own list of
available I/Os. This is not an ordered list. For example, a product with 4 inputs and 4 outputs can
use the inputs: #36, #37, #38 and #39 and the outputs #28, #29, #30 and #31.

Remark: Read carefully the drive/motor user manual to find which I/O lines are available. Do not
attempt to use the other I/Os. This may harm your drive/motor.

Some drives/motors include I/O lines that may be used either as inputs or as outputs. In these
cases, the same I/O number occurs both in the list of available inputs and in the list of available
outputs. Before using these lines, you need to specify how you want to use them, with the TML
commands:

SETIO#n OUT; //Set the I/O line #n as an output

SETIO#n IN; //Set the I/O line #n as an input

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O lines that
may be used either as inputs or as outputs

• You need to set an I/O line as input or output, only once, after power on

You can read and save the status of an input with the TML command:

user_var = IN#n; // read input #n in the user variable user_var

where user_var is a 16-bit integer variable and n is the input number. If the input line is low (0
logic), user_var is set to 0, else user_var is set to a non-zero value.

You can set an output high (1 logic) or low (0 logic) with the following commands:

ROUT#n; // Set low the output line #n

SOUT#n; // Set high the output line #n

Remark: Check the drive/motor user manual to find if the I/O lines you are using are passed
directly or are inverted inside the drive/motor. If an I/O line is inverted, you need to switch high
with low in the examples above, which refer to the I/O line status at the drive/motor connector
level.

Using TML command:

 user_var = INPORT, 0xE00F; // read inputs in variable user_var

 Technosoft 2022 433 ESM User Manual

you can read simultaneously and save in a 16-bit integer variable the status of the following
inputs:

• Enable input (#16/ENABLE) – saved in bit 15

• Limit switch input for negative direction (#24/LSN) - saved in bit 14

• Limit switch input for positive direction (#2/LSP) - saved in bit 13

• General-purpose inputs #39, #38, #37 and #36 – save din bits 3, 2, 1 and 0

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is
high. The other bits of the variable are set to 0.

Remark: Each drive/motor contains in the TML parameter DIGIN_INVERSION_MASK an
inversion mask for these inputs. A bit set to 1 in this mask, means that the corresponding input is
inverted. The value set in user_var is obtained after a logical XOR between the inputs status and
the inversion mask. As result, the bits in user_var always show correctly the inputs status at
connectors level (0 if the input is low and 1 if the input is high) even when the inputs are inverted.

Using TML command:

 OUTPORT user_var; // Send variable user_var to external output port

you can set simultaneously with the command value specified by a 16-bit integer variable, the
following outputs:

• Ready output (#25/READY) – set by bit 15

• Error output (#12/ERROR) – set by bit 14

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: Each drive/motor contains in the TML parameter DIGOUT_INVERSION_MASK an
inversion mask for these outputs. A bit set to 1 in this mask, means that the corresponding output
is inverted. The commands effectively sent to the outputs are obtained after a logical XOR
between the user_var value and the inversion mask. As result, the outputs at connectors level
always correspond to the user_var command values (low if the bit is 0 and high if the bit is 1),
even when the outputs are inverted.

General-purpose I/O – Related TML Instructions and Data

TML Description

 Technosoft 2022 434 ESM User Manual

6.3.2.5.2. General I/O (Firmware FAxx) - Related TML
Instructions and Data

Parameters

DIGIN_INVERSION_MASK Inversion mask for the following digital inputs:

• Enable input (#16/ENABLE) – bit 15

• Limit switch input for negative direction (#24/LSN) - bit 14

• Limit switch input for positive direction (#2/LSP) - bit 13

• General-purpose inputs #39, #38, #37 and #36 – bits 3, 2, 1 and 0

A bit set signals that the corresponding input is inverted. The TML variable INSTATUS as well as
the TML command INPORT are considering this inversion mask to switch the status of inverted
inputs. As result, in INSTATUS and in the TML variable set by INPORT, the above bits always
show correctly the inputs status at connectors level (0 if the input is low and 1 if the input is high)
even when the inputs are inverted

DIGOUT_INVERSION_MASK Inversion mask for the following digital outputs:

• Ready output (#25/READY) – set by bit 15

• Error output (#12/ERROR) – set by bit 14

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0

A bit set signals that the corresponding output is inverted. The TML command OUTPORT uses
this inversion mask to switch the command for the inverted outputs. As result, the outputs at
connectors level are always set as specified by the above bits in the TML variable of the
OUTPORT command (low if the bit is 0 and high if the bit is 1), even when the outputs are
inverted.

Variables

INSTATUS Provides status of the following digital inputs:

• Enable input (#16/ENABLE) – in bit 15

• Limit switch input for negative direction (#24/LSN) - in bit 14

• Limit switch input for positive direction (#2/LSP) - in bit 13

• General-purpose inputs #39, #38, #37 and #36 – in bits 3, 2, 1 and 0

The above bits are set to 0 if the input is low (at connectors level) and 1 if the input is high (at
connectors level). The information is automatically corrected in the case of inverted inputs. The
other bits INSTATUS have no significance.

Instructions

 Technosoft 2022 435 ESM User Manual

user_var = IN#n Read input #n in the user variable user_var

OUTPORTvalue16 Set simultaneously the output lines as specified by value16

ROUT#n Set low the output line #n

SOUT#n Set high the output line #n

SETIO#n OUT; Set the I/O line #n as an input

SETIO #n IN; Set the I/O line #n as an output

Programming Example

user_var = IN#36; // read input #36 in user_var

GOTO label1, user_var, NEQ; // go to label1 if input #36 is 1

// input #36 is 0

user_var = IN#39; // read input #39 in user_var

GOTO label2, user_var, EQ; // go to label2 if input #39 is 0

// input #39 is 1

...

Label1: // input #36 is 1

...

Label2: // input #39 is 0

...

See also:

General-purpose I/O – TML Programming Details

TML Description

 Technosoft 2022 436 ESM User Manual

6.3.2.5.3. Special I/O (Firmware FAxx)

In TML, there are 5 inputs and 2 outputs that have dedicated functions. These are:

• Enable input: #16/ENABLE

• 2 limit switch inputs: #2/LSP and #24/LSN

• 2 capture inputs: #5/CAPI and #34/2CAPI

• Ready output: #25/READY

• Error output: #12/ERROR

Remark: On some drives/motors only a part if these special I/O is available. When present, the
capture and limit switch inputs and always connected to the same I/O numbers. However, the
Enable input as well as the Ready and Error outputs may be assigned to other I/O lines. Their I/O
number allocation is specific for each product.

The enable input is a safety input, and can be: active or inactive. On the active level, it enables
normal operation. On the inactive level it disables the drive/motor similarly with the AXISOFF
command. When the enable input goes from inactive to active level and AXISON command is
automatically performed if ACR.1 = 1 or ACR.3 = 1.

The active level is programmable: low or high via TML parameter DIGIN_ACTIVE_LEVEL as
follows:

• If DIGIN_ACTIVE_LEVEL.15 = 1, #16/ENABLE is active when the input is high

• If DIGIN_ACTIVE_LEVEL.15 = 0, #16/ENABLE is active when the input is low

Remark: The enable input high/low refers to the input level at drive/motor connector. After power
on, the active level is set to enable normal operation with nothing connected on the input

The limit switch inputs main goal is to protect against accidental moves outside a defined
working area. The protection involves connecting limit switches to:

• #2/LSP to stop movement in positive direction

• #24/LSN to stop movement in negative direction

A limit switch input can be: active or inactive. The active level is programmable: low or high via
TML parameter DIGIN_ACTIVE_LEVEL as follows:

• If DIGIN_ACTIVE_LEVEL.14 = 1, #24/LSN is active when the input is high

• If DIGIN_ACTIVE_LEVEL.14 = 0, #24/LSN is active when the input is low

• If DIGIN_ACTIVE_LEVEL.13 = 1, #2/LSP is active when the input is high

• If DIGIN_ACTIVE_LEVEL.13 = 0, #2/LSP is active when the input is low

 Technosoft 2022 437 ESM User Manual

Remark: The limit switch inputs high/low refers to the inputs level at drive/motor connector. After
power on, the active level is set to have both limit switches inactive with nothing connected on
these inputs

When positive limit switch #2/LSP input is active, movement is possible only in the negative
direction. Any attempt to move in the positive direction will set the drive/motor in quick stop mode,
and this will stop the move with the deceleration rate set in TML parameters CDEC.

When negative limit switch #24/LSN input is active, movement is possible only in the positive
direction. Any attempt to move in the negative direction will set the drive/motor in quick stop
mode, and this will stop the move with the deceleration rate set in TML parameters CDEC.

Remark: The drive/motor exits from quick stop mode only by setting a new motion mode.

The limit switch inputs may also be used as capture inputs due to their capability to sense low to
high or high to low transitions and to capture the motor, load or master position when these
transitions occur. The limit switch inputs capturing behavior is identical with that of the capture
inputs #5/CAPI and #34/2CAPI and therefore is presented below together with the capture inputs.

You can set either an event or a TML interrupt, for each limit switch input, to detect when a
programmed transition has occurred. In both cases you need to:

1. Enable limit switch input capability to detect a low->high or a high-> low transition with
one of the following TML instructions:

ENLSP0; //Enable #2/LSP to detect a high->low transition

ENLSP1; //Enable #2/LSP to detect a low->high transition

ENLSN0; //Enable #24/LSN to detect a high->low transition

ENLSN1; //Enable #24/LSN to detect a low->high transition

2. Set:

• A limit switch event with !LSP or !LSN, then wait until the event occurs with
WAIT!;, or

• Enable the LSP or LSN TML interrupt with the TML commands:

SRB ICR 0xFFFF,0x0040;// Set ICR.6 = 1 to enable LSP interrupt

SRB ICR 0xFFFF,0x0080;// Set ICR.7 = 1 to enable LSN interrupt

Remarks:

• The main task of the limit switches i.e. to protect against accidental moves outside the
working area is performed independently of the fact that limit switches may be enabled or
not to detect transitions

• A limit switch input capability to detect transitions is automatically disabled, after the
programmed transition was detected. In order to reuse it, you need to enable it again.

 Technosoft 2022 438 ESM User Manual

• You may also disable a limit switch input capability to detect transitions, using the TML
commands: DISLSP, DISLSN

You can also use the limit switch inputs as general-purpose inputs by disabling their capability to
protect against accidental moves outside a defined working area. For this you need to set TML
parameter LSACTIVE = 1. This command, doesn’t affect the limit switch inputs capability to
detect transitions.

Remark: After power on, LSACTIVE = 0 and the limit switches are active.

You can read the limit switches inputs, at any moment, independently of LSACTIVE value, like
any other inputs using the TML instructions:

var = IN#2; // read status of the positive limit switch input

var = IN#24; // read status of the negative limit switch input

The capture inputs are special inputs that can be programmed to sense either a low to high or
high to low transition and capture the motor, load or master position with very high accuracy when
these transitions occur.

Typically, the 1st encoder index is connected to the 1st capture input – #5/CAPI, and the 2nd
encoder index is connected to the 2nd capture input – #34/2CAPI.

When an incremental encoder provides the motor position, its signals are always connected to the
1st encoder interface. When an incremental encoder provides the master position, its signals are
always connected to the 2nd encoder interface. When an incremental encoder provides the load
position, its signals are connected to:

• 2nd encoder interface, if there is another sensor on the motor (for example DC motor with
encoder on load and tachometer on the motor)

• 1st encoder interface, if there is no other sensor on the motor (for example steppers
controlled open-loop with an encoder on the load)

When the programmed transition occurs on any capture or limit switch input, the following
happens:

• Motor position APOS_MT is captured and memorized in the TML variable CAPPOS,
except the case of open-loop systems, where reference position TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the TML
variable CAPPOS2, except the case of steppers controlled open loop with an encoder on
the load, when load position is captured in CAPPOS.

The selection between master and load position is done as follows: load position is saved in
CAPPOS2 only for the setup configurations which use different sensors for load and motor and
foresee a transmission ratio between them. For all the other setup configurations, the master
position is saved in CAPPOS2. The master position is automatically computed when pulse and
direction signals or quadrature encoder signals are connected to their dedicated inputs.

 Technosoft 2022 439 ESM User Manual

When an incremental encoder is connected to the 1st encoder interface and 1st capture/encoder
index detects the programmed transition, the position captured in CAPPOS is very accurate,
being read in less than 200 ns after the input transition. The position captured in CAPPOS2 is
also accurate being read with a maximum delay of 5μs.

When an incremental encoder is connected to the 2nd encoder interface or when master position
is set via pulse & direction signals and 2nd capture/encoder index detects the programmed
transition, the position captured in CAPPOS2 is very accurate, being read in less than 200 ns,
after the input transition. The position captured in CAPPOS2 is read with a maximum delay of
5μs.

When any of the 2 limit switch inputs detects the programmed transition, the positions captured in
CAPPOS and CAPPOS2 are accurate, both being read with a maximum delay of 5μs.

You can set either an event or a TML interrupt on a capture input. In both cases you need to:

1. Enable the capture input for the detection of a low->high or a high-> low transition with
one of the following TML instructions:

ENCAPI0; //Enable #5/CAPI to detect a high->low transition

ENCAPI1; //Enable #5/CAPI to detect a low->high transition

EN2CAPI0; //Enable #34/2CAPI to detect a high->low transition

EN2CAPI1; //Enable #34/2CAPI to detect a low->high transition

2. Set:

• A capture event with !CAP, then wait until the event occurs with WAIT!;, or

• Enable the TML capture interrupt with the TML command:
SRB ICR 0xFFFF,0x0100; //Set ICR.8 = 1

Remarks:

• If both capture inputs are activated in the same time, the capture event and the TML
capture interrupt flag is set by the capture input that is triggered first. The capture event or
the TML capture interrupt makes no difference between the two capture inputs.

• When the programmed transition is detected, the capture input is automatically disabled.
In order to reuse it, you need to enable it again for the desired transition

• You may also disable a capture input (i.e. its capability to detect a programmed transition)
previously enabled, using the TML commands: DISCAPI, DIS2CAPI

See also:

Special I/O – Related TML Instructions and Data

TML Description

 Technosoft 2022 440 ESM User Manual

6.3.2.5.4. Special I/O (Firmware FAxx) - Related TML
Instructions and Data

Parameters

DIGIN_ACTIVE_LEVEL Sets active levels for enable and limit switch inputs as follows:

• Enable input (#16/ENABLE) – bit 15: 0 – low, 1 – high

• Limit switch input for negative direction (#24/LSN) - on bit 14: 0 – low, 1 – high

• Limit switch input for positive direction (#2/LSP) - on bit 13: 0 – low, 1 – high

LSACTIVE When set to a non-zero value, disables limit switch inputs capability to protect
against accidental moves outside a defined working area. In this case, the limit switch inputs are
treated like 2 extra general-purpose inputs

CDEC Command deceleration for quick stop mode. Measured in acceleration units

ICR Interrupt Control Register. The TML interrupts can be enabled or disabled by setting or
resetting the corresponding bits from this register

ACR Auxiliary Control Register. If ACR.1 = 1 the drive/motor is set to start automatically after
power-on with an external reference. If ACR.3 = 1 there is a specific request to execute AXISON
at recover from disable status. In both cases, an AXISON is executed when enable input goes
from inactive to active status.

Variables

CAPPOS Position captured when programmed transition occurs on 1st capture/encoder
index input. Measured in motor position units, except the case of stepper
motors, when it is measured in position units

CAPPOS2 Position captured when programmed transition occurs on 2nd capture/encoder
index input. Measured in position units when load position is captured, or in
master position units when master position is captured

APOS2 Master position computed by the slaves from pulse & direction or quadrature
encoder inputs. Measured in master position units

TPOS Target position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions

 Technosoft 2022 441 ESM User Manual

!CAP Set event on capture inputs

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

ENLSP0 Enable positive limit switch input to detect a high to low transition

ENLSN0 Enable negative limit switch input to detect a high to low transition

ENLSP1 Enable positive limit switch input to detect a low to high transition

ENLSN1 Enable negative limit switch input to detect a low to high transition

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSP Disable positive limit switch input to detect transitions

DISLSN Disable negative limit switch input to detect transitions

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

SRB Set/reset bits from a TML data

Programming Example

//Stop motion on next encoder index

ENCAPI1; //Set event: When the encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 442 ESM User Manual

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

Special I/O – TML Programming Details

TML Description

6.3.2.5.5. General-purpose I/O (Firmware FBxx)

In TML you can access up to 16 digital input and 16 digital output lines, numbered: 0 to 15. Each
intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of the 16
inputs or 16 outputs is used. The I/O numbering is common for all the products; hence each
product has its own list of available I/Os. This is an ordered list. For example, a product with 4
inputs and 4 outputs can use the inputs: 0, 1, 2 and 3 and the outputs 0, 1, 2 and 3.

Remark: Read carefully the drive/motor user manual to find which I/O lines are available. Do not
attempt to use the other I/Os. This may harm your drive/motor.

Some drives/motors include I/O lines that may be used either as inputs or as outputs. Before
using these lines, you need to specify how you want to use them, with the TML commands:

SetAsInput(n); //Set the IO line n as an input

SetAsOutput(n); //Set the IO line n as an output

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O lines that
may be used either as inputs or as outputs

• You need to set an I/O line as input or output, only once, after power on

You can read and save the status of an input with the TML command:

user_var = IN(n); //Read IO line n data into variable user_var

where user_var is a 16-bit integer variable and n is the input number. If the input line is low (0
logic), user_var is set to 0, else user_var is set to a non-zero value.

You can set an output high (1 logic) or low (0 logic) with the following commands:

 Technosoft 2022 443 ESM User Manual

OUT(n)=value16; // Set IO line n according with its
corresponding bit from value16

Remark: Check the drive/motor user manual to find if the I/O lines you are using are passed
directly or are inverted inside the drive/motor. If an I/O line is inverted, you need to switch high
with low in the examples above, which refer to the I/O line status at the drive/motor connector
level.

Using TML command:

 user_var = IN(n1,n2,n3,…); // Set corresponding bits from a
according with selected inputs status

you can read simultaneously and save in a 16-bit integer variable the status of the selected
inputs.

The bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the input is
high. The other bits of the variable are set to 0.

Remark: Each drive/motor contains in the TML parameter DIGIN_INVERSION_MASK an
inversion mask for these inputs. A bit set to 1 in this mask, means that the corresponding input is
inverted. The value set in user_var is obtained after a logical XOR between the inputs status and
the inversion mask. As result, the bits in user_var always show correctly the inputs status at
connectors level (0 if the input is low and 1 if the input is high) even when the inputs are inverted.

Using TML command:

 OUT(n1, n2, n3,…) = value16; // Set outputs n1, n2, n3, …
according with corresponding bits from value16

you can set simultaneously with the command value specified by a 16-bit integer variable, the
selected outputs.

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remark: Each drive/motor contains in the TML parameter DIGOUT_INVERSION_MASK an
inversion mask for these outputs. A bit set to 1 in this mask, means that the corresponding output
is inverted. The commands effectively sent to the outputs are obtained after a logical XOR
between the immediate or user_var value and the inversion mask. As result, the outputs at
connectors level always correspond to the immediate or user_var command values (low if the bit
is 0 and high if the bit is 1), even when the outputs are inverted.

General-purpose I/O – Related TML Instructions and Data

TML Description

 Technosoft 2022 444 ESM User Manual

6.3.2.5.6. General-purpose I/O – Related TML Instructions
and Data (Firmware FBxx)

Variables

INSTATUS Provides status of the following digital inputs:

The above bits are set to 0 if the input is low (at connectors level) and 1 if the input is high (at
connectors level). The information is automatically corrected in the case of inverted inputs. The
other bits INSTATUS have no significance.

Instructions

user_var = IN(n) Read input n in the user variable user_var

user_var = IN(n1, n2, n3, …) Read inputs n1, n2, n3,… in the user variable user_var

OUT(n) =value16 Set the output line as specified by value16

OUT(n1, n2, n3, …) =value16 Set the output lines n1 n2, n3 as specified by value16

SetAsInput(n); Set the I/O line #n as an input

SetAsOutput(n); Set the I/O line #n as an output

Programming Example

user_var = IN#36; // read input #36 in user_var

GOTO label1, user_var, NEQ; // go to label1 if input #36 is 1

// input #36 is 0

user_var = IN#39; // read input #39 in user_var

GOTO label2, user_var, EQ; // go to label2 if input #39 is 0

// input #39 is 1

...

Label1: // input #36 is 1

...

Label2: // input #39 is 0

...

See also:

General-purpose I/O – TML Programming Details

 Technosoft 2022 445 ESM User Manual

TML Description

6.3.2.5.7. Special I/O - TML Programming Details (Firmware
FBxx)

In TML, there are 5 inputs and 2 outputs that have dedicated functions. These are:

• Enable input

• 2 limit switch inputs

• 2 capture inputs

• Ready output

• Error output

Remark: On some drives/motors only a part if these special I/O is available. When present, the
capture and limit switch inputs and always connected to the same I/O numbers. However, the
Enable input as well as the Ready and Error outputs may be assigned to other I/O lines. Their I/O
number allocation is specific for each product.

The enable input is a safety input, and can be: active or inactive. On the active level, it enables
normal operation. On the inactive level it disables the drive/motor similarly with the AXISOFF
command. When the enable input goes from inactive to active level and AXISON command is
automatically performed if ACR.1 = 1 or ACR.3 = 1.

The active level is programmable: low or high via TML parameter DIGIN_ACTIVE_LEVEL as
follows:

• If DIGIN_ACTIVE_LEVEL.15 = 1, Enable is active when the input is high

• If DIGIN_ACTIVE_LEVEL.15 = 0, Enable is active when the input is low

Remark: The enable input high/low refers to the input level at drive/motor connector. After power
on, the active level is set to enable normal operation with nothing connected on the input

The limit switch inputs main goal is to protect against accidental moves outside a defined
working area. The protection involves connecting limit switches to:

• LSP input to stop movement in positive direction

• LSN input to stop movement in negative direction

A limit switch input can be: active or inactive. The active level is programmable: low or high via
TML parameter DIGIN_ACTIVE_LEVEL as follows:

• If DIGIN_ACTIVE_LEVEL.14 = 1, Limit Switch Negative is active when the input is high

• If DIGIN_ACTIVE_LEVEL.14 = 0, Limit Switch Negative is active when the input is low

• If DIGIN_ACTIVE_LEVEL.13 = 1, Limit Switch Positive is active when the input is high

 Technosoft 2022 446 ESM User Manual

• If DIGIN_ACTIVE_LEVEL.13 = 1, Limit Switch Positive is active when the input is low

Remark: The limit switch inputs high/low refers to the inputs level at drive/motor connector. After
power on, the active level is set to have both limit switches inactive with nothing connected on
these inputs

When positive limit switch input is active, movement is possible only in the negative direction. Any
attempt to move in the positive direction will set the drive/motor in quick stop mode, and this will
stop the move with the deceleration rate set in TML parameters CDEC.

When negative limit switch input is active, movement is possible only in the positive direction. Any
attempt to move in the negative direction will set the drive/motor in quick stop mode, and this will
stop the move with the deceleration rate set in TML parameters CDEC.

Remark: The drive/motor exits from quick stop mode only by setting a new motion mode.

The limit switch inputs may also be used as capture inputs due to their capability to sense low to
high or high to low transitions and to capture the motor, load or master position when these
transitions occur. The limit switch inputs capturing behavior is identical with that of the capture
inputs and therefore is presented below together with the capture inputs.

You can set either an event or a TML interrupt, for each limit switch input, to detect when a
programmed transition has occurred. In both cases you need to:

1. Enable limit switch input capability to detect a low->high or a high-> low transition with
one of the following TML instructions:

ENLSP0; //Enable Positive Limit Switch to detect a high->low
transition

ENLSP1; //Enable Positive Limit Switch to detect a low->high
transition

ENLSN0; //Enable Negative Limit Switch to detect a high->low
transition

ENLSN1; //Enable Negative Limit Switch to detect a low->high
transition

2. Set:

• A limit switch event with !LSP or !LSN, then wait until the event occurs with
WAIT!;, or

• Enable the LSP or LSN TML interrupt with the TML commands:

SRB ICR 0xFFFF,0x0040; //Set/Reset Bits of Interrupt Control
Register

SRB ICR 0xFFFF,0x0080; //Set/Reset Bits of Interrupt Control
Register

Remarks:

 Technosoft 2022 447 ESM User Manual

• The main task of the limit switches i.e. to protect against accidental moves outside the
working area is performed independently of the fact that limit switches may be enabled or
not to detect transitions

• A limit switch input capability to detect transitions is automatically disabled, after the
programmed transition was detected. In order to reuse it, you need to enable it again.

• You may also disable a limit switch input capability to detect transitions, using the TML
commands: DISLSP, DISLSN

You can also use the limit switch inputs as general-purpose inputs by disabling their capability to
protect against accidental moves outside a defined working area. For this you need to set TML
parameter LSACTIVE = 1. This command, doesn’t affect the limit switch inputs capability to
detect transitions.

Remark: After power on, LSACTIVE = 0 and the limit switches are active.

You can read the limit switches inputs, at any moment, independently of LSACTIVE value, like
any other inputs using the TML instructions:

var = IN#2; // read status of the positive limit switch input

var = IN#24; // read status of the negative limit switch input

The capture inputs are special inputs that can be programmed to sense either a low to high or
high to low transition and capture the motor, load or master position with very high accuracy when
these transitions occur.

Typically, the 1st encoder index is connected to the 1st capture input – #5/CAPI, and the 2nd
encoder index is connected to the 2nd capture input – #34/2CAPI.

When an incremental encoder provides the motor position, its signals are always connected to the
1st encoder interface. When an incremental encoder provides the master position, its signals are
always connected to the 2nd encoder interface. When an incremental encoder provides the load
position, its signals are connected to:

• 2nd encoder interface, if there is another sensor on the motor (for example DC motor with
encoder on load and tachometer on the motor)

• 1st encoder interface, if there is no other sensor on the motor (for example steppers
controlled open-loop with an encoder on the load)

When the programmed transition occurs on any capture or limit switch input, the following
happens:

• Motor position APOS_MT is captured and memorized in the TML variable CAPPOS,
except the case of open-loop systems, where reference position TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and memorized in the TML
variable CAPPOS2, except the case of steppers controlled open loop with an encoder on
the load, when load position is captured in CAPPOS.

 Technosoft 2022 448 ESM User Manual

The selection between master and load position is done as follows: load position is saved in
CAPPOS2 only for the setup configurations which use different sensors for load and motor and
foresee a transmission ratio between them. For all the other setup configurations, the master
position is saved in CAPPOS2. The master position is automatically computed when pulse and
direction signals or quadrature encoder signals are connected to their dedicated inputs.

When an incremental encoder is connected to the 1st encoder interface and 1st capture/encoder
index detects the programmed transition, the position captured in CAPPOS is very accurate,
being read in less than 200 ns after the input transition. The position captured in CAPPOS2 is
also accurate being read with a maximum delay of 5μs.

When an incremental encoder is connected to the 2nd encoder interface or when master position
is set via pulse & direction signals and 2nd capture/encoder index detects the programmed
transition, the position captured in CAPPOS2 is very accurate, being read in less than 200 ns,
after the input transition. The position captured in CAPPOS2 is read with a maximum delay of
5μs.

When any of the 2 limit switch inputs detects the programmed transition, the positions captured in
CAPPOS and CAPPOS2 are accurate, both being read with a maximum delay of 5μs.

You can set either an event or a TML interrupt on a capture input. In both cases you need to:

1. Enable the capture input for the detection of a low->high or a high-> low transition with
one of the following TML instructions:

ENCAPI0; //Activate CAPI input to trigger a rising transitions

ENCAPI1; //Activate CAPI input to trigger a falling transitions

EN2CAPI0; //Activate CAPI input to trigger a rising transitions

EN2CAPI1; //Activate CAPI input to trigger a falling transitions

2. Set:

• A capture event with !CAP, then wait until the event occurs with WAIT!;, or

• Enable the TML capture interrupt with the TML command:

SRB ICR 0xFFFF,0x0100; //Set/Reset Bits of Interrupt Control
Register

Remarks:

• If both capture inputs are activated in the same time, the capture event and the TML
capture interrupt flag is set by the capture input that is triggered first. The capture event or
the TML capture interrupt makes no difference between the two capture inputs.

• When the programmed transition is detected, the capture input is automatically disabled.
In order to reuse it, you need to enable it again for the desired transition

• You may also disable a capture input (i.e. its capability to detect a programmed transition)
previously enabled, using the TML commands: DISCAPI, DIS2CAPI

 Technosoft 2022 449 ESM User Manual

See also:

Special I/O – Related TML Instructions and Data

TML Description

6.3.2.5.8. Special I/O - Related TML Instructions and Data
(Firmware FBxx)

Parameters

DIGIN_ACTIVE_LEVEL Sets active levels for enable and limit switch inputs as follows:

• Enable input – on bit 15: 0 – low, 1 – high

• Limit switch input for negative direction – on bit 14: 0 – low, 1 – high

• Limit switch input for positive direction – on bit 13: 0 – low, 1 – high

LSACTIVE When set to a non-zero value, disables limit switch inputs capability to protect
against accidental moves outside a defined working area. In this case, the limit switch inputs are
treated like 2 extra general-purpose inputs

CDEC Command deceleration for quick stop mode. Measured in acceleration units

ICR Interrupt Control Register. The TML interrupts can be enabled or disabled by setting or
resetting the corresponding bits from this register

ACR Auxiliary Control Register. If ACR.1 = 1 the drive/motor is set to start automatically after
power-on with an external reference. If ACR.3 = 1 there is a specific request to execute AXISON
at recover from disable status. In both cases, an AXISON is executed when enable input goes
from inactive to active status.

Variables

CAPPOS Position captured when programmed transition occurs on 1st capture/encoder
index input. Measured in motor position units, except the case of stepper
motors, when it is measured in position units

CAPPOS2 Position captured when programmed transition occurs on 2nd capture/encoder
index input. Measured in position units when load position is captured, or in
master position units when master position is captured

APOS2 Master position computed by the slaves from pulse & direction or quadrature
encoder inputs. Measured in master position units

TPOS Target position – position reference computed by the reference generator at each
slow loop sampling period. Measured in position units

 Technosoft 2022 450 ESM User Manual

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

APOS_MT Actual motor position. Measured in motor position units.

Instructions

!CAP Set event on capture inputs

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

ENLSP0 Enable positive limit switch input to detect a high to low transition

ENLSN0 Enable negative limit switch input to detect a high to low transition

ENLSP1 Enable positive limit switch input to detect a low to high transition

ENLSN1 Enable negative limit switch input to detect a low to high transition

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSP Disable positive limit switch input to detect transitions

DISLSN Disable negative limit switch input to detect transitions

UPD! Update the motion mode and/or the motion parameters when the programmed
event occurs

STOP! Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

WAIT! value16 Wait until the programmed event occurs. If the command is followed by value16,
the wait ends after the time interval specified in this 16-bit integer value. Value16
is measured in time units

SRB Set/reset bits from a TML data

Programming Example

//Stop motion on next encoder index

ENCAPI1; //Set event: When the encoder index goes low->high

 Technosoft 2022 451 ESM User Manual

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

See also:

Special I/O – TML Programming Details

TML Description

6.3.2.6. Assignment and Data Transfer

6.3.2.6.1. Setup 16-bit variable

The TML instructions presented in this paragraph show you the options you have to:

1. Assign a value to a 16-bit integer TML data

2. Transfer in a memory location, a 16-bit value or the value of a 16-bit integer TML data

In the first case, the destination is a 16-bit TML data: TML register, TML parameter or user
variable and the source can be:

• A 16-bit immediate value or a label

• A 16-bit TML data: TML register, parameter, variable or user variable (direct or negated)

• The high or low part of a 32-bit TML data: TML parameter, variable or user variable

• A memory location indicated through a pointer variable

• The result of the checksum performed with all locations situated between 2 memory
addresses specified either as immediate values or via 2 pointer variables.

In the second case and the destination is a memory location indicated through a pointer variable
and the source can be:

• A 16-bit immediate value

 Technosoft 2022 452 ESM User Manual

• A 16-bit TML data: TML register, parameter, variable or user variable

Programming Examples

1) Source: 16-bit immediate value, Destination: 16-bit TML data. The immediate value can be
decimal or hexadecimal

 user_var = 100; // set user variable user_var with value 100

 user_var = 0x100; // set user variable user_var with value 0x100 (256)

label1:

 user_var = label; // set user variable user_var with label1 value

2) Source: 16-bit TML data, Destination: 16-bit TML data.

 var_dest = var_source; // copy value of var_source in var_dest

 var_dest = -var_source; // copy negate value of var_source in var_dest

3) Source: high or low part of a 32-bit TML data, Destination: 16-bit TML data. The 32-bit TML
data can be either long or fixed

 int_var = long_var(L); // copy low part of long_var in int_var

 int_var = fixed_var(H); // copy high part of fixed_var in int_var

4) Source: a memory location indicated through a pointer variable, Destination: 16-bit TML data.
The memory location can be of 3 types: RAM for data (dm), RAM for TML programs (pm),
EEPROM SPI-connected for TML programs (spi). If the pointer variable is followed by a + sign,
after the assignment, the pointer variable is incremented by 1

 p_var = 0x4500; // set 0x4500 in pointer variable p_var

 var1 = (p_var),spi; // var1 = value of the EEPROM memory location 0x4500

 var1 = (p_var+),spi; // var1 = value of the EEPROM memory location 0x4500

// p_var = 0x4501

 p_var = 0x8200; // set 0x8200 in pointer variable p_var

 var1 = (p_var),pm; // var1 = value of the RAM memory location 0x8200 for

//TML programs

 var1 = (p_var+),pm; // var1 = value of the RAM memory location 0x8200 fior

//TML programs, then set p_var = 0x8201

 p_var = 0xA00; // set 0xA00 in pointer variable p_var

 var1 = (p_var),dm; // var1 = value of the RAM memory location 0xA00 for

//TML data

 Technosoft 2022 453 ESM User Manual

 var1 = (p_var+),dm; // var1 = value of the RAM memory location 0xA00 for

//TML data, then set p_var = 0xA01

5) Source: the result of the checksum. Destination: 16-bit TML data. The checksum is performed
with all locations situated between 2 memory addresses. These are specified either as immediate
values or via 2 pointer variables. The memory can be of 3 types: RAM for data (dm), RAM for
TML programs (pm), EEPROM SPI-connected for TML programs (spi).

checksum, spi 0x4000, 0x4500, var1; // var1=checksum value computed

// between EEPROM memory addresses 0x4000 and 0x4500

start = 0x9000; // set start address = 0x9000

end = 0x9100; // set end address = 0x9100

checksum, pm start, stop, var1; // var1=checksum value computed

// between RAM (for TML programs) addresses 0x9000 and 0x9100 pointed by the TML

// variables start and stop

6) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit TML data. Destination: a
memory location indicated through a pointer variable. The memory location can be of 3 types:
RAM for data (dm), RAM for TML programs (pm), EEPROM SPI-connected for TML programs
(spi). If the pointer variable is followed by a + sign, after the assignment, the pointer variable is
incremented by 1

p_var = 0x4500; // set 0x4500 in pointer variable p_var

(p_var),spi = -5; // write value –5 in the EEPROM memory location

// 0x4500

(p_var+),spi = var1; // write var1 value in the EEPROM memory location

// 0x4500, then set p_var = 0x4501

p_var = 0x8200; // set 0x8200 in pointer variable p_var

(p_var),pm = 0x10; // write value 0x10 in RAM memory location
0x8200 for

// TML programs

(p_var+),pm = var1; // write var1 value in RAM memory location 0x8200 for

// TML programs, then set p_var = 0x8201

p_var = 0xA00; // set 0xA00 in pointer variable p_var

(p_var),dm = 50; // write value 50 in the RAM memory location 0xA00 for

// TML data

(p_var+),dm = var1; // write var1 value in the RAM memory location 0xA00

 Technosoft 2022 454 ESM User Manual

// for TML data, then set p_var = 0xA01

Remark: The TML assignment instructions with source an immediate value or a TML data and
destination a TML data, use a short address format for the destination. The short address format
requires a destination address between 0x200 and 0x3FF or between 0x800 and 0x9FF. This
restriction is respected now by all the predefined or user-defined TML data, hence you can use
the above assignment instructions without checking the variables addresses.

However, considering possible future developments, the TML also includes assignment
instructions using a full address format where the destination address can be any 16-bit value.
The following commands support full addressing:

int_var,dm = 100; // set int_var = 100 using full addressing

int_var,dm = 0x100; // set int_var = 0x100(256) using full addressing

var_dest,dm = var_source; // copy value of var_source in var_dest using

// full addressing

See also:

Assignment and Data Transfer. 32-bit data – TML Programming Details

TML Description

6.3.2.6.2. Setup 32-bit variable

The TML instructions presented in this paragraph show you the options you have to:

1. Assign a value to a 32-bit long or fixed TML data

2. Assign a value to the high (16MSB) or low (16LSB) part of a 32-bit long or fixed data

3. Transfer in 2 consecutive memory locations, a 32-bit value or the value of a 32-bit long or
fixed TML data

In the first case, the destination is a 32-bit TML data: TML parameter or user variable and the
source can be:

• A 32-bit immediate value

• A 32-bit TML data: TML register, parameter, variable or user variable (direct or negated)

• A 16-bit TML data left shifted by 0 to 16

• 2 consecutive memory locations, indicated through a pointer variable

In the second case, the destination is the high or low part of a 32-bit TML data: TML parameter or
user variable and the source can be:

• A 16-bit immediate value

• A 16-bit TML data: TML register, parameter, variable or user variable

 Technosoft 2022 455 ESM User Manual

In the third case, the destination is 2 consecutive memory locations, indicated through a pointer
variable and the source can be:

• A 32-bit immediate value

• A 32-bit TML data: TML parameter, variable or user variable

Programming Examples

1) Source: 32-bit immediate value, Destination: 32-bit TML data. The immediate value can be
decimal or hexadecimal. The destination can be either a long or a fixed variable

 long_var = 100000; // set user variable long_var with value 100000

 long_var = 0x100000; // set user variable long_var with value 0x100000

 fixed_var = 1.5; // set user variable fixed_var with value 1.5 (0x18000)

 fixed_var = 0x14000; // set user variable fixed_var with value 1.25 (0x14000)

2) Source: 32-bit TML data, Destination: 32-bit TML data.

 var_dest = var_source; // copy value of var_source in var_dest

 var_dest = -var_source; // copy negate value of var_source in var_dest

Remark: source and destination must be of the same type i.e. both long or both fixed

3) Source: 16-bit immediate value (decimal or hexadecimal) or 16-bit TML data, Destination: high
or low part of a 32-bit TML data. The 32-bit TML data can be either long or fixed

 long_var(L) = -1; // write value –1 (0xFFFF) into low part of long_var

 fixed_var(H) = 0x2000; // write value 0x2000 into high part of fixed_var

 long_var(L) = int_var; // copy int_var into low part of long_var

 fixed_var(H) = int_var; // copy int_var into high part of fixed_var

4) Source: 16-bit TML data left shifted 0 to 16. Destination: 32-bit TML data. The 32-bit TML data
can be either long or fixed

 long_var = int_var << 0; // copy int_var left shifted by 0 into long_var

 fixed_var = int_var << 16; // copy int_var left shifted by 16 fixed_var

Remarks:

• The left shift operation is done with sign extension. If you intend to copy the value of an
integer TML data into a long TML data preserving the sign use this operation with left shift
0

• If you intend to copy the value of a 16-bit unsigned data into a 32-bit long variable, assign
the 16-bit data in low part of the long variable and set the high part with zero.

 Technosoft 2022 456 ESM User Manual

Examples:

var = 0xFFFF; // As integer, var = 1, as unsigned integer var = 65535

lvar = var << 0; // lvar = -1 (0xFFFFFFFF), the 16MSB of lvar are all set to 1 the

// sign bit of var

lvar(L) = var; // lvar(L) = 0xFFFF

lvar(H) = 0; // lvar(H) = 0. lvar = 65535 (0x0000FFFF)

5) Source: 2 consecutive memory locations, indicated through a pointer variable, Destination: 32-
bit TML data. The memory locations can be of 3 types: RAM for data (dm), RAM for TML
programs (pm), EEPROM SPI-connected for TML programs (spi). The pointer variable indicates
first of the 2 memory locations. If the pointer variable is followed by a + sign, after the assignment,
it is incremented by 2. The destination can be either a long or a fixed TML data

 p_var = 0x4500; // set 0x4500 in pointer variable p_var

 var1 = (p_var),spi; // var1 = value of the EEPROM memory location 0x4500

 var1 = (p_var+),spi; // var1 = value of the EEPROM memory location 0x4500,

 // then set p_var = 0x4502

 p_var = 0x8200; // set 0x8200 in pointer variable p_var

 var1 = (p_var),pm; // var1 = value of the RAM memory location 0x8200 for TML

 // programs

 var1 = (p_var+),pm; // var1 = value of the RAM memory location 0x8200 for TML

 // programs, then set p_var = 0x8202

 p_var = 0xA00; // set 0xA00 in pointer variable p_var

 var1 = (p_var),dm; // var1 = value of the RAM memory location 0xA00 for TML

 // data

 var1 = (p_var+),dm; // var1 = value of the RAM memory location 0xA00 for TML

 // data, then set p_var = 0xA02

6) Source: 32-bit immediate value (decimal or hexadecimal) or a 32-bit TML data. Destination: 2
consecutive memory locations indicated through a pointer variable. The memory locations can be
of 3 types: RAM for data (dm), RAM for TML programs (pm), EEPROM SPI-connected for TML
programs (spi). The pointer variable indicates first of the 2 memory locations. If the pointer
variable is followed by a + sign, after the assignment, it is incremented by 2. The source can be
either a long or a fixed TML data.

 p_var = 0x4500; // set 0x4500 in pointer variable p_var

 (p_var),spi = 200000; // write 200000 in the EEPROM memory location 0x4500

 Technosoft 2022 457 ESM User Manual

 (p_var+),spi = var1; // write var1 value in the EEPROM memory location

// 0x4500, then set p_var = 0x4502

 p_var = 0x8200; // set 0x8200 in pointer variable p_var

 (p_var),pm = 3.5; // write value 3.5 in RAM memory location 0x8200 for

// TML programs

 (p_var+),pm = var1; // write var1 value in RAM memory location 0x8200 for

// TML programs, then set p_var = 0x8202

 p_var = 0xA00; // set 0xA00 in pointer variable p_var

 (p_var),dm = -1L; // write –1 (0xFFFFFFFF) in the RAM memory location

// 0xA00

 (p_var+),dm = var1; // write var1 value in the RAM data memory location

// 0xA00, then set p_var = 0xA02

When this operation is performed having as source an immediate value, the TML compiler checks
the type and the dimension of the immediate value and based on this generates the binary code
for a 16-bit or a 32-bit data transfer. Therefore if the immediate value has a decimal point, it is
automatically considered as a fixed value. If the immediate value is outside the 16-bit integer
range (-32768 to +32767), it is automatically considered as a long value. However, if the
immediate value is inside the integer range, in order to execute a 32-bit data transfer it is
necessary to add the suffix L after the value, for example: 200L or –1L.

Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var),dm = 1000000; // write 1000000 (0xF4240) in the CPOS
parameter i.e

// 0x4240 at address 0x29E and 0xF at address 0x29F

(user_var+),dm = -1; // write -1 (0xFFFF) in CPOS(L). CPOS(H) remains

// unchanged. CPOS is (0xFFFFF) i.e. 1048575,

// and user_var is incremented by 2

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var+),dm = -1L; // write –1L long value (0xFFFFFFFF) in CPOS i.e.

// CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF,

// user_var is incremented by 2

user_var = 0x2A0; // write CSPD address in pointer variable user_var

 Technosoft 2022 458 ESM User Manual

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e

// 0x8000 at address 0x2A0 and 0x1 at address 0x2A1

Remark: The TML assignment instructions with source an immediate value or a TML data and
destination a TML data, use a short address format for the destination. The short address format
requires a destination address between 0x200 and 0x3FF or between 0x800 and 0x9FF. This
restriction is respected now by all the predefined or user-defined TML data, hence you can use
the above assignment instructions without checking the variables addresses.

However, considering possible future developments, the TML also includes assignment
instructions using a full address format where the destination address can be any 32-bit value.
The following commands support full addressing:

 long_var,dm = 100000; // set long_var = 100000 in using full addressing

 long_var,dm = 0x100000; // set long_var = 0x100000 using full addressing

 var_dest,dm = var_source; // copy value of var_source in var_dest using

// full addressing

See also:
Assignment and Data Transfer. 16-bit data – TML Programming Details
TML Description

6.3.2.7. Arithmetic and logic manipulation

The TML offers the possibility to perform the following operations with the TML data:

• Addition

• Subtraction

• Multiplication

• Division

• Left and right shift

• logic AND / OR

Except the multiplication, the result of these operations is saved in the left operand. For the
multiplication, the result is saved in the dedicated product register. The operands are always
treated as signed numbers and the right shift is performed with sign-extension.

Addition: The right-side operand is added to the left-side operand

The left side operand can be:

• A 16-bit TML data: TML parameter or user variable

• A 32-bit TML data: TML parameter or user variable

 Technosoft 2022 459 ESM User Manual

The right side operand can be:

• A 16-bit immediate value

• A 16-bit TML data: TML parameter, variable or user variable

• A 32-bit immediate value, if the left side operand is a 32-bit TML data

• A 32-bit TML data: TML parameter, variable or user variable, if the left side operand is a
32-bit data too

Programming Examples

 int_var += 10; // int_var1 = int_var1 + 10

 int_var += int_var2; // int_var = int_var + int_var2

 long_var += -100; // long_var = long_var + (-100) = long_var – 100

 long_var += long_var2; // long_var = long_var + long_var2

 fixed_var += 10.; // fixed_var = fixed_var + 10.0

 fixed_var += fixed_var2; // fixed_var = fixed_var + fixed_var2

Subtraction: The right-side operand is subtracted from the left-side operand

The left side operand can be:

• A 16-bit TML data: TML parameter or user variable

• A 32-bit TML data: TML parameter or user variable

The right side operand can be:

• A 16-bit immediate value

• A 16-bit TML data: TML parameter, variable or user variable

• A 32-bit immediate value, if the left side operand is a 32-bit TML data

• A 32-bit TML data: TML parameter, variable or user variable, if the left side operand is a
32-bit data too

Programming Examples

 int_var -= 10; // int_var1 = int_var1 - 10

 int_var -= int_var2; // int_var = int_var - int_var2

 long_var -= -100; // long_var = long_var - (-100) = long_var + 100

 long_var -= long_var2; // long_var = long_var - long_var2

 fixed_var -= 10.; // fixed_var = fixed_var - 10.0

 Technosoft 2022 460 ESM User Manual

 fixed_var -= fixed_var2; // fixed_var = fixed_var - fixed_var2

Remark: At addition and subtraction, when the left operand is a 32-bit long or fixed TML data and
the right operand is a 16-bit integer value, it is treated as follows:

• Sign extended to a 32-bit long value, if the left operand is a 32-bit long

• Set as the integer part of a fixed value, if the left operand is a 32-bit fixed

Multiplication: The 2 operands are multiplied and the result is saved in a dedicated 48-bit
product register (PREG). This can be accessed via the TML variables: PRODH – the 32 most
significant bits, and PROD – the 32 least significant bits of the product register. The result of the
multiplication can be left or right-shifted with 0 to 15 bits, before being stored in the product
register. At right shifts, high order bits are sign-extended and the low order bits are lost. At left
shifts, high order bits are lost and the low order bits are zeroed. The result is preserved in the
product register until the next multiplication.

The first (left) operand can be:

• A 16-bit TML data: TML parameter, variable or user variable

• A 32-bit TML data: TML parameter, variable or user variable

The second (right) operand can be:

• A 16-bit immediate value

• A 16-bit TML data: TML parameter, variable or user variable

Remark: The result is placed in the product register function of the left operand. When shift is 0:

• In the 32 least significant bits, when the left operand is a 16-bit integer. The result is a 32-
bit long integer

• In all the 48 bits, when the left operand is a 32-bit fixed. The result has the integer part in
the 32 most significant bits and the fractional part in the 16 least significant bits

• In all the 48 bits, when the left operand is a 32-bit long. The result is a 48-bit integer

Programming Examples

long_var * -200 << 0; // PROD = long_var * (-200)

fixed_var * 10 << 5; // PROD = fixed_var * 10 * 25 i.e. fixed_var *320

int_var1 * int_var2 >> 1; // PROD = (int_var1 * int_var2) / 2

long_var * int_var >> 2; // PROD = (long_var * int_var) / 4

long_var = PROD; // save 32LSB of PROD in long_var

long_var = PROD(H); // save 32MSB of PROD in long_var i.e. bits 47-15

 Technosoft 2022 461 ESM User Manual

Division: The left operand – the dividend, is divided by the right operand – the divisor, and the
result is saved in the left operand..

The first (left) operand is a 32-bit TML data: TML parameter or user variable.

The second (right) operand is a 16-bit TML data: TML parameter, variable or user variable

The result, saved in the first operand is a fixed value with the integer part in the 16 most
significant bits and the fractional part in the 16 least significant bits.

Programming Examples

long_var /= int_var; // long_var = long_var / int_var

fixed_var /= int_var; // fixed_var = fixed_var / int_var

Left and right shift: The operand is left or right shifted with 0 to 15. The result is saved in the
same operand. At right shifts, high order bits are sign-extended and the low order bits are lost. At
left shifts, high order bits are lost and the low order bits are zeroed.

The operand can be:

• A 16-bit TML data: TML parameter, variable or user variable

• A 32-bit TML data: TML parameter, variable or user variable

• The 48-bit product register with the result of the last multiplication

Programming Examples

long_var << 3; // long_var = long_var * 8

int_var = -16; // int_var = -16 (0xFFF0)

int_var >> 3; // int_var = int_var / 8 = -2 (0xFFFE)

PROD << 1; // PREG = PREG * 2

Remark: The shifts instructions having PROD as operand are performed on all the 48-bits of the
product register.

Logic AND / OR: A logic AND is performed between the operand and a 16-bit data (the AND
mask), followed by a logic OR between the result and another 16-bit data (the OR mask).

The operand is a 16-bit TML data: TML register, TML parameter or user variable

The AND and OR masks are 16-bit immediate values, decimal or hexadecimal.

Programming Examples

int_var = 13; // int_var = 13 (0xD)

SRB int_var, 0xFFFE, 0x2;// set int_var bit 0 = 0 and bit 1 = 1

 Technosoft 2022 462 ESM User Manual

 // int_var = 12 (0xC)

The SRB instruction allows you to set/reset bits in a TML data in a safe way avoiding the
interference with the other concurrent processes wanting to change the same TML data. This is
particularly useful for the TML registers, which have bits that can be manipulated by both the
drive/motor and the user at TML level.

Remark: The SRB instruction, use a short address format for the operand. The short address
format requires an operand address between 0x200 and 0x3FF or between 0x800 and 0x9FF.
This restriction is respected now by all the predefined or user-defined TML data, hence you can
use the above assignment instructions without checking the variables addresses.

However, considering possible future developments, the TML also includes a similar instruction
SRBL using a full address format where the operand address can be any 16-bit value. The
SRBL command has the following mnemonic:

SRBL TMLvar, 0xFFFE, 0x2; // set bit 0 = 0 and bit 1 = 1 in TMLvar with

// using full addressing

See also:

TML Description

 Technosoft 2022 463 ESM User Manual

6.3.2.8. Multi-axis control

6.3.2.8.1. Axis identification

In multiple-axis configurations, each axis (drive/motor) needs to be identified through a unique
number – the axis ID. This is a value between 1 and 255. If the destination of a message is
specified via an axis ID, the message is received only by the axis with the same axis ID. The axis
ID is initially set at power on using the following algorithm:

a. With the value read from the EEPROM setup table containing all the setup data.

b. If the setup table is invalid, with the last axis ID value read from a valid setup table

c. If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

d. If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default
axis ID value which is 255.

Remark: If the axis ID read from a valid setup table is 0, the axis ID is set with the value read
from the hardware switches/jumpers or in their absence according with d)

Typically, the axis ID is kept constant during operation at the value established during the setup
phase. However, if needed, you can change the axis ID to any of the 255 possible values, using
the TML instruction AXISID, followed by an integer value between 1 and 255.

Apart from the axis ID, each drive has also a group ID. The group ID represents a filter for
multicast messages. The destination of a multicast message is specified via a group ID. When a
multicast message is received, each axis compares the group ID from the message with its own
group ID. If the axis group ID has a bit in common with the group ID from the message, the
message is accepted. The group ID is an 8-bit integer value. Each bit corresponds to one group:
bit 0 – group 1, bit 1 – group 2… bit 7 – group 8. Hence a drive/motor can be programmed to be
member of up to 8 groups. When a TML command is sent to a group, all the axes members of this
group will receive the command. For example, if a drive/motor has the group ID = 11 (1011b), it is
member of groups 1, 2 and 4 and will receive the messages sent any of these groups.

For each drive/motor you can:

• Set its group ID using the TML instruction GROUPID

• Add new groups to its group ID using the TML instruction ADDGRID

• Remove groups from its group ID using the TML instruction REMGRID.

Remarks:

• You can read at any moment the actual values of the axis ID and group ID of a
drive/motor from the Axis Address Register AAR

• By default all the drives are set as members of group 1.

 Technosoft 2022 464 ESM User Manual

• A broadcast to all the axes means to send a message with the destination group ID = 0

Variables

AAR TML register (Axis Address Register). Contains the Group ID in the
8MSB and the Axis ID in the 8LSB

Instructions
AXISID value Set axis ID = value. Value is an 8-bit integer between 1 and 255

GROUPID (1,3,5,..) Set group ID = value. Value is an 8-bit integer, where:

• Bit 0 is set to 1, if (group) 1 occurs in the parenthesis, else it is set to 0

• Bit 1 is set to 1, if (group) 2 occurs in the parenthesis, else it is set to 0

• …

• Bit 7 is set to 1, if (group) 8 occurs in the parenthesis, else it is set to 0

ADDGRID (2,4,6…) Add the groups from parenthesis to the Group ID. The corresponding bits
from Group ID will be set to 1

REMGRID (2,5…) Remove the groups from parenthesis from the Group ID. The
corresponding bits from Group ID will be set to 0

Programming Example

AXISID 10; // set axis ID = 10

GROUPID (2,3); // set group ID = 6 (110b) i.e. bits 1, 2 = 1

ADDGRID (4); // add group 4. Group ID = 14 (1110b) i.e. bits 1, 2, 3 = 1

REMGRID (2,4); // remove groups 2 and 4. Group ID = 4 (100b) i.e. bit 2 = 1

// AAR = 40Ah i.e. group ID = 4 and axis ID = 10 (Ah)

See also:

Communication Protocols – RS232 & RS485

Communication Protocols – CAN

TML Description

 Technosoft 2022 465 ESM User Manual

6.3.2.8.2. Data transfers between axes

There are 2 categories of data transfer operations between axes:

1. Read data from a remote axis. A variable or a memory location from the remote axis is
saved into a local variable

2. Write data to a remote axis or group of axes. A variable or a memory location of a remote
axis or group of axes is written with the value of a local variable

In a read data from a remote axis operation:

• The source is placed on a remote axis and can be:

 A 16-bit TML data: TML register, parameter, variable or user variable

 A memory location indicated through a pointer variable

• The destination is placed on the local axis and can be:

 A 16-bit TML data: TML register, parameter or user variable

Programming Examples

1) Source: remote 16-bit TML data, Destination: local 16-bit TML data.

 local_var = [2]remote_var; // set local_var with value of remote_var from axis
2

Remark: If remote_var is a user variable, it has to be declared in the local axis too. Moreover, for
correct operation, remote_var must have the same address in both axes, which means that it
must be declared on each axis on the same position. Typically, when working with data transfers
between axes, it is advisable to establish a block of user variables that may be the source,
destination or pointer of data transfers, and to declare these data on all the axes as the first user
variables. This way you can be sure that these variables have the same address on all the axes.

2) Source: remote memory location pointed by a remote pointer variable, Destination: 16-bit TML
data. The remote memory location can be of 3 types: RAM memory for TML data (dm), RAM
memory for TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the
pointer variable is followed by a + sign, after the assignment, the pointer variable is incremented
by 1 if the destination is a 16-bit integer or by 2 if the destination is a 32-bit long or fixed

local_var = [2](p_var),spi; // local_var = value of EEPROM program memory

// location from axis 2, pointed by p_var from axis 2

long_var = [3](p_var+),dm; // local long_var = value of RAM data memory

// locations from axis 3, pointed by p_var from axis 3

// p_var is incremented by 2

int_var = [4](p_var+),pm; // local int_var = value of RAM program memory

 Technosoft 2022 466 ESM User Manual

// location from axis 4, pointed by p_var from axis 4;

// p_var is incremented by 1

Remark: The TML instructions for data transfers between axes use a short address format for
the remote source when this is a TML data. The short address format requires a source address
between 0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction is respected now by all
the predefined or user-defined TML data, hence you can use the above assignment instructions
without checking the variables addresses.

However, considering possible future developments, the TML also includes data transfers using a
full address format where the source address can be any 16-bit value. The following command
supports full addressing:

 local_var = [2]remote_var,dm; // set local_var with value of remote_var

// from axis 2 using extended addressing

In a write data to a remote axis or group of axes operation:

• The source is placed on the local drive and can be:

 A 16-bit TML data: TML register, parameter, variable or user variable

• The destination is placed on the remote axis or group of axes and can be:

 A 16-bit TML data: TML register, parameter or user variable

 A memory location indicated through a pointer variable

Programming Examples

1) Source: local 16-bit TML data, Destination: remote 16-bit TML data.

[2]remote_var = local_var; // set remote_var from axis 2 with local_var value

[G2]remote_var = local_var; // set remote_var from group 2 with local_var value

[B]remote_var = local_var; // set remote_var from all axes with local_var value

 // broadcast with group ID = 0 -> got by everyone

2) Source: 16-bit TML data, Destination: remote memory location pointed by a remote pointer
variable. The remote memory location can be of 3 types: RAM memory (dm), RAM memory for
TML programs (pm), EEPROM SPI-connected memory for TML programs (spi). If the pointer
variable is followed by a + sign, after the assignment, the pointer variable is incremented by 1 if
the source is a 16-bit integer or by 2 if the source is a 32-bit long or fixed

[2](p_var),spi = local_var; // set local_var value in EEPROM program memory

 // location from axis 2, pointed by p_var from axis 2

[G3](p_var+),dm = long_var; // set local long_var value in RAM data memory

 Technosoft 2022 467 ESM User Manual

 // location from group 3 of axes, each location being

// pointed its own p_var, which is incremented by 2

[4](p_var+),pm = int_var; // set local int_var value in RAM program memory

 // location from axis 4, pointed by p_var from axis 4;

// p_var is incremented by 1

Remark: The TML instructions for data transfers between axes use a short address format for
the remote destination when this is a TML data. The short address format requires a destination
address between 0x200 and 0x3FF or between 0x800 and 0x9FF. This restriction is respected
now by all the predefined or user-defined TML data, hence you can use the above assignment
instructions without checking the variables addresses.

However, considering possible future developments, the TML also includes data transfers using a
full address format where the destination address can be any 16-bit value. The following
command supports full addressing:

[G2]remote_var,dm = local_var; // set remote_var from group 2 with

// local_var value, using extended addressing

See also:

TML Description

 Technosoft 2022 468 ESM User Manual

6.3.2.8.3. Remote control

The TML includes powerful instructions through which you can program a drive to issue TML
commands to another drive or group of drives. You can include these instructions in the TML
program of a drive, which can act like a host and can effectively control the operation of the other
drives from the network. These TML instructions are:

[axis]{TML command1; TML command2;…};

[group]{TML command1; TML command2;…};

[broadcast]{TML command1; TML command2;…};

where TML command1, TML command2, etc. can be any single axis TML instructions. A single
axis TML instruction is defined as an instruction that does not transfer data or sends TML
commands to other axes. If you include multiple TML commands separated by semicolon (;),
these will be sent one by one in order from left to right i.e. first TML command1, then TML
command2, etc.

Remark: Most of the TML instructions enter in the category of those that can be sent by a
drive/motor to another one using the above TML commands.

Programming Examples

[G1]{CPOS=2000;}; // send a new CPOS command to all axes from group 1

[G1]{UPD}; // send an update command to all the axes from group 1

// all axes from group 1 will start to move simultaneously

[B]{STOP;}; // broadcast a STOP command to all axes from the network

See also:

TML Description

 Technosoft 2022 469 ESM User Manual

6.3.2.8.4. Axis Synchronization

The TML provides a synchronization procedure between the Technosoft drives/motors connected
in a CAN network. When the synchronization procedure is active, the execution of the control
loops is synchronized within a 10 time interval. Due to this powerful feature, drifts between the
drives/motors are eliminated.

The synchronization process is performed in two steps. First, the synchronization master sends a
synchronization message to all axes, including to itself. When this message is received, all the
axes read their own internal time. Next, the master sends its internal time to all the
synchronization slaves, which compare it with their own internal time. If there are differences, the
slaves correct slightly their sampling periods in order to keep them synchronized with those of the
master.

A drive/motor becomes the synchronization master when it receives the TML command
SETSYNC value where value represents the time interval in internal units between the
synchronization messages sent by the synchronization master. Recommended value is 20ms.

6.3.2.9. Monitoring

6.3.2.9.1. Position Triggers

A position trigger is a position value with which the actual position is continuously compared. The
compare result is shown in the Status Register High (SRH). If the actual position is below a
position trigger, the corresponding bit from SRH is set to 0, else it is set to 1.

In total there are 4 position triggers. Their status is shown in SRH bits 4 to 1. The position triggers
are set in the following TML parameters:

POSTRIGG1 – for Position Trigger 1

POSTRIGG2 – for Position Trigger 1

POSTRIGG3 – for Position Trigger 1

POSTRIGG4 – for Position Trigger 1

You can change at any moment the value of a position trigger.

 Technosoft 2022 470 ESM User Manual

The actual position that is compared with the position triggers is:

• The Load position feedback (TML variable APOS_LD) for configurations with position sensor

• The position reference (TML variable TPOS – Target position) in the case of steppers
controlled in open-loop

Remark: The position triggers can be used to monitor the motion progress. If this operation is
done from a host, you may program the drive/motor to automatically issue a message towards the
host, each time when the status of a position trigger is changed.

See also:

Position Triggers – Related TML Instructions and Data

TML Description

 Technosoft 2022 471 ESM User Manual

6.3.2.9.2. Position Triggers - Related TML Instructions and
Data

Parameters

POSTRIGG1 Position trigger 1. Measured in position units.

POSTRIGG2 Position trigger 2. Measured in position units.

POSTRIGG3 Position trigger 3. Measured in position units.

POSTRIGG4 Position trigger 4. Measured in position units.

Variables

APOS_LD Actual load position. Measured in position units. Alternate name: APOS

TPOS Target position – position reference computed by the reference generator
at each slow loop sampling period. Measured in position units

Programming Example
// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

POSTRIGG1 = 2000;//Set First Position Trigger = 1[rot]

See also:

Position Triggers – TML Programming Details

TML Description

6.3.2.9.3. Status Register

The drive/motor status condition is described in registers SRH and SRL.

See also:

Status register low part – SRL

Status register high part – SRH

TML Description

 Technosoft 2022 472 ESM User Manual

6.3.2.9.4. FAULT Status

A drive/motor enters in the FAULT status, when an error occurs. In the FAULT status:

• The drive/motor is in AXISOFF with the control loops and the power stage deactivated

• The TML program execution is stopped

• The error register MER shows the type of errors detected and the status register SRH.15
signals the fault condition

• Ready and error outputs (if present) are set to the not ready level, respectively to the
error active level. When available, ready green led is turned off and error red led is turned
on

Remark: The following conditions signaled in MER do not set the drive/motor in fault status:

• Drive /motor disabled due to the enable input set on the disable level

• Command error

• Negative limit switch input on active level

• Positive limit switch input on active level

• Position wraparound

• Serial and CAN bus communication errors

You can modify this default behavior by changing the TML interrupt service routines

The drive/motor can be got out from the FAULT status, with the TML command FAULTR – fault
reset. This command clears most of the error bits from MER, sets the ready output (if available) to
the ready level, and sets the error output (if available) to the no error level.

Remarks:

• The FAULTR command does not change the status of MER.15 (enable input on disabled
level), MER.7 (negative limit switch input active), MER.6 (positive limit switch input active)
and MER.2 (invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the FAULTR
command is executed

See also:

TML Description

 Technosoft 2022 473 ESM User Manual

6.3.2.9.5. Messages sent to the host

You can program a drive/motor to send messages to your host. The messages are all of type
“Take Data 2” (see Communication Protocols: RS232 & RS485 or CAN) i.e. return the value of a
TML data, like if the drive/motor would have had received a “Give Me Data 2” request from the
host to return that TML data.

The message transmission can be triggered by:

• Conditions which change the status registers SRL, SRH or the error register MER

• The execution of the TML command SEND from your TML program. Through this command
you can send to your host the contents of any TML data

In the first case, you can select the registers bits, which will trigger a message when are changed.
The selection is done via 3 masks, one for each register, set in TML parameters: SRL_MASK,
SRH_MASK, MER_MASK. A bit set in a mask, enables a message transmission when the same
bit from the corresponding register changes.

When the transmission is triggered by a bit change in SRH (high part) or SRL (low part), the
message sent contains these 2 registers grouped together as a single 32-bit register/data, with
SRH on bits 31-16. When the transmission is triggered by a bit change in MER, the message sent
contains this register.

The host ID is specified via the TML parameter MASTERID. This contains the host ID (an integer
value between 1 and 255), multiplied by 16, plus 1. For example, if the host ID is 1, the value of
MASTERID must be 1 *16 + 1 = 17.

Remark: By default, at power on, the MASTERID is set for a host ID equal with the drive/motor
axis ID. Therefore, the messages will be sent via RS-232 serial communication. If the host ID is
set different from the drive/motor axis ID, the messages are sent via the other communication
channels: CAN bus, RS485, etc

Parameters

MASTERID Provides the host ID (address), according with formula:

MASTERID = host ID * 16 + 1

SRL_MASK Mask for SRL register. A bit set to 1, enables to send SRH and SRL when
the same bit from SRL changes

SRH_MASK Mask for SRH register. A bit set to 1, enables to send SRH and SRL
when the same bit from SRH changes

MER_MASK Mask for MER register. A bit set to 1, enables to send MER when the
same bit from MER changes

 Technosoft 2022 474 ESM User Manual

Variables

SRL TML register. Low part of the 32-bit status register grouping key information about the
drive/motor status

SRH TML register. High part of the 32-bit status register grouping key information concerning
the drive/motor status

MER TML register. Groups all the errors conditions

Instructions

SEND var Sends a “Take Data 2” message with var contents. Var can be any 16-bit or 32-bit
TML data: register, parameter or variable

Programming Examples

MASTERID = 33; // Set host ID / address = 2

//Send SRH & SRL if motion complete or pos. trigger 1 bits change

SRH_MASK = 0x0002;

SRL_MASK = 0x0400;

MER_MASK = 0xFFFF; // send MER on any bit change

SEND CAPPOS; // Send to host contents of variable CAPPOS

See also:

Communication Protocols – RS232 & RS485

Communication Protocols – CAN

TML Description

6.3.2.10. Slaves Management

6.3.2.10.1. Slaves Initialization

The Technosoft Motion Controller can manage up to 8 slaves, one being the slave embedded in
the motion controller. Before sending any motion command to the slaves, the motion controller
must execute the slaves’ initialization procedure. The procedure is initiated when the
INITSLAVES command is executed by the motion controller. During initialization procedure the
following actions are performed:

• marks the end of setup data configuration for the slaves (ENDINIT command for each
slave)

 Technosoft 2022 475 ESM User Manual

• enables the power stage of the drive (AXISON command for each slave)

• sets the motion controller address on the slaves required for automatic messages
mechanism

The initialization commands are sent by the motion controller using multicast messages to the
slave axes selected from the Axis Selection view.

The procedure ends when all the slaves report initialization complete or the timeout for wait
expires. The initialization timeout can be disabled by setting the value to zero.

The initialization status of all slaves is grouped in the Slave Status Register (SSR) on motion
controller.

See also:

TML Description

6.3.2.10.2. Slaves Error Management

Technosoft Motion Controller implements a new slave error handling mechanism based on
drives/motors ability to report automatically their status to the motion controller. The slaves send
error status messages when a bit change is occurs in slave’s MER register.

The conditions that trigger messages transmission can be specified individually for each slave
axis through MER_MASK parameter. The MER masks can be changed anytime during TML
application execution.

When the motion controller receives an error status message it saves the error code together with
the slaves ID in a circular buffer located in RAM memory. A buffer record has 16-MSB with slave
ID and 16-LSB with slave’s MER. The errors buffer can store up to 8 errors, if more errors are
received then the oldest one is overwritten.

The error codes can be retrieved from memory with GETERROR command and saved in non-
volatile memory with SAVEERROR command.

The reception of error messages can trigger also a TML interrupt on motion controller, Int12 –
Error occurred on slaves. With this mechanism the user is free to define the actions executed by
the motion controller when an error occurs on the slaves.

See also:

TML Description

 Technosoft 2022 476 ESM User Manual

6.3.2.11. Miscellaneous

This category includes the following TML instructions:

FAULTR Fault reset. Gets out the drive/motor from the FAULT status in which it
enters when an error occurs. After a FAULTR command, most of the
error bits from MER are cleared (set to 0), the Ready output (if present) is
set to “ready” level, the Error output (if present) is set to “no error” level.

Remarks:

• The FAULT reset command does not change the status of MER.15
(enable input on disabled level), MER.7 (negative limit switch input
active), MER.6 (positive limit switch input active) and MER.2 (invalid
setup table)

• The drive/motor will return to FAULT status if there are errors when
the FAULTR command is executed

SAVE Saves the actual values of the TML parameters from the RAM memory into the EEPROM
memory, in the setup table. Through this command, you can save all the setup
modifications done, after the power on initialization.

SCIBR value16Changes the serial communication interface (SCI) baud rate. SCI is used in data

exchanges on RS232 or RS485

The serial baud rate is set at power on using the following algorithm:

a. With the value read from the EEPROM setup table

b. If the setup table is invalid, with the last baud rate read from a valid
setup table

c. If there is no baud rate set by a valid setup table, with 9600.

Remarks:

• Use this command when a drive/motor operates in AUTORUN (after
power on starts to execute the TML program from the EEPROM) and
it must communicate with a host at a baud rate different from the
default value. In this case, the TML program must start with a serial
baud rate change.

 Technosoft 2022 477 ESM User Manual

• An alternate solution to the above case is to set via SCIBR command
the desired baud rate and then to save it in the EEPROM, with
command SAVE. After a reset, the drive/motor starts directly with the
new baud rate, if the setup table was valid. Once set, the new default
baud rate is preserved, even if the setup table is later on disabled,
because the default serial baud rate is stored in a separate area of
the EEPROM.

CANBR value16 Changes the CAN bus baud rate as follows:

The CAN baud rate is set at power on using the following algorithm:

d. With the value read from the EEPROM setup table

e. If the setup table is invalid, with the last baud rate read from a valid
setup table

f. If there is no baud rate set by a valid setup table, with 500kb.

Remarks:

• Use this command when a drive/motor operates in AUTORUN (after
power on starts to execute the TML program from the EEPROM) and
it must communicate with a host at a baud rate different from the
default value. In this case, the TML program must start with a CAN
baud rate change.

• An alternate solution to the above case is to set via CANBR
command the desired baud rate and then to save it the EEPROM,
with command SAVE. After a reset, the drive/motor starts directly
with the new baud rate, if the setup table was valid. Once set, the
new default baud rate is preserved, even if the setup table is later on
disabled, because the default CAN baud rate is stored in a separate
area of the EEPROM

LOCKEEPROM value16 Locks or unlocks the EEPROM write protection. When the EEPROM is
write-protected, it is not possible to write data into the EEPROM, with
the exception of the TML command SAVE. This command temporary
unlocks the EEPROM, saves the setup data and then locks back the
EEPROM. Value16 may have the following values:

0 – Disables EEPROM write protection

 Technosoft 2022 478 ESM User Manual

1 – Enables write protection for the last quarter of the EEPROM

2 – Enables write protection for the last half of the EEPROM

3 – Enables write protection for the entire EEPROM

Example: An EEPROM has 8Kwords. In the TML program space occupies the address range:
4000-5FFFh. LOCKEEPROM 1 protects the address range: 5800-5FFFh, LOCKEEPROM 2
protects the address range: 5000-5FFFh and LOCKEEPROM 3 protects the entire address
range: 4000-5FFFh.

ENEEPROM Enables EEPROM usage after it was disabled by the initialization of feedback
devices like SSI or EnDat encoders using the same SPI link as the EEPROM

NOP No operation

BEGIN First instruction of a TML program.

END Last instruction of the main section of a TML program. When END
instruction is executed, the TML program execution is stopped.

Remark: It is mandatory to end the main section of a TML program with
an END command. All the TML functions and the TML interrupt service
routines must follow after the END command.

ENDINIT END of the INITialization part of the TML program. This command uses
the available setup data to perform key initializations, but does not
activate the controllers or the PWM outputs. These are activated with the
AXISON command

Remarks:

• After power on, the ENDINIT command may be executed only once.
Subsequent ENDINIT commands are ignored.

• The first AXISON command must be executed only after the
ENDINIT command

• Typically, the ENDINIT command is executed at the beginning of a
TML program and may be followed by the AXISON command even if
no motion mode was set. In the absence of any programmed motion,
the drive applies zero voltage to the motor. Alternately, after ENDINIT
you can set a first motion and then execute AXISON

See also:

TML Description

 Technosoft 2022 479 ESM User Manual

6.3.3. TML Instruction set

6.3.3.1. TML Instructions

This section describes the complete set of TML instructions, grouped by functionality. In each
group, the instructions are ordered alphabetically. The groups are:

• Motion programming and control, including

o Motion configuration

o Motor commands

• Program flow (decision) group

o Events

o Motion Controller Events

o Jumps and function calls

o TML interrupts

• I/O handling (firmware FAxx)

• I/O handling (firmware FBxx)

• Assignment and data transfer

• Arithmetic and logic operations

• Multi axis control and monitoring

• Miscellaneous

• On-line commands

The presentation also lists the Obsolete instructions together with their equivalents.

The description of each TML instruction includes:

• Syntax

• Operands

• Binary code

• Description

• Example(s)

All the notational conventions used are grouped in the symbols section.

 Technosoft 2022 480 ESM User Manual

6.3.3.2. Symbols used in instructions descriptions

Symbol Description
&Label Value of a TML program label i.e. a TML program address

&V16 Address of a 16-bit integer variable

&V32 Address of a 32-bit long or fixed variable

(V16) Contents of memory location from address equal with V16 value

(fa) Full full addressing. Source/destination operand provided with 16-bit address.
Some TML instructions using 9-bit short addressing are doubled with their long
addressing equivalent

9LSB(&V16) The 9 LSB (less significant bits) of the address of a 16-bit integer

9LSB(&V32) The 9 LSB (less significant bits) of the address of a 32-bit long or fixed

A Message destination is an axis indicated via its Axis ID

A/G Message destination can be an axis indicated via an Axis ID or a group of axes
indicated by a Group ID

ANDdis 16-bit AND mask. See Table MCRx & AND/OR masks for DISIO#n and
Table MCRx & PxDIR addresses

ANDen 16-bit AND mask. See Table MCRx & AND/OR masks for ENIO#n and
Table MCRx & PxDIR addresses

ANDin 16-bit AND mask. See Table AND/OR masks for SETIO#n IN

ANDm 16-bit user-defined AND mask

ANDout 16-bit AND mask. See Table AND/OR masks for SETIO#n OUT

ANDrst 16-bit AND mask. See Table AND/OR masks for ROUT#n

ANDset 16-bit AND mask. See Table AND/OR masks for SOUT#n

Bit_mask 16-bit AND mask. See Tables PxDIR & Bit_mask for V16=IN#n and
table MCRx & PxDIR addresses

D_ref 32-bit fixed value

D_time 16-bit value

Flag Condition Flag for GOTO/CALL

LengthMLI Length of a TML instruction code in words – 1

MCRx See Tables MCRx & AND/OR masks for ENIO#n / DISIO#n and
Table MCRx & PxDIR addresses

ORdis 16-bit OR mask. See Table MCRx & AND/OR masks for DISIO#n and
Table MCRx & PxDIR addresses

ORen 16-bit OR mask. See Table MCRx & AND/OR masks for ENIO#n and
Table MCRx & PxDIR addresses

 Technosoft 2022 481 ESM User Manual

ORin 16-bit OR mask.. See Table AND/OR masks for SETIO#n IN

ORm 16-bit user-defined OR mask

ORout 16-bit OR mask. See Table AND/OR masks for SETIO#n OUT

ORrst 16-bit OR mask. See Table AND/OR masks for ROUT#n

ORset 16-bit OR mask. See Table AND/OR masks for SOUT#n

PxDIR See Table PxDIR & Bit_msk for V16=IN#n and Table MCRx & PxDIR addresses

DM RAM memory for TML data

PM RAM memory for TML programs

SPI E2ROM memory for TML programs

TM Type of memory. When used in syntax TM should be replaced by DM or PM or
SPI. When used in code, see Table TM values.

VAR Any 16/32 –bit TML data i.e.: register, parameter, variable, user-variable

VAR16 Any 16-bit integer TML data

VAR16D A 16-bit integer TML parameter or user-variable, used as destination:

VAR16S Any 16-bit integer TML data used as source

VAR32 Any 32-bit long or fixed TML data i.e.: parameter, variable, user-variable

VAR32(L) 16LSB of a 32-bit long or fixed variable (seen as a 16-bit integer)

VAR32(H) 16MSB of a 32-bit long or fixed variable (seen as a 16-bit integer)

VAR32D A 32-bit long or fixed TML parameter of user variable, used as destination

VAR32S Any 32-bit long or fixed TML data

value16 16-bit integer value

value32 32-bit long or fixed value

value32(L) 16LSB of a 32-bit long or fixed value

value32(H) 16MSB of a 32-bit long or fixed value

 Technosoft 2022 482 ESM User Manual

6.3.3.3. Instructions Categories

6.3.3.3.1. Motion configuration

Syntax Description

CIRCLE Define circular segment for vector mode

CPA Command Position is Absolute

CPR Command Position is Relative

EXTREF Set external reference type

INITCAM addrS, addrD Copy CAM table from EEPROM (addrS address) to RAM (addrD address)

LPLANE Define coordinate system for linear interpolation mode

MODE CS Set MODE Cam Slave

MODE GS Set MODE Gear Slave

MODE LI Set MODE Linear Interpolation

MODE PC Set MODE Position Contouring

MODE PE Set MODE Position External

MODE PP Set MODE Position Profile

MODE PSC Set MODE Position S-Curve

MODE PT Set MODE PT

MODE PVT Set MODE PVT

MODE SC Set MODE Speed Contouring

MODE SE Set MODE Speed External

MODE SP Set MODE Speed Profile

MODE TC Set MODE Torque Contouring

MODE TEF Set MODE Torque External Fast

MODE TES Set MODE Torque External Slow

MODE TT Set MODE Torque Test

MODE VC Set MODE Voltage Contouring

MODE VEF Set MODE Voltage External Fast

 Technosoft 2022 483 ESM User Manual

MODE VES Set MODE Voltage External Slow

MODE VM Set MODE Vector Mode

MODE VT Set MODE Voltage Test

PTP Define a PT point

PVTP Define a PVT point

REG_OFF Disable superposed mode

REG_ON Enable superposed mode

RGM Reset electronic gearing/camming master mode

SEG Define a contouring segment

SETPT Setup PT mode operation

SETPVT Setup PVT mod operation

SGM Set electronic gearing/camming master mode

TUM0 Target update mode 0

TUM1 Target update mode 1

VPLANE Define coordinate system for Vector Mode

VSEG Define linear segment for vector mode

 Technosoft 2022 484 ESM User Manual

6.3.3.3.2. Motor commands

Syntax Description

AXISOFF AXIS is OFF (deactivate control)

AXISON AXIS is ON (activate control)

ENDINIT END of Initialization

RESET RESET drive / motor

SAP Set Actual Position

STA Set Target position = Actual position

STOP STOP motion

STOP! STOP motion when the programmed event occurs

UPD Update motion mode and parameters. Start motion

UPD! Update motion mode and parameters when the programmed event occurs

 Technosoft 2022 485 ESM User Manual

6.3.3.3.3. Events

Syntax Description

!ALPO Set event when absolute load position is over a value

!ALPU Set event when absolute load position is under a value

!AMPO Set event when absolute motor position over a value

!AMPU Set event when absolute motor position under a value

!CAP Set event when a capture input goes low or high

!IN#n Set event when digital input #n goes low or high

!LSN Set event when the negative limit switch (LSN) goes low or high

!LSP Set event when positive limit switch (LSP) goes low or high

!LSO Set event when load speed is over a value

!LSU Set event when load speed is under a value

!MC Set event when the actual motion is completed

!MSO Set event when motor speed is over a value

!MSU Set event when motor speed is under a value

!PRO Set event when position reference is over a value

!PRU Set event when position reference is under a value

!RPO Set event when relative load position is over a value

!RPU Set event when relative load position is under a value

!RT Set event after a wait time

!SRO Set event if speed reference is over a value

!SRU Set event if speed reference is under a value

!TRO Set event if torque reference is over a value

!TRU Set event if torque reference is under a value

!VO Set event if a long/fixed variable is over a value

!VU Set event if a long/fixed variable is under a value

WAIT! Wait until the programmed event occurs

 Technosoft 2022 486 ESM User Manual

6.3.3.3.4. Motion Controller Events

Syntax Description

WALPO Set and wait event when slave’s absolute load position is over a value

WALPU Set and wait event when slave’s absolute load position is under a value

WAMPO Set and wait event when slave’s absolute motor position over a value

WAMPU Set and wait event when absolute motor position under a value

WCAP Set and wait event when slave’s 1st capture/encoder index input goes low
or high

W2CAP Set and wait event when slave’s 2nd capture/encoder index input goes
low or high

WIN#n Set and wait event when slave’s digital input #n goes low or high

WLSN Set event when slave’s negative limit switch (LSN) goes low or high

WLSP Set event when slave’s positive limit switch (LSP) goes low or high

WLSO Set event when slave’s load speed is over a value

WLSU Set event when slave’s load speed is under a value

WMC Set and wait event when the actual motion is completed on one or more
slave axes

WMSO Set and wait event when slave’s motor speed is over a value

WMSU Set and wait event when slave’s motor speed is under a value

WPRO Set and wait event when slave’s position reference is over a value

WPRU Set and wait event when slave’s position reference is under a value

WRPO Set and wait event when slave’s relative load position is over a value

WRPU Set and wait event when slave’s relative load position is under a value

WRT Set event after a wait time

WVDU Set and wait event when the vector distance is under a value

WVDO Set and wait event when the vector distance is over a value

WTR Set and wait event when the slave’s target is reached

 Technosoft 2022 487 ESM User Manual

6.3.3.3.5. Jumps and function calls

Syntax Description

ABORT Abort the execution of a function called with CALLS

CALL Call a TML function

CALLS Cancelable CALL of a TML function

GOTO Jump

RET Return from a TML function

6.3.3.3.6. TML interrupts

Syntax Description

DINT Disable globally all TML interrupts

EINT Enable globally all TML interrupts

RETI Return from a TML Interrupt Service Routine

 Technosoft 2022 488 ESM User Manual

6.3.3.3.7. I/O handling (Firmware FAxx)

Syntax Description

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSN Disable negative limit switch (LSN) input to detect transitions

DISLSP Disable positive limit switch (LSP) input to detect transitions

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

ENLSN0 Enable negative limit switch (LSN) input to detect a high to low transition

ENLSN1 Enable negative limit switch (LSN) input to detect a low to high transition

ENLSP0 Enable positive limit switch (LSP) input to detect a low to high transition

ENLSP1 Enable positive limit switch (LSP) input to detect a high to low transition

OUTPORT Set Enable, LSP, LSN and general purpose outputs OUT#28-31

ROUT#n Set low the output line #n

SETIO#n Set IO line #n as input or as output

SOUT#n Set high the output line #n

V16D = IN#n Read input #n. V16D = input #n status

V16D = INPUT1, ANDm V16D = logical AND between inputs IN#25 to IN#32 status and ANDm mask

V16D = INPUT2, ANDm V16D = logical AND between inputs IN#33 to IN#39 status and ANDm mask

V16D = INPORT, ANDm V16D = status of inputs Enable, LSP, LSN plus IN#36 to IN#39

 Technosoft 2022 489 ESM User Manual

6.3.3.3.8. I/O handling (firmware FBxx)

Syntax Description

!CAP Set event on capture inputs

!LSN Set event on negative limit switch input

!LSP Set event on positive limit switch input

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSN Disable negative limit switch (LSN) input to detect transitions

DISLSP Disable positive limit switch (LSP) input to detect transitions

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low
transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high
transition

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low
transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high
transition

ENLSN0
Enable negative limit switch (LSN) input to detect a high to low
transition

ENLSN1
Enable negative limit switch (LSN) input to detect a low to high
transition

ENLSP0
Enable positive limit switch (LSP) input to detect a low to high
transition

ENLSP1
Enable positive limit switch (LSP) input to detect a high to low
transition

user_var = IN(n) Read input n in the user variable user_var

user_var = IN(n1, n2, n3, …) Read inputs n1, n2, n3,… in the user variable user_var

OUT(n) =value16 Set the output line as specified by value16

OUT(n1, n2, n3, …) =value16 Set the output lines n1 n2, n3 as specified by value16

SetAsInput(n) Set the I/O line #n as an input

SetAsOutput(n) Set the I/O line #n as an output

 Technosoft 2022 490 ESM User Manual

SRB Set/reset bits from a TML data

STOP!
Stop motion with the acceleration/deceleration set in CACC, when the
programmed event occurs

UPD!
Update the motion mode and/or the motion parameters when the
programmed event occurs

WAIT!

Wait until the programmed event occurs. If the command is followed by
value16, the wait ends after the time interval specified in this 16-bit
integer value. Value16 is measured in time units

6.3.3.3.9. Assignment and data transfer

Syntax Description

V16 = label V16 = &label

V16D = V16S V16D = V16S

V16 = val16 V16 = val16

V16D = V32S(H) V16D = V32S(H)

V16D = V32S(L) V16D = V32S(L)

V16D, dm = V16S V16D = V16S (fa)

V16D, dm = val16 V16D = val16 (fa)

V16D = (V16S), TM V16D = (V16S) from TM memory

V16D = (V16S+), TM V16D = (V16S) from TM memory, then V16S += 1

(V16D), TM = V16S (V16D) from TM memory = V16S

(V16D), TM = val16 (V16D) from TM memory = val16

(V16D+), TM = V16S (V16D) from TM memory = V16S, then V16D += 1

(V16D+), TM = val16 (V16D) from TM memory = val16, then V16D += 1

V32(H) = val16 V32(H) = val16

V32(L) = val16 V32(H) = val16

V32D(H) = V16S V32D(H) = V16

V32D(L) = V16S V32D(L) = V16

 Technosoft 2022 491 ESM User Manual

V16D = -V16S V16D = -V16S

V32D = V32S V32D = V32S

V32 = val32 V32 = val32

V32D =V16S << N V32D = V16S left-shifted by N

V32D, dm = V32S V32D from dm = V32S (fa)

V32D, dm = val32 V32 from dm = val32 (fa)

V32D = (V16S), TM V32D = (V16S) from TM memory

V32D = (V16S+), TM V32D = (V16S) from TM memory, then V16S += 2

(V16D), TM = V32S (V16D) from TM memory = V32S

(V16D), TM = val32 (V16D) from TM memory = val32

(V16D+), TM = V32S (V16D) from TM memory = V32S, then V16D += 2

(V16D+), TM = val32 (V16D) from TM memory = val32, then V16D += 2

V32D = -V32S V32D = -V32S

 Technosoft 2022 492 ESM User Manual

6.3.3.3.10. Arithmetic and logic operations

Syntax Description

V16 += val16 V16 = V16 + val16

V16D += V16S V16D = V16D + V16S

V32 += val32 V32 = V32 + val32

V32D += V32S V32D = V32D + V32S

V16 -= val16 V16 = V16 - val16

V16D -= V16S V16D = V16D - V16S

V32 -= val32 V32 = V32 - val32

V32D -= V32S V32D = V32D - V32S

V16 * val16 << N 48-bit product register = (V16 * val16) >> N

V16 * val16 >> N 48-bit product register = (V16 * val16) >> N

V16A * V16B << N 48-bit product register = (V16A * V16B) << N

V16A * V16B >> N 48-bit product register = (V16A * V16B) >> N

V32 * V16 << N 48-bit product register = (V32 * V16) << N

V32 * V16 >> N 48-bit product register = (V32 * V16) >> N

V32 * val16 << N 48-bit product register = (V32 * val16) << N

V32 * val16 >> N 48-bit product register = (V32 * val16) >> N

V32=/V16 Divide V32 to V16

PROD <<= N Left shift 48-bit product register by N

V16 <<= N Left shift V16 by N

V32 <<= N Left shift V32 by N

PROD >>= N Right shift 48-bit product register by N

V16 >>= N Right shift V16 by N

V32 >>= N Right shift V32 by N

SRB V16, ANDm, ORm Set / Reset Bits from V16

SRBL V16, ANDm, ORm Set / Reset Bits from V16 (fa)

 Technosoft 2022 493 ESM User Manual

6.3.3.3.11. Multiple axis control and monitoring

Syntax Description

[A/G] { TML Instr} Send TML instruction to [A/G]

[A/G] V16D = V16S [A/G] V16D = local V16S

[A/G] V16D, dm = V16S [A/G] V16D = local V16S (fa)

[A/G] (V16D), TM = V16S [A/G] (V16D), TM = local V16S

[A/G] (V16D+), TM = V16S [A/G] (V16D), TM = local V16S, then V16D += 1

[A/G] V32D = V32S [A/G] V32D = local V32S

[A/G] V32D, dm = V32S [A/G] V32D = local V32S (fa)

[A/G] (V16D), TM = V32S [A/G] (V16D), TM = local V32S

[A/G] (V16D+), TM = V32S [A/G] (V16D), TM = local V32S, then V16D += 2

V16D = [A] V16S Local V16D = [A] V16S

V16D = [A] V16S, dm Local V16D = [A] V16S, dm (fa)

V16D = [A] (V16S), TM Local V16D = [A] (V16S), dm

V16D = [A] (V16S+), TM Local V16D = [A] (V16S), dm, then V16S += 1

V32D = [A] V32S Local V32D = [A] V32S

V32D = [A] V32S, dm Local V32D = [A] V32S, dm (fa)

V32D = [A] (V16S), TM Local V32D = [A] (V16S), TM

V32D = [A] (V16S+), TM Local V32D = [A] (V16S), TM, then V16S += 2

ADDGRID (value16_1, value16_2,…) Add groups to the Group ID

AXISID Set Axis ID

GROUPID (value16_1, value16_2,…) Set GROUP ID

SETSYNC Enable/disable synchronization between axes

SEND Send to host the contents of a TML variable

REMGRID (value16_1, value16_2,…) Remove groups from the Group ID

 Technosoft 2022 494 ESM User Manual

6.3.3.3.12. Miscellaneous

Syntax Description

BEGIN BEGIN of a TML program

CANBR val16 Set CAN bus baud rate

CHECKSUM, TM Start, Stop, V16D V16D=Checksum between Start and Stop addresses from TM

ENEEPROM Enables EEPROM usage after it was disabled by the
initialization of SSI or ENDat encoders

END END of a TML program

ENDINIT END of INITialization part of the TML program

FAULTR Reset FAULT status. Return to normal operation

LOCKEEPROM Locks or unlocks the EEPROM write protection

NOP No Operation

SAVE Save setup data in the EEPROM memory

SCIBR V16 Set RS-232/Rs485 serial communication interface (SCI) baud
rate

STARTLOG V16 Start the data acquisition

STOPLOG Stop the data acquisition

 Technosoft 2022 495 ESM User Manual

6.3.3.3.13. On line commands

Syntax Description

(?)GiveMeData Ask one axis to return a 16/32 bit data from memory

TakeData Answer to GiveMeData request

(??)GiveMeData2 Ask a group of axes to return each a 16/32 bit data from memory

TakeData2 Answer to GiveMeData2 request

GetTMLData Ask one axis to return a TML data

TakeData Answer to Get TML Data request

GetVersion Ask one axis the firmware version

TakeVersion Answer to Get version request

Get checksum Ask one axis to return the checksum between 2 addresses from its TML memory

Take checksum Answer to Get checksum request

PING Ask a group of axes to return their axis ID

PONG Answer to a PING request

GETERROR Get last error reported by slaves

SAVEERROR Save slave error in EEPROM

Remark: The online instructions are intended only for host/master usage and cannot reside in a
TML program. Therefore their syntax is fictive, its only goal being to identify these commands.

In the Binary Code Viewer you can “emulate” a GiveMeData request for a TML variable using
syntax ?name and a GiveMeData2 request using syntax ??name. In both cases, name is the
TML variable name.

In the Command interpreter, you can check the value of any TML data, by sending a GiveMeData
request using the syntax ?name, where name is the TML data name. The value returned with the
TakeData answer is displayed. Through the command interpreter you may also send a Get
checksum request using the syntax: CHECKSUM Start_address, Stop_address. The value
returned with Take checksum is displayed.

 Technosoft 2022 496 ESM User Manual

6.3.3.3.14. Obsolete Instructions

The obsolete instructions listed below have been replaced with or included as functionality in
other TML commands. The obsolete instructions may still be used with their syntax (except the
ADDGRID, GROUPID and REMGRID commands), but in this case you can’t benefit from the
extended functionalities of their equivalents.

Obsolete syntax Replace syntax Remarks

ADDGRID value16 ADDGRID (value_1, value_2,…) The binary code is identical; the syntax was changed
to allow setting adding more than one group. The old
syntax is no more supported

 DISIO#n – Not required anymore. All the I/O pins are already set

 ENIO#n – Not required anymore. All the I/O pins are already set

GROUPID value16 GROUPID (value_1, value_2,…) The binary code is identical; the syntax was changed
to allow setting adding more than one group. The old
syntax is no more supported

MODE CS0

MODE CS
MODE CS1

MODE CS2

MODE CS3

MODE GS0

MODE GS
MODE GS1

MODE GS2

MODE GS3

MODE PC0

MODE PC
MODE PC1

MODE PC2

MODE PC3

MODE PE0

MODE PE
MODE PE1

MODE PE2

MODE PE3

MODE PP0 MODE PP

 Technosoft 2022 497 ESM User Manual

MODE PP1

MODE PP2

MODE PP3

MODE PPD0

– It is seen as a particular case of electronic gearing
MODE PPD1

MODE PPD2

MODE PPD3

MODE SC0
MODE SC –

MODE SC1

MODE SE0
MODE SE –

MODE SE1

MODE SP0
MODE SP –

MODE SP1

MODE SPD0
–

MODE SPD1

RAOU – Handled automatically

REMGRID value16 REMGRID(value_1, value_2,…) The binary code is identical; the syntax was changed
to allow setting adding more than one group. The old
syntax is no more supported

SAOU – Handled automatically

SPIBR V16 – Handled automatically

STOP0

STOP –
STOP1

STOP2

STOP3

STOP1!

STOP! –
STOP2!

STOP3!

STOP3!

 Technosoft 2022 498 ESM User Manual

6.3.3.4. Instructions descriptions

6.3.3.4.1. !ALPO Set event when absolute load position >

Syntax

!ALPO value32 ! if AbsoluteLoadPositionOver value32

!ALPO VAR32 ! if AbsoluteLoadPositionOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the load absolute position is equal or over the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 499 ESM User Manual

Execution Activates the monitoring of the event, when load absolute position >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Stop motion when load position >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!ALPO 6000; //Set event: when load absolute position is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 500 ESM User Manual

6.3.3.4.2. !ALPU Set event when absolute load position <

Syntax

!ALPU value32 ! if AbsoluteLoadPositionUnder value32

!ALPU VAR32 ! if AbsoluteLoadPositionUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the load absolute position is equal or under the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 501 ESM User Manual

Execution Activates the monitoring of the event, when load absolute position <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Change speed command when load absolute position is <= 10 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!ALPU 20000;//Set event: when load absolute position is <= 10 rev

CSPD = 13.3333;//new slew speed command = 500[rpm]

UPD!; //execute on event

WAIT!;//Wait until the event occurs

 Technosoft 2022 502 ESM User Manual

6.3.3.4.3. !AMPO Set event when absolute motor position >

Syntax

!AMPO value32 ! if AbsoluteMotorPositionOver value32

!AMPO VAR32 ! if AbsoluteMotorPositionOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the motor absolute position is equal or over the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 503 ESM User Manual

Execution Activates the monitoring of the event, when motor absolute position >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Reverse when motor position >= 1rev

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.1591; //acceleration rate = 500[rad/s^2]

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; // set trapezoidal speed profile mode

UPD; //execute immediate

CSPD = -40; //jog speed = -1200[rpm]

!AMPO 2000; // Set event: when motor absolute position >= 1 rot

WAIT!; //Wait until the event occurs

UPD; //Update. Speed command is reversed

Remark: You can activate a new motion on a programmed event in 2 ways:

• Set UPD! command then wait the event with WAIT!. This will activate the
new motion immediately when the event occurs

• Wait the event with WAIT!, then update the motion with UPD. This will
activate the new motion with a slight delay compared with the first option

 Technosoft 2022 504 ESM User Manual

6.3.3.4.4. !AMPU Set event when absolute load position <=

Syntax

!AMPU value32 ! if AbsoluteMotorPositionUnder value32

!AMPU VAR32 ! if AbsoluteMotorPositionUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the motor absolute position is equal or under the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 505 ESM User Manual

Execution Activates the monitoring of the event, when motor absolute position <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Stop when motor position <= -3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.1591; //acceleration rate = 500[rad/s^2]

CSPD =-40; //jog speed = 1200[rpm]

MODE SP;

UPD; //execute immediate

!AMPU -6000;// Set event: when motor position is < -3rev

STOP!; //Stop when the event occurs

WAIT!; //Wait until the event occurs

 Technosoft 2022 506 ESM User Manual

6.3.3.4.5. !CAP Set event when function of capture input

Syntax

!CAP ! if CAPture triggered

Operands –

Binary code

Description Sets the event condition when the programmed transition occurs on one of the 2
capture inputs. Typically, on the capture inputs are connected the 1st and 2nd
encoder index. When the programmed transition occurs on either of these inputs,
the following happens:

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2

After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

 Technosoft 2022 507 ESM User Manual

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates the monitoring of the event, when the programmed transition (low to
high or high to low) occurs on the selected capture input. This operation erases a
previous programmed event that has occurred.

Example

//Stop motion on next encoder index

ENCAPI1; //Enable 1st capture input for low->high transitions

!CAP; // Set event on 1st capture (low->high transition)

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

 Technosoft 2022 508 ESM User Manual

6.3.3.4.6. !IN Set event when function of digital input

Syntax

!IN#n 0 ! if Input#n is 0

!IN#n 1 ! if Input#n is 1

Operands n: input line number (0<=n<=39)

Binary code

Description Sets the event condition when the digital input #n becomes 0, respectively 1. The
condition of the input #n is tested at each slow loop sampling period. After you
have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates monitoring of the event when the digital input #n becomes 0 (!IN#n 0),
respectively 1 (!IN#n 1). This operation erases a previous programmed event that
has occurred.

 Technosoft 2022 509 ESM User Manual

Example

// Start motion when digital input #36 is high

!IN#36 1; // set event when input #36 is high

//Position profile. Position feedback: 500-lines encoder

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

 Technosoft 2022 510 ESM User Manual

6.3.3.4.7. !LSN Set event when function of LSN input

Syntax

!LSN ! if LimitSwitchNegative active

Operands –

Binary code

Description Sets the event condition when the programmed transition occurs at the negative
limit switch input. After you have programmed an event, you can do the following
actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates monitoring of the event when the programmed transition occurs at the
negative limit switch input. This operation erases a previous programmed event
that has occurred.

Example

//Reverse when negative limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

 Technosoft 2022 511 ESM User Manual

UPD; //execute immediate

ENLSN1;//Enable negative limit switch for low->high transitions

!LSN; //Set event on negative limit switch(low->high transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

 Technosoft 2022 512 ESM User Manual

6.3.3.4.8. !LSP Set event when function of LSP input

Syntax

!LSP ! if LimitSwitchPositive active

Operands –

Binary code

Description Sets the event condition when the programmed transition occurs at the positive
limit switch input. After you have programmed an event, you can do the following
actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates monitoring of the event when the programmed transition occurs at the
positive limit switch input. This operation erases a previous programmed event
that has occurred.

Example

//Reverse when positive limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = 16.6667; //jog speed = 500[rpm]

MODE SP;

 Technosoft 2022 513 ESM User Manual

UPD; //execute immediate

ENLSP1;//Enable positive limit switch for low->high transitions

!LSP; //Set event on positive limit switch(low->high transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = -40; //jog speed = -1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

 Technosoft 2022 514 ESM User Manual

6.3.3.4.9. !MC Set event when motion complete

Syntax

!MC !(set event) if MotionComplete

Operands –

Binary code

Description Sets the event condition when the actual motion is completed. The motion
complete is set in the following conditions:

• During position control:

 If UPGRADE.11=1, when the position reference arrives at the position to
reach (commanded position) and the position error remains inside a
settle band defined by POSOKLIM, for a preset stabilize time interval
defined by TONPOSOK

 If UPGRADE.11=0, when the position reference arrives at the position to
reach (commanded position)

• During speed control, when the speed reference arrives at the commanded
speed

The motion complete condition is reset when a new motion is started i.e. when
the update command – UPD is executed.

Remark: In case of steppers controlled open-loop, the motion complete condition
for positioning is always set when the position reference arrives at the position to
reach independently of the UPGRADE.11 status.

Execution Activates monitoring of the event when the actual motion is completed. This
operation erases a previous programmed event that has occurred.

Example

//Execute successive position profiles

// Position feedback: 500 lines encoder (2000 counts/rev)

 Technosoft 2022 515 ESM User Manual

POSOKLIM = 10; //Set settle band to 0.005[rot]

TONPOSOK = 10; //Set stabilize time to 0.01[s]

SRB UPGRADE, 0xFFFF, 0x0800; // motion complete with settle band

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; // set event and wait for motion complete

... // start here next move

 Technosoft 2022 516 ESM User Manual

6.3.3.4.10. !PRO Set event when position reference >

Syntax

!PRO value32 ! if PositionReferenceOver value32

!PRO VAR32 ! if PositionReferenceOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the position reference is equal or over the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 517 ESM User Manual

Execution Activates the monitoring of the event, when position reference >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example:

//Stop motion when position reference >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!PRO 6000; //Set event: when motor position reference is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 518 ESM User Manual

6.3.3.4.11. !PRU Set event when position reference <

Syntax

!PRU value32 ! if PositionReferenceUnder value32

!PRU VAR32 ! if PositionReferenceUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the position reference is equal or under the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 519 ESM User Manual

Execution Activates the monitoring of the event, when position reference <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example:

//Stop motion when position reference >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!PRU 6000; //Set event: when position reference is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 520 ESM User Manual

6.3.3.4.12. !SRO Set event when speed reference >

Syntax

!SRO value32 ! if SpeedReferenceOver value32

!SRO VAR32 ! if SpeedReferenceOver VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the speed reference is equal or over the specified
value or the value of the specified variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 521 ESM User Manual

Execution Activates the monitoring of the event, when speed reference >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example:

//Stop motion when speed reference >= 315 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!SRO 10.5; //Set event: when speed reference is >= 315 rpm

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 522 ESM User Manual

6.3.3.4.13. !SRU Set event when speed reference <=

Syntax

!SRU value32 ! if SpeedReferenceUnder value32

!SRU VAR32 ! if SpeedReferenceUnder VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the speed reference is equal or under the specified
value or the value of the specified variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 523 ESM User Manual

Execution Activates the monitoring of the event, when speed reference <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example:

//Motor is decelerating. Start a position profile when speed

//reference < 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!SRU 20; //Set event: when position reference is <= 3 rev

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

 Technosoft 2022 524 ESM User Manual

6.3.3.4.14. !TRO Set event when torque reference >=

Syntax

!TRO value32 ! if TorqueReferenceOver value32

!TRO VAR32 ! if TorqueReferenceOver VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the current/torque reference is equal or over the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 525 ESM User Manual

Execution Activates the monitoring of the event, when current/torque reference >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example:

// Motor will reach a hard stop. Disable control when torque

// reference > 1 A = 1984 internal current units

!TRO 1984.0; // set event when torque reference > 1 A

WAIT!;//Wait until the event occurs

AXISOFF; // disable control

 Technosoft 2022 526 ESM User Manual

6.3.3.4.15. !TRU Set event when torque reference <=

Syntax

!TRU value32 ! if TorqueReferenceUnder value32

!TRU VAR32 ! if TorqueReferenceUnder VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the current/torque reference is equal or under the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 527 ESM User Manual

Execution Activates the monitoring of the event, when current/torque reference <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

// Disable control when torque reference > 1 A = 1984 IU

!TRO 1984.0; // set event when torque reference > 1 A

WAIT!;//Wait until the event occurs

AXISOFF; // disable control

 Technosoft 2022 528 ESM User Manual

6.3.3.4.16. !RPO Set event when relative load/motor position >

Syntax

!RPO value32 ! if RelativePositionOver value32

!RPO VAR32 ! if RelativePositionOver VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the load relative position is equal or over the
specified value or the value of the specified variable. The relative position is the
load displacement from the beginning of the actual movement.

Remark: The origin for the relative position measurement (TML variable POS0)
is set function of the target update mode. Under TUM1, POS0 = TPOS. Under
TUM0, POS0=APOS_LD.

After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

 Technosoft 2022 529 ESM User Manual

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates the monitoring of the event, when load relative position >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Stop motion when after moving 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!RPO 6000; //Set event: when load relative position is >= 3 rev

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 530 ESM User Manual

6.3.3.4.17. !RPU Set event when relative load/motor position <

Syntax

!RPU value32 ! if RelativePositionUnder value32

!RPU VAR32 ! if RelativePositionUnder VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the load relative position is equal or under the
specified value or the value of the specified variable. The relative position is the
load displacement from the beginning of the actual movement.

Remark: The origin for the relative position measurement (TML variable POS0)
is set function of the target update mode. Under TUM1, POS0 = TPOS. Under
TUM0, POS0=APOS_LD.

After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

 Technosoft 2022 531 ESM User Manual

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates the monitoring of the event, when load relative position <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Move negative and change speed command after 10 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

!RPU 20000;//Set event: when load relative position is <= 10 rev

CSPD = 13.3333;//new slew speed command = 500[rpm]

UPD!; //execute on event

WAIT!;//Wait until the event occurs

 Technosoft 2022 532 ESM User Manual

6.3.3.4.18. !RT Set event after a wait time

Syntax

!RT value32 ! if RelativeTime >= value32

!RT VAR32 ! if RelativeTime >= VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition when the relative time is equal or greater than the 32-bit
value or the value of the specified long variable. The relative time RTIME is
computed with formula: RTIME = ATIME – TIME0, where ATIME is a 32-bit
absolute time counter, incremented by 1 at each slow loop sampling period and

TIME0 is the ATIME value when the wait event was set. After power on, TIME0 is
set to 0. RTIME is updated together with ATIME, at each slow loop sampling
period.

Remark: ATIME and RTIME start ONLY after the execution of the ENDINIT (end
of initialization) command. Therefore you should not set wait events before
executing this command

After you have programmed an event monitoring you need to wait until the
programmed event occurs, using the TML command WAIT!. Otherwise, the
program will continue with the next instructions that may override the event
monitoring.

 Technosoft 2022 533 ESM User Manual

Execution Activates the monitoring of the event when system relative time >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Introduce a 100 ms delay

!RT 100; // set event: After a wait of 100 slow-loop periods

// 1 slow-loop period = 1ms

WAIT!; // wait the event to occur

 Technosoft 2022 534 ESM User Manual

6.3.3.4.19. !MSO Set event when motor speed >=

Syntax

!MSO value32 ! if MotorSpeedOver value32

!MSO VAR32 ! if MotorSpeedOver VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the motor speed is equal or over the 32-bit value
or the value of the specified fixed variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 535 ESM User Manual

Execution Activates the monitoring of the event when motor speed >= value32, respectively
VAR32. This operation erases a previous programmed event that has occurred.

Example

//Motor is accelerating. Stop motion when motor

//speed > 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!MSO 20; //Set event: when motor speed is > 600 rpm

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 536 ESM User Manual

6.3.3.4.20. !MSU Set event when motor speed <=

Syntax

!MSU value32 ! if MotorSpeedUnder value32

!MSU VAR32 ! if MotorSpeedUnder VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the motor speed is equal or under the 32-bit value
or the value of the specified fixed variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 537 ESM User Manual

Execution Activates the monitoring of the event when motor speed <= value32, respectively
VAR32. This operation erases a previous programmed event that has occurred.

Example

//Motor is decelerating. Start a position profile when motor

//speed < 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

!MSU 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

 Technosoft 2022 538 ESM User Manual

6.3.3.4.21. !LSO Set event when load speed >

Syntax

!LSO value32 ! if LoadSpeedOver value32

!LSO VAR32 ! if LoadSpeedOver VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the load speed is equal or over the 32-bit value or
the value of the specified fixed variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 539 ESM User Manual

Execution Activates the monitoring of the event when load speed >= value32, respectively
VAR32. This operation erases a previous programmed event that has occurred.

Example

//Stop motion when load speed > 600 rpm

//Load Position feedback: 500 lines encoder (2000 counts/rev)

!LSO 20; //Set event: when load speed is > 600 rpm

STOP!;//Stop the motion when the event occurs

WAIT!;//Wait until the event occurs

 Technosoft 2022 540 ESM User Manual

6.3.3.4.22. !LSU Set event when load speed <

Syntax

!LSU value32 ! if LoadSpeedUnder value32

!LSU VAR32 ! if LoadSpeedUnder VAR32

Operands VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition when the load speed is equal or under the 32-bit value
or the value of the specified fixed variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 541 ESM User Manual

Execution Activates the monitoring of the event when load speed <= value32, respectively
VAR32. This operation erases a previous programmed event that has occurred.

Example

// Start a position profile when load speed < 600 rpm

// Load Position feedback: 500 lines encoder (2000 counts/rev)

!LSU 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD!; //execute on event

WAIT!;//Wait until the event occurs

 Technosoft 2022 542 ESM User Manual

6.3.3.4.23. !VO Set event when variable >=

Syntax

!VO VAR32A, value32 ! if Var32AOver value32

!VO VAR32A, VAR32B ! if Var32AOver VAR32B

Operands VAR32A: fixed or long variable

VAR32B: fixed or long variable

value32: 32-bit fixed or long immediate value

Binary code

Description Sets the event condition when the selected variable (any 32-bit fixed or long TML
data) is equal or over the specified value or the value of another 32-bit variable.
After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 543 ESM User Manual

Execution Activates the monitoring of the event when the selected variable >= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Wait until master position MREF > 500 counts, then activate

//electronic gearing slave mode

!VO MREF, 500; //Set event when variable MREF is >= 500

GEAR = 1; // gear ratio

GEARMASTER = 1; // Gear ratio denominator

GEARSLAVE = 1; // Gear ratio numerator

EXTREF 2; // read master from 2nd encoder or pulse & dir

MASTERRES = 2000; // master resolution

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004;//UPGRADE.2=1 enables CACC limitation

CACC = 0.3183; //Limit maximum acceleration at 1000[rad/s^2]

UPD!; //execute on event

 Technosoft 2022 544 ESM User Manual

6.3.3.4.24. !VU Set event when variable <=

Syntax

!VU VAR32A, value32 ! if Var32AUnder value32

!VU VAR32A, VAR32B ! if Var32AUnder VAR32B

Operands VAR32A: fixed or long variable

VAR32B: fixed or long variable

value32: 32-bit fixed or long immediate value

Binary code

Description Sets the event condition when the selected variable (any 32-bit fixed or long TML
data) is equal or under the specified value or the value of another 32-bit variable.
After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP!

• Wait for the programmed event to occur, with command WAIT!

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

 Technosoft 2022 545 ESM User Manual

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

Execution Activates the monitoring of the event when the selected variable <= value32,
respectively VAR32. This operation erases a previous programmed event that
has occurred.

Example

//Wait until master position MREF < 500 counts, then activate

//electronic gearing slave mode

!VU MREF, 500; //Set event when variable MREF is <= 500

GEAR = 1; // gear ratio

GEARMASTER = 1; // Gear ratio denominator

GEARSLAVE = 1; // Gear ratio numerator

EXTREF 2; // read master from 2nd encoder or pulse & dir

MASTERRES = 2000; // master resolution

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004;//UPGRADE.2=1 enables CACC limitation

CACC = 0.3183; //Limit maximum acceleration at 1000[rad/s^2]

UPD!; //execute on event

 Technosoft 2022 546 ESM User Manual

6.3.3.4.25. GiveMeData/TakeData

Syntax

?VAR Ask one axis to return a 16/32 bit value from memory

– Answer to GiveMeData request

Operands VAR: 16/32-bit TML data: register, parameter, variable or user variable

Remark: The online instructions are intended only for host/master usage and
cannot reside in a TML program. Therefore their syntax is fictive, the only goal
being to identify these commands.

In the Command interpreter, you can check the value of any TML data, by
sending a GiveMeData request with syntax ?VAR. The value returned with the
TakeData answer, is displayed. The same syntax may be used in the Binary
Code Viewer to “emulate” a GiveMeData request and a TakeData answer

Binary code

Description Through GiveMeData command an external device can request data from one
drive/motor. The requested data can be:

• A TML data from the RAM memory for data (dm)

• A memory location from the RAM memory for TML programs (pm)

• A memory location from the EEPROM SPI-connected memory (spi)

The dimension of the requested data is specified in the binary code through the
VT bit: 0 – 16-bit, 1 – 32-bit. The data is identified by its memory address and
type:

 Technosoft 2022 547 ESM User Manual

In the expeditor address, bit H – the host bit – must be set to 1 only if the host
sends the GiveMeData request via serial RS-232 link. For details, see serial
communication protocol description.

The answer to a GiveMeData command is a TakeData message including the
expeditor Axis ID, the address of the data returned and its value.

Remark: The GiveMeData and TakeData commands must be used only for data
exchanges between 2 devices. In a multi-axis CAN bus network, the GiveMeData
command must be sent to a single axis. If this command is sent to a group of
drives, the TakeData answers from different drives will have all the same
identifier and therefore can’t be correctly identified.

 Technosoft 2022 548 ESM User Manual

6.3.3.4.26. GiveMeData2/TakeData2

Syntax

??VAR Ask a group of axes to return each a 16/32 bit data from memory

– Answer to GiveMeData2 request

Operands VAR: 16/32-bit TML data: register, parameter, variable or user variable

Remark: The online instructions are intended only for host/master usage and
cannot reside in a TML program. Therefore their syntax is fictive, the only goal
being to identify these commands.

In the Binary Code Viewer you can to “emulate” a GiveMeData2 request and a
TakeData2 answer with syntax ??VAR.

Binary code

Description Through GiveMeData2 command an external device can request data from a
group of drives/motors, using a multicast or broadcast message. The requested
data can be:

• A TML data from the RAM memory for data (dm)

• A memory location from the RAM memory for TML programs (pm)

• A memory location from the EEPROM SPI-connected memory (spi)

The dimension of the requested data is specified in the binary code through the
VT bit: 0 – 16-bit, 1 – 32-bit. The data is identified by its memory address and
type:

 Technosoft 2022 549 ESM User Manual

The answer to a GiveMeData2 command is a TakeData2 message including the
expeditor Axis ID, the address of the data returned and its value.

Remark: The GiveMeData2 and command can be sent simultaneously to a
group of drives/motors from a CAN bus network. Even if all the axes answer in
the same time, the host will get the TakeData2 answers one by one, prioritized in
the ascending order of the expeditors’ axis ID: axis 1 – highest priority, axis 255 –
lowest priority. Hence these commands allow optimizing bus traffic, by sending
for the same data, a single request to all the drives involved.

 Technosoft 2022 550 ESM User Manual

6.3.3.4.27. GetTMLData/TakeTMLData

Syntax

– Ask one axis to return a TML data

– Answer to GetTMLData request

Operands –

Remark: The online instructions are intended only for host/master usage and
cannot reside in a TML program. Therefore their syntax is fictive, the only goal
being to identify these commands.

Binary code

Description Through GetTMLData command an external device can request
a TML data from one drive/motor. The dimension of the requested data is
specified in the binary code through the VT bit: 0 – 16-bit, 1 – 32-bit. The TML
data is identified by its address. GetTMLData instruction uses a 9-bit short
address for the TML data. Bit value X specifies the address range:

In the expeditor address, bit H – the host bit – must be set to 1 only if the host
sends the GetTMLData request via serial RS-232 link. For details, see serial
communication protocol description.

The answer to a GetTMLData command is a TakeTMLData message including
the expeditor Axis ID, the address of the TML data returned and its value.

 Technosoft 2022 551 ESM User Manual

The GetTMLData and TakeTMLData commands are optimized for requests of
TML data (registers, parameters, variables). For this type of data exchanges,
GetTMLData and TakeTMLData provide shorter messages and occupy less
communication bandwidth compared with GiveMeData and TakeData.

Remark: The GetTMLData and TakeTMLData commands must be used only for
data exchanges between 2 devices. In a multi-axis CAN bus network, the
GetTMLData command must be sent to a single axis. If this command is sent to
a group of drives, the TakeTMLData answers from different drives will have all
the same identifier and therefore can’t be correctly identified.

 Technosoft 2022 552 ESM User Manual

6.3.3.4.28. GetVersion/TakeVersion

Syntax

– Ask one axis to return the firmware version

– Answer to GetVersion request

Operands –

Remark: The online instructions are intended only for host/master usage and
cannot reside in a TML program. Therefore their syntax is fictive, the only goal
being to identify these commands.

Binary code

Description Through GetVersion command an external device can request the firmware
version from one drive/motor. In the expeditor address, bit H – the host bit – must
be set to 1 only if the host sends the GetVersion request via serial RS-232 link.
For details, see serial communication protocol description.

The firmware version has the form: FxyzA, where xyz is the firmware number (3
digits) and A is the firmware revision. The answer to a GetVersion command is a
TakeVersion message including the expeditor Axis ID and the ASCII code of 4
characters: 3 digits for the firmware number + 1 letter for the firmware revision.

Remark: The GetVersion and TakeVersion commands must be used only
between 2 devices. In a multi-axis CAN bus network, the GetTMLData command
must be sent to a single axis. If this command is sent to a group of drives, the
TakeVersion answers from different drives will have all the same identifier and
therefore can’t be correctly identified.

 Technosoft 2022 553 ESM User Manual

6.3.3.4.29. GetChecksum/TakeChecksum

Syntax

Checksum Start, End Ask one axis to return the checksum between Start and Stop addresses
from its TML memory

 Answer to GetChecksum request

Operands Start: 16-bit unsigned integer value representing the checksum start address

End: 16-bit unsigned integer value representing the checksum end address

Remark: The online instructions are intended only for host/master usage and
cannot reside in a TML program. Therefore their syntax is fictive, the only goal
being to identify these commands.

In the Command interpreter, you can get a checksum between 2 TML program
addresses by sending a GetChecksum request with the syntax:

Checksum Start, End

Where, Start, End represent the start and end addresses for the checksum. The
value returned with the TakeChecksum answer, is displayed.

Description Through GetChecksum command an external device can check the integrity of
the data saved in a drive/motor EEPROM or RAM memory. The memory type is
selected automatically function of the start and the end addresses.

In the expeditor address, bit H – the host bit – must be set to 1 only if the host
sends the GiveMeData request via serial RS-232 link. For details, see serial
communication protocol description.

 Technosoft 2022 554 ESM User Manual

The answer to a GetChecksum command is a TakeChecksum, which returns
the expeditor axis ID, and the checksum result i.e. the sum modulo 65536 of all
the memory locations between the start and the end addresses.

6.3.3.4.30. = Assign a 16-bit value to a TML variable or a
memory location

Syntax

VAR16D = label set VAR16D to value of a label

VAR16D = value16 set VAR16D to value16

VAR16D = VAR16S set VAR16D to VAR16S value

VAR16D = VAR32S(L) set VAR16D to VAR32S(L) value

VAR16D = VAR32S(H) set VAR16D to VAR32S(H) value

VAR16D, dm = value16 set VAR16D from dm to value16

VAR16D, dm = VAR16S set VAR16D from dm to VAR16S

VAR16D = (VAR16S), TypeMem set VAR16D to &(VAR16S) from TM

VAR16D = (VAR16S+), TypeMem set VAR16D to &(VAR16S) from TM, then
VAR16S += 1

(VAR16D), TypeMem = value16 set &(VAR16D) from TM to value16

(VAR16D), TypeMem = VAR16S set &(VAR16D) from TM to VAR16S

(VAR16D+), TypeMem = value16 set &(VAR16D) from TM to value16, then
VAR16D += 1

(VAR16D+), TypeMem = VAR16S set &(VAR16D) from TM to VAR16S, then
VAR16D += 1

VAR32D(L) = value16 set VAR32D low word to value16

VAR32D(L) = VAR16S set VAR32D (L) to VAR16 value

VAR32D(H) = value16 set VAR32D high word to value16

VAR32D(H) = VAR16S set VAR32D (H) to VAR16 value

 Legend: D (destination), S (source).

 Technosoft 2022 555 ESM User Manual

Operands label: 16-bit address of a TML instruction label

value16: 16-bit integer immediate value

VAR16x: integer variable VAR16x

VAR32x(L): the low word of VAR32x long variable

VAR32x(H): the high word of VAR32x long variable

Dm: data memory operand

TypeMem: memory operand.

(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

Binary code

 Technosoft 2022 556 ESM User Manual

 Technosoft 2022 557 ESM User Manual

Description Assigns a 16-bit value to a TML variable or a memory location. The options are:

The destination is 16-bit TML variable and the source is: a 16-bit immediate
value, a label, 16-bit TML variable, high or low part of a 32-bit TML variable or the
contents of a memory location whose address is indicated by a 16-bit TML
variable (a pointer).

The destination is a memory location whose address is indicated by a 16-bit TML
variable (a pointer) and the source is: a 16-bit immediate value or a 16-bit TML
variable.

The destination is the high or low part of a 32-bit TML variable and the source is:
a 16-bit immediate value or a 16-bit TML variable.

If the pointer variable is followed by a + sign, after the assignment, it is
incremented by 1. The memory location can be of 3 types: RAM for data (dm),
RAM for TML programs (pm), EEPROM SPI-connected for TML programs (spi).

Some instructions use a 9-bit short address for the destination variable. Bit

value X specifies the destination address range:

 Technosoft 2022 558 ESM User Manual

All predefined or user-defined TML data are inside these address ranges, hence
these instructions can be used without checking the variables addresses.
However, considering future developments, the TML also includes assignment
instructions using a full address where the destination address can be any 16-bit
value. In this case destination variable is followed by “,dm”.

Execution Copies a 16-bit value from the source to the destination

Example1
int Var1;

Label1: // Label1 = TML program address

...

Var1 = Label1;

Before instruction After instruction

Label1 0x1234 Label1 0x1234

Var1 x Var1 0x1234

Example2
int Var1;

...

Var1 = 26438;

Before instruction After instruction

Var1 x Var1 26438

 Technosoft 2022 559 ESM User Manual

Example3
int Var1, Var2;

...

Var2 = Var1;

Before instruction After instruction

Var2 0x56AB Var2 0x56AB

Var1 x Var1 0x56AB

Example4
int Var1;

long Var3;

...

Var1 = Var3(L);

Before instruction After instruction

Var3 0x56ABCD98 Var3 0x56ABCD98

Var1 x Var1 0xCD98

Example5
int Var1;

long Var3;

....

Var1 = Var3(H);

Before instruction After instruction

Var3 0x56ABCD98 Var3 0x56ABCD98

Var1 x Var1 0x56AB

 Technosoft 2022 560 ESM User Manual

Example6
 int Var1;

...

Var1, dm = 3321;

Before instruction After instruction

Var1 x Var1 3321

Example7
int Var1, Var2;

...

Var1, dm = Var2;

Before instruction After instruction

Var1 0x0A01 Var1 0x0A01

Var2 x Var2 0x0A01

Example8
int Var1, pVar2;

...

Var1 = (pVar2), dm;

Before instruction After instruction

pVar2 0x0A01 pVar2 0x0A01

Data memory Data memory

0x0A01 0x1234 0x0A01 0x1234

Var1 x Var1 0x1234

 Technosoft 2022 561 ESM User Manual

Example9
int Var1, pVar2;

...

Var1 = (pVar2+), dm;

Before instruction After instruction

pVar2 0x0A01 pVar2 0x0A02

Data memory Data memory

0x0A01 0x1234 0x0A02 0x0014

Var1 x Var1 0x0014

Example10
int pVar1;

...

(pVar1), spi = 0x5422;

Before instruction After instruction

pVar1 0x5100 pVar1 0x5100

SPI data memory SPI data memory

0x1100 x 0x1100 0x5422

 (SPI memory offset is 0x4000,
i.e. SPI addr = var.addr –
0x4000)

 Technosoft 2022 562 ESM User Manual

Example11
int pVar1;

...

(pVar1+), spi = 0x5422;

Before instruction After instruction

pVar1 0x5100 pVar1 0x5101

SPI data memory SPI data memory

0x1100 x 0x1100 0x5422

 (SPI memory offset is 0x4000,
i.e. SPI addr = var.addr –
0x4000)

Example12
int pVar1, Var2;

...

(pVar1), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8200

Var2 0xA987 Var2 0xA987

pm data
memory

 pm data
memory

0x8200 x 0x8200 0xA987

 Technosoft 2022 563 ESM User Manual

Example13
int pVar1, Var2;

...

(pVar1+), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8201

Var2 0xA987 Var2 0xA987

pm data
memory

 pm data
memory

0x8200 x 0x8200 0xA987

Example14
 long Var5;

...

Var5(H) = 0xAA55 ;

Before instruction After instruction

Var5 0x12344321 Var5 0xAA554321

Example15
long Var5;

...

Var5(L) = 0xAA55;

Before instruction After instruction

Var5 0x12344321 Var5 0x1234AA55

 Technosoft 2022 564 ESM User Manual

Example16
 int Var1;

long Var5;

...

Var5(H) = Var1;

Before instruction After instruction

Var1 0x7711 Var1 0x7711

Var5 0x12344321 Var5 0x77114321

Example17
int Var1;

long Var5;

...

Var5(L) = Var1;

Before instruction After instruction

Var1 0x7711 Var1 0x7711

Var5 0x12344321 Var5 0x12347711

 Technosoft 2022 565 ESM User Manual

6.3.3.4.31. = Read digital input(s) and assign a 16-bit TML
variable with their value (Firmware version FAxx)

Syntax

VAR16D = IN#n read input #n into VAR16D

VAR16D = INPUT1, ANDm read inputs IN#25 to IN#32 into VAR16D with
ANDm

VAR16D = INPUT2, ANDm read input IN#33 to IN#39 into VAR16D with
ANDm

VAR16D = INPORT, ANDm read Enable, LSP, LSN and IN#36 to IN#39 into
VAR16D with ANDm

Operands
Var16D: integer variable

IN#n : the source is input n (0=<n<=39)

INPUT1: the source is inputs #25 to #32

INPUT2: the source is inputs #33 to #39

ANDm: a 16-bit mask for filtering the inputs. A logical AND is performed between
the inputs read and the ANDm mask

INPORT: the source is 7 inputs: Enable, LSP, LSN, #39, #38, #37 and #36

Binary code

 Technosoft 2022 566 ESM User Manual

Description Read digital input(s) and assign a 16-bit TML variable with their value. When a
single input is read (IN#n), the destination variable is set to 0 when the input is 0
(low) and to a non-zero value when the input is 1 (high). When multiple inputs are
read with INPUT1 or INPUT2, each of the 8LSB of the destination variable shows
one input status: 0 – input is 0 (low), 1 – input is 1 (high) after passing through the
ANDm mask. The inputs are assigned from bit 0 to 7 in ascending order (IN#25 –
bit 0, IN#26 – bit 1, etc.). INPORT works like INPUT1 / INPUT2 except the bit
assignment in the destination variable: Enable – bit 15, LSN – bit 14, LSP – bit
13, #39 – bit 3, #38 – bit 2, #37 – bit 1, #36 – bit 0.

In TML the I/O lines are numbered: #0 to #39. Each product has a specific
number of inputs and outputs, therefore only a part of the 40 I/O lines is used.
The I/O numbering is common for all the products; hence each product has its
own list of available I/Os.

These instructions use a 9-bit short address for the destination variable. Bit 9
value X specifies the destination address range:

Execution Read input(s) and set their status in reserved bits from the destination

 Technosoft 2022 567 ESM User Manual

Example1
int Var1;

...

Var1 = IN#14;

Before instruction After instruction

IN#14 status 1 IN#14 status 1

Var1 x Var1 0x0040

 Bit#6 of Var1 has logic value of
IN#14. Remaining bits are set
to 0.

 Technosoft 2022 568 ESM User Manual

Example2
int Var1;

...

Var1 = INPUT1, 0x00E7;

Before instruction After instruction

IN
32 31 30 29 28 27 26 25 IN# 32 31 30 29 28 27 26 25

St
atu
s

0 1 1 0 1 1 0 1 Status 0 1 1 0 1 1 0 1

Va
r1 x Var1 0x0065

IN# 32 31 30 29 28 27 26 25

Bitwise operation
Inputs status 0 1 1 0 1 1 0 1

And_Mask 1 1 1 0 0 1 1 1

Var1 0 1 1 0 0 1 0 1

Example3
 int Var1;

...

Var1 = INPUT2, 0x00E7;

Before instruction After instruction

IN
39 38 37 36 35 34 33 IN# 39 38 37 36 35 34 33

St
atu
s

1 0 0 1 1 0 1

Status 1 0 0 1 1 0 1

 Technosoft 2022 569 ESM User Manual

Va
r1 x Var1 0x0085

IN# 39 38 37 36 35 34 33

Bitwise operation
Inputs status 1 0 0 1 1 0 1

And_Mask 1 1 0 0 1 1 1

Var1 1 0 0 0 1 0 1

Example4
int Var1;

...

Var1 = INPORT, 0xE00F;

Before instruction After instruction

IN# Enable LSN LSP 39 38 37 36 IN# Enable LSN LSP 39 38 37 36

status 1 0 1 1 0 1 1 status 1 0 1 1 0 1 1

Var1 X Var1 0xA00B

 Technosoft 2022 570 ESM User Manual

6.3.3.4.32. = Read digital input(s) and assign a 16-bit TML
variable with their value (Firmware version FBxx)

Syntax

VAR16D = IN(n1, n2,…) Read input n1, n2 into VAR16D

Operands
Var16D: integer variable

IN(n1, n2,…) : the source inputs n1, n2, …

Binary code

Description Read digital input(s) and assign a 16-bit TML variable with their value. When a
single input is read, IN(n), the destination variable is set to 0 when the input n is 0
(low) and to a non-zero value when the input n is 1 (high). When multiple inputs
are read, IN(n1, n2,…), each bit of the destination variable shows one input
status: 0 – input is 0 (low), 1 – input is 1 (high).

In TML the input lines are numbered from 0 to 15. Each product has a specific
number of inputs, therefore only a part of the 15 input lines is used.

These instructions use a 9-bit short address for the destination variable. Bit 9
value X specifies the destination address range:

Execution Read input(s) and set their status in the corresponding bits from the destination.

 Technosoft 2022 571 ESM User Manual

Example1
int Var1;

...

Var1 = IN(4);

Before instruction After instruction

IN(4) status 1 IN(4) status 1

Var1 x Var1 0x0010

 Bit#4 of Var1 has logic value of
IN(4). Remaining bits are set
to 0.

Example1
int Var1;

...

Var1 = IN(4, 9);

Before instruction After instruction

IN(4) status 1 IN(4) status 1

IN(9) status 1 IN(9) status 1

Var1 x Var1 0x0210

 Bit#4 of Var1 has logic value of
IN(4). Bit#9 of Var1 has logic
value of IN(9). Remaining bits
are set to 0.

 Technosoft 2022 572 ESM User Manual

6.3.3.4.33. = Assign a 32-bit value to a TML variable or a
memory location

Syntax

VAR32D = value32 set VAR32D to value32

VAR32D = VAR32S set VAR32D to VAR32S value

VAR32D = VAR16S << N set VAR32D to VAR16S << N

VAR32D, DM = value32 set long VAR32D from DM to value32

VAR32D, DM = VAR32S set long VAR32D from DM to VAR32S

VAR32D = (VAR16S), TypeMem set VAR32D to &(VAR16S) from TM

VAR32D = (VAR16S+), TypeMem set VAR32D to &(VAR16S) from TM, then
VAR16S += 2

(VAR16D), TypeMem = value32 set &(VAR16D) from TM to value32

(VAR16D), TypeMem = VAR32S set &(VAR16D) from TM to VAR32S

(VAR16D+), TypeMem = value32 set &(VAR16D) from TM to value32, then
VAR16D += 2

(VAR16D+), TypeMem = VAR32S set &(VAR16D) from TM to VAR32S, then
VAR16D += 2

Operands value32: 32-bit long immediate value

VAR32x: long variable VAR32x

DM: data memory operand

TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values

(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

 Technosoft 2022 573 ESM User Manual

Binary code

 Technosoft 2022 574 ESM User Manual

Description Assigns a 32-bit value to a TML variable or a memory location. The options are:

The destination is 32-bit TML variable and the source is: a 32-bit immediate
value, a 32-bit TML variable, a 16-bit TML variable left shifted by 0 to 16 bits, or
the contents of 2 consecutive memory locations with the lower address indicated
by a 16-bit TML variable (a pointer). Left shift is done with sign extension.

The destination is 2 memory locations with the lower address indicated by a 16-
bit TML variable (a pointer) and the source is: a 32-bit immediate value or a 32-bit
TML variable.

If the pointer variable is followed by a + sign, after the assignment, it is
incremented by 2. The memory location can be of 3 types: RAM for data (dm),
RAM for TML programs (pm), EEPROM SPI-connected for TML programs (spi).

 Technosoft 2022 575 ESM User Manual

Some instructions use a 9-bit short address for the destination variable. Bit

value X specifies the destination address range:

All predefined or user-defined TML data are inside these address ranges, hence
these instructions can be used without checking the variables addresses.
However, considering future developments, the TML also includes assignment
instructions using a full address where the destination address can be any 16-bit
value. In this case destination variable is followed by “,dm”.

Execution Copies a 32-bit value from the source to the destination

Example1
long Var1;

...

Var1 = 0x1122AABB;

Before instruction After instruction

Var1 x Var1 0x1122AABB

Example2
long Var1, Var2;

...

Var1 = Var2;

Before instruction After instruction

Var2 0xAABC1234 Var2 0xAABC1234

Var1 x Var1 0xAABC1234

 Technosoft 2022 576 ESM User Manual

Example3
int Var1;

long Var2;

...

Var2 = Var1 << 4;

Before instruction After instruction

Var1 0x9876 Var1 0x9876

Var2 x Var2 0x00098760

Example4
long Var1;

...

Var1, dm = 0x1122AABB;

Before instruction After instruction

Var1 x Var1 0x1122AABB

Example5
long Var1, Var2;

...

Var1, dm = Var2;

Before instruction After instruction

Var2 0xAABC1234 Var2 0xAABC1234

Var1 x Var1 0xAABC1234

Example6
long Var1;

 Technosoft 2022 577 ESM User Manual

int pVar2;

...

Var1 = (pVar2), dm;

Before instruction After instruction

pVar2 0x96AB pVar2 0x96AB

Data memory Data memory

0x96AB 0x1234 0x96AB 0x1234

0x96AC 0xABCD 0x96AC 0xABCD

Var1 x Var1 0xABCD1234

Example7
 long Var1;

int pVar2;

...

Var1 = (pVar2+), dm;

Before instruction After instruction

pVar2 0x0A02 pVar2 0x0A04

Data memory Data memory

0x0A02 0x1234 0x0A02 0x1234

0x0A03 0xABCD 0x0A03 0xABCD

Var1 x Var1 0xABCD1234

 Technosoft 2022 578 ESM User Manual

Example8
int pVar1;

...

(pVar1), spi = 0x5422AFCD;

Before instruction After instruction

pVar1 0x5100 pVar1 0x5100

SPI data
memory

 SPI data memory

0x1100 x 0x1100 0xAFCD

0x1101 x 0x1101 0x5422

 (SPI memory offset is 0x4000,
i.e. SPI addr = var.addr –
0x4000)

Example9
int pVar1;

long Var2;

...

(pVar1), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8200

Var2 0xA98711EF Var2 0xA98711EF

pm data memory pm data memory

0x8200 x 0x8200 0x11EF

0x8201 x 0x8201 0xA987

 Technosoft 2022 579 ESM User Manual

Example10
int pVar1;

...

(pVar1+), pm = 0x5422AFCD;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8202

pm data memory pm data memory

0x8200 x 0x8200 0xAFCD

0x8201 x 0x8201 0x5422

Example11
int pVar1;

long Var2;

 ...

(pVar1+), pm = Var2;

Before instruction After instruction

pVar1 0x8200 pVar1 0x8202

Var2 0xA98711E
F

 Var2 0xA98711EF

Pm data
memory

 pm data memory

0x8200 x 0x8200 0x11EF

0x8201 x 0x8201 0xA987

 Technosoft 2022 580 ESM User Manual

Remark: When destination is 2 consecutive memory locations and the source is an immediate
value, the TML compiler checks the type and the dimension of the immediate value and based on
this generates the binary code for a 16-bit or a 32-bit data transfer. Therefore if the immediate
value has a decimal point, it is automatically considered as a fixed value. If the immediate value is
outside the 16-bit integer range (-32768 to +32767), it is automatically considered as a long value.
However, if the immediate value is inside the integer range, in order to execute a 32-bit data
transfer it is necessary to add the suffix L after the value, for example: 200L or –1L.

Examples:

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var),dm = 1000000; // write 1000000 (0xF4240) in the CPOS
parameter i.e

// 0x4240 at address 0x29E and 0xF at address 0x29F

(user_var+),dm = -1; // write -1 (0xFFFF) in CPOS(L). CPOS(H) remains

// unchanged. CPOS is (0xFFFFF) i.e. 1048575,

// and user_var is incremented by 2

user_var = 0x29E; // write CPOS address in pointer variable user_var

(user_var+),dm = -1L; // write –1L long value (0xFFFFFFFF) in CPOS i.e.

// CPOS(L) = 0xFFFF and CPOS(H) = 0xFFFF,

// user_var is incremented by 2

user_var = 0x2A0; // write CSPD address in pointer variable user_var

(user_var),dm = 1.5; // write 1.5 (0x18000) in the CSPD parameter i.e

// 0x8000 at address 0x2A0 and 0x1 at address 0x2A1

 Technosoft 2022 581 ESM User Manual

6.3.3.4.34. = Assign a 16-bit local TML variable with data got
from another axis

Syntax

VAR16D = [Axis] VAR16S local VAR16D = [Axis] VAR16S

VAR16D = [Axis] VAR16S, DM local VAR16D = [Axis] VAR16S, DM

VAR16D = [Axis] (VAR16S), TypeMem local VAR16D = [Axis] &(VAR16S),
TM

VAR16D = [Axis] (VAR16S+), TypeMem local VAR16D = [Axis] &(VAR16S),
TM, then V16S+=1

Operands VAR16x: integer variable VAR16x

 Axis: an integer 1 to 255 representing the Axis ID of the source axis

DM: data memory operand

TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values

(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

Binary code

 Technosoft 2022 582 ESM User Manual

Description Assigns a 16-bit local TML variable with data got from another axis. The source
on the remote axis can be: a 16-bit TML variable or a memory location whose
address is indicated by a 16-bit TML variable (a pointer) from the remote axis. If
the pointer variable is followed by a + sign, after the assignment, it is incremented
by 1.

Remark: If the TML variables from the remote axis are user variables, these must
be declared in the local axis too. Moreover, for correct operation, these variables
must have the same address in both axes, which means that they must be
declared on each axis on the same position. Typically, when working with data
transfers between axes, it is advisable to establish a block of user variables that
may be the source, destination or pointer of data transfers, and to declare these
data on all the axes as the first user variables. This way you can be sure that
these variables have the same address on all the axes.

The memory location can be of 3 types: RAM for data (dm), RAM for TML
programs (pm), EEPROM SPI-connected for TML programs (spi).

One instruction uses a 9-bit short address for the source variable. Bit value X
specifies the destination address range:

All predefined or user-defined TML data are inside these address ranges, hence
these instructions can be used without checking the variables addresses.
However, considering future developments, the TML also includes assignment

 Technosoft 2022 583 ESM User Manual

instructions using a full address where the destination address can be any 16-bit
value. In this case destination variable is followed by “,dm”.

Execution Copies a 16-bit value from the remote source to the local destination

Example1
int VarLoc, VarExt;

...

VarLoc = [15]VarExt;

Before instruction After instruction

VarLoc on local axis x VarLoc on local axis 0x1234

VarExt on axis 15 0x1234 VarExt on axis 15 0x1234

Example2
int VarLoc, VarExt;

...

VarLoc = [15]VarExt, dm;

Before instruction After instruction

VarLoc on local axis x VarLoc on local axis 0x1234

VarExt on axis 15 0x1234 VarExt on axis 15 0x1234

 Technosoft 2022 584 ESM User Manual

Example3
int VarLoc, pVarExt;

...

VarLoc = [15](pVarExt), dm;

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDC

VarLoc on local axis x VarLoc on local axis 0xFEDC

Example4
int VarLoc, pVarExt;

...

VarLoc = [15](pVarExt+), dm;

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1235

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDD

VarLoc on local axis x VarLoc on local axis 0xFEDC

 Technosoft 2022 585 ESM User Manual

6.3.3.4.35. = Assign a 32-bit local TML variable with data got
from another axis

Syntax

VAR32D = [Axis] VAR32S local VAR32D = [A] VAR32S

VAR32D = [Axis] VAR32S, DM local VAR32D = [A] VAR32S, DM

VAR32D = [Axis] (VAR16S), TypeMem local VAR32D = [A] &(VAR16S), TM

VAR32D = [Axis] (VAR16S+), TypeMem local VAR32D = [A] &(VAR16S), TM,
then V16S+=2

Operands VAR32x: long variable VAR32x

 Axis: an integer 1 to 255 representing the Axis ID of the source axis

DM: data memory operand

TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values

(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

Binary code

 Technosoft 2022 586 ESM User Manual

Description Assigns a 32-bit local TML variable with data got from another axis. The source
on the remote axis can be: a 32-bit TML variable or 2 consecutive memory
location with lower address indicated by a 16-bit TML variable (a pointer) from the
remote axis. If the pointer variable is followed by a + sign, after the assignment, it
is incremented by 2.

Remark: If the TML variables from the remote axis are user variables, these must
be declared in the local axis too. Moreover, for correct operation, these variables
must have the same address in both axes, which means that they must be
declared on each axis on the same position. Typically, when working with data
transfers between axes, it is advisable to establish a block of user variables that
may be the source, destination or pointer of data transfers, and to declare these
data on all the axes as the first user variables. This way you can be sure that
these variables have the same address on all the axes.

The memory location can be of 3 types: RAM for data (dm), RAM for TML
programs (pm), EEPROM SPI-connected for TML programs (spi).

One instruction uses a 9-bit short address for the source variable. Bit value X
specifies the destination address range:

All predefined or user-defined TML data are inside these address ranges, hence
these instructions can be used without checking the variables addresses.
However, considering future developments, the TML also includes assignment
instructions using a full address where the destination address can be any 16-bit
value. In this case destination variable is followed by “,dm”.

Execution Copies a 32-bit value from the remote source to the local destination

 Technosoft 2022 587 ESM User Manual

Example1
long VarLoc, VarExt;

…

VarLoc = [15]VarExt;

Before instruction After instruction

VarLoc on local axis x VarLoc on local axis 0x1234ABCD

VarExt on axis 15 0x1234ABCD VarExt on axis 15 0x1234ABCD

Example2
long VarLoc, VarExt;

...

VarLoc = [15]VarExt, dm;

Before instruction After instruction

VarLoc on local axis x VarLoc on local axis 0xF0E1A2B3

VarExt on axis 15 0xF0E1A2B3 VarExt on axis 15 0xF0E1A2B3

Example3
long VarLoc;

int pVarExt;

...

 Technosoft 2022 588 ESM User Manual

VarLoc = [15](pVarExt), dm;

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

0x2233 At dm address 0x1235
on axis 15

0x2233

VarLoc on local axis x VarLoc on local axis 0x2233FEDC

Example4 long VarLoc;

int pVarExt;

...

VarLoc = [15](pVarExt+), dm;

Before instruction After instruction

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1236

At dm address 0x1234
on axis 15

0xFEDC At dm address 0x1234
on axis 15

0xFEDF

At dm address 0x1235
on axis 15

0x2233 At dm address 0x1235
on axis 15

0x2233

VarLoc on local axis X VarLoc on local axis 0x2233FEDC

6.3.3.4.36. = Assign a 16-bit value to a TML variable or a
memory location from another axis or group of axes

Syntax

[Axis/Group] VAR16D = VAR16S [A/G] VAR16D = local VAR16S

[Axis/Group] VAR16D,dm = VAR16S [A/G] VAR16D, dm = local VAR16S

 Technosoft 2022 589 ESM User Manual

[Axis/Group] (VAR16D), TypeMem = VAR16S [A/G] &(VAR16D), TM = local VAR16S

[Axis/Group] (VAR16D+), TypeMem = VAR16S [A/G] &(VAR16D), TM = local VAR16S,
then V16D+=1

Operands VAR16x: integer variable VAR16x

Axis/Group:

• An integer 1 to 255 representing an Axis ID

• G followed by an integer 1 to 8 representing one of the 8 groups

• B for a broadcast to all axes

dm: data memory operand

TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values

(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

Binary code

 Technosoft 2022 590 ESM User Manual

Description Sends the value of a 16-bit local TML variable to another axis or group of axes.
The remote destination can be a 16-bit TML variable or a memory location whose
address is indicated by a 16-bit TML variable (a pointer) from the remote
axis/axes. If the pointer variable is followed by a + sign, after the assignment, it is
incremented by 1. In the binary code, Axis/Group represents either an Axis ID (if
A/G=0) or a Group ID (if A/G = 1). A transmission with Group ID can be:

• For all the axes from a single group, if one bit from the 8-bit Group ID is 1

• A broadcast to all the axes, if the Group ID = 0

Remark: If the TML variables from the remote axis are user variables, these must
be declared in the local axis too. Moreover, for correct operation, these variables
must have the same address in both axes, which means that they must be
declared on each axis on the same position. Typically, when working with data
transfers between axes, it is advisable to establish a block of user variables that
may be the source, destination or pointer of data transfers, and to declare these
data on all the axes as the first user variables. This way you can be sure that
these variables have the same address on all the axes.

 Technosoft 2022 591 ESM User Manual

The memory location can be of 3 types: RAM for data (dm), RAM for TML
programs (pm), EEPROM SPI-connected for TML programs (spi).

One instruction uses a 9-bit short address for the source variable. Bit value X
specifies the destination address range:

All predefined or user-defined TML data are inside these address ranges, hence
these instructions can be used without checking the variables addresses.
However, considering future developments, the TML also includes assignment
instructions using a full address where the destination address can be any 16-bit
value. In this case destination variable is followed by “,dm”.

Execution Copies a 16-bit value from a local source to a remote destination

Example1
int VarLoc, VarExt;

...

[15]VarExt, dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0x1234 VarLoc on local axis 0x1234

VarExt on axis 15 x VarExt on axis 15 0x1234

 Technosoft 2022 592 ESM User Manual

Example2 int VarLoc, pVarExt;

...

[G8](pVarExt), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0xFEDC VarLoc on local axis 0xFEDC

pVarExt on all axes of
group 8 is the same

0x1234 pVarExt on all axes of
group 8 is the same

0x1234

At dm address 0x1234
on all axes of group 8

x At dm address 0x1234
on all axes of group 8

0xFEDC

Example3
int VarLoc, pVarExt;

...

[G8](pVarExt+), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0xFEDC VarLoc on local axis 0xFEDD

pVarExt on all axes of
group 8 is the same

0x1234 pVarExt on all axes of
group 8 is the same

0x1235

At dm address 0x1234
on all axes of group 8

x At dm address 0x1234
on all axes of group 8

0xFEDC

 Technosoft 2022 593 ESM User Manual

6.3.3.4.37. = Assign a 32-bit value to a TML variable or a
memory location from another axis or group of axes

Syntax

[Axis/Group] VAR32D = VAR32S [A/G] long VAR32D = local VAR32S

[Axis/Group] VAR32D, DM = VAR32S [A/G] long VAR32D, DM = local VAR32S

[Axis/Group] (VAR16D), TypeMem = VAR32S [A/G] &(VAR16D), TM = local VAR32S

[Axis/Group] (VAR16D+), TypeMem = VAR32S [A/G] &(VAR16D), TM = local VAR32S, then V1DS+=2

Operands VAR32x: long variable VAR32x

Axis/Group:

• An integer 1 to 255 representing an Axis ID

• G followed by an integer 1 to 8 representing one of the 8 groups

• B for a broadcast to all axes

dm: data memory operand

TypeMem: memory operand. One of dm (0x1), pm (0x0) or spi (0x2) values

(VAR16x): contents of variable VAR16x, representing a 16-bit address of a
variable

 Technosoft 2022 594 ESM User Manual

Binary code

Description Sends the value of a 32-bit local TML variable to another axis or group of axes.
The remote destination can be a 32-bit TML variable or 2 consecutive memory
locations with lower address indicated by a 16-bit TML variable (a pointer) from
the remote axis/axes. If the pointer variable is followed by a + sign, after the
assignment, it is incremented by 2. In the binary code, Axis/Group represents
either an Axis ID (if A/G=0) or a Group ID (if A/G = 1). A transmission with Group
ID can be:

• For all the axes from a single group, if one bit from the 8-bit Group ID is 1

• A broadcast to all the axes, if the Group ID = 0

Remark: If the TML variables from the remote axis are user variables, these must
be declared in the local axis too. Moreover, for correct operation, these variables
must have the same address in both axes, which means that they must be
declared on each axis on the same position. Typically, when working with data
transfers between axes, it is advisable to establish a block of user variables that
may be the source, destination or pointer of data transfers, and to declare these

 Technosoft 2022 595 ESM User Manual

data on all the axes as the first user variables. This way you can be sure that
these variables have the same address on all the axes.

The memory location can be of 3 types: RAM for data (dm), RAM for TML
programs (pm), EEPROM SPI-connected for TML programs (spi).

One instruction uses a 9-bit short address for the source variable. Bit value X
specifies the destination address range:

All predefined or user-defined TML data are inside these address ranges, hence
these instructions can be used without checking the variables addresses.
However, considering future developments, the TML also includes assignment
instructions using a full address where the destination address can be any 16-bit
value. In this case destination variable is followed by “,dm”.

Execution Copies a 32-bit value from a local source to a remote destination

Example1
long VarLoc, VarExt;

...

[15]VarExt = VarLoc;

Before instruction After instruction

VarLoc on local axis 0x1234ABCD VarLoc on local axis 0x1234ABCD

VarExt on axis 15 x VarExt on axis 15 0x1234ABCD

 Technosoft 2022 596 ESM User Manual

Example2

long VarLoc, VarExt;

...

[15]VarExt, dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0xF0E1A2B3 VarLoc on local axis 0xF0E1A2B3

VarExt on axis 15 x VarExt on axis 15 0xF0E1A2B3

Example3
long VarLoc;

int pVarExt;

...

[15](pVarExt), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0x2233FEDC VarLoc on local axis 0x2233FEDC

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1234

At dm address 0x1234
on axis 15

x At dm address 0x1234
on axis 15

0xFEDC

At dm address 0x1235
on axis 15

x At dm address 0x1235
on axis 15

0x2233

 Technosoft 2022 597 ESM User Manual

Example4
long VarLoc;

int pVarExt;

...

[15](pVarExt+), dm = VarLoc;

Before instruction After instruction

VarLoc on local axis 0x2233FEDC VarLoc on local axis 0x2233FEDC

pVarExt on axis 15 0x1234 pVarExt on axis 15 0x1236

At dm address 0x1234
on axis 15

x At dm address 0x1234
on axis 15

0xFEDE

At dm address 0x1235
on axis 15

x At dm address 0x1235
on axis 15

0x2233

 Technosoft 2022 598 ESM User Manual

6.3.3.4.38. TML Send TML command

Syntax [Axis/Group] {TML command; }

Operands Axis/Group:

• An integer 1 to 255 representing an Axis ID

• G followed by an integer 1 to 8 representing one of the 8 groups

• B for a broadcast to all axes

TML command: any single axis TML instruction

Binary code

Description When an axis executing a TML program encounters this instruction, sends the
TML command specified between { } to another axis or group of axes. At
destination, the command is executed as any other on-line TML command
received via a communication channel. In the binary code, Axis/Group represents
either an Axis ID (if A/G=0) or a Group ID (if A/G = 1). A transmission with Group
ID can be:

• For all the axes from a single group, if one bit from the 8-bit Group ID is 1

• A broadcast to all the axes, if the Group ID = 0

Remark: You may specify between { } multiple commands, separated by
semicolons “;”. The TML compiler splits them in single commands, each having
the above binary code. The single commands are sent in the same order as set in
the command between { }

 Technosoft 2022 599 ESM User Manual

Execution Send the “TML Command” between { } to the destination

Example

[G1]{CPOS=2000;}; // send a new CPOS command to all axes from group 1

[G1]{UPD}; // send an update command to all the axes from group 1

// all axes from group 1 will start to move simultaneously

[B]{STOP;}; // broadcast a STOP command to all axes from the network

 Technosoft 2022 600 ESM User Manual

6.3.3.4.39. =- Assign a TML variable with the negate of another
TML variable

Syntax

VAR16D = -VAR16S set VAR16D to –VAR16S value

VAR32D = -VAR32S set VAR32D to –VAR32S value

Operands VAR16D: destination integer variable

VAR16S: source integer variable

VAR32D: destination long/fixed variable

VAR32S: source long/fixed variable

Binary code

Description Assigns a 16-bit / 32-bit variable with the negate of another 16-bit / 32-bit
variable. The instruction uses a 9-bit short address for the destination variable.
Bit value X specifies the destination address range:

Execution Copies the negate of a 16-bit or 32-bit value from the source to the destination

 Technosoft 2022 601 ESM User Manual

Example
int Var1;

long Var2;

...

Var1 = - Var1;

Var2 = -Var2;

Before instruction After instruction

Var1 1256 Var1 -1256

Var2 -224500 Var2 224500

 Technosoft 2022 602 ESM User Manual

6.3.3.4.40. +

Syntax

VAR16 += value16 add to VAR16 value16

VAR16D += VAR16S add to VAR16D the VAR16S value

VAR32 += value32 add to VAR32 value32

VAR32D += VAR32S add to VAR32D the VAR32S value

Operands VAR16D: destination integer variable

VAR16S: source integer variable

VAR32D: destination long/fixed variable

VAR32D: source long/fixed variable

value16: 16-bit immediate integer value

value32: 32-bit immediate long value

Binary code

 Technosoft 2022 603 ESM User Manual

Description Adds a 16-bit / 32-bit immediate value or the value of the 16-bit / 32-bit source
variable to the 16-bit / 32-bit destination variable. The instructions use a 9-bit
short address for the destination variable. Bit value X specifies the destination
address range:

Execution Destination variable = destination variable + immediate value or source variable

Example
int Var1, Var2, Var3;

 long Var10, Var11, Var12;

 ...

Var1 += 125;

Var3 += Var2;

Var10 += 128000;

Var12 += Var11;

Before instruction After instruction

Var1 1256 Var1 1381

Var2 -22450 Var2 -22450

Var3 22500 Var3 50

Var10 -1201 Var10 126799

Var11 25 Var11 25

Var12 12500 Var12 12525

 Technosoft 2022 604 ESM User Manual

6.3.3.4.41. -

Syntax

VAR16 -= value16 subtract from VAR16 value16

VAR16D -= VAR16S subtract from VAR16D VAR16S value

VAR32 -= value32 subtract from VAR32 value32

VAR32D -= VAR32S subtract from VAR32D VAR32S value

Operands VAR16D: destination integer variable

 VAR16S: source integer variable

VAR32D: destination long/fixed variable

VAR32S: source long/fixed variable

value16: 16-bit immediate integer value

value32: 32-bit immediate long value

Binary code

 Technosoft 2022 605 ESM User Manual

Description Subtracts a 16-bit / 32-bit immediate value or the value of the 16-bit / 32-bit
source variable from the 16-bit / 32-bit destination variable. The instructions use a
9-bit short address for the destination variable. Bit value X specifies the
destination address range:

Execution Destination variable = destination variable - immediate value or source variable

Example
int Var1, Var2, Var3;

long Var10, Var11, Var12;

...

Var1 -= 125;

Var3 -= Var2;

Var10 -= 128000;

Var12 -= Var11;

Before instruction After instruction

Var1 1256 Var1 1131

Var2 -22450 Var2 -22450

Var3 22500 Var3 44950

Var10 -1201 Var10 -129201

Var11 25 Var11 25

Var12 12500 Var12 12475

 Technosoft 2022 606 ESM User Manual

6.3.3.4.42. * Multiply

Syntax

VAR16 * VALUE16 >> N PROD = (VAR16*value16) >> N

VAR16 * VALUE16 << N PROD = (VAR16*value16) << N

VAR16A * VAR16B >> N PROD = (VAR16A*VAR16B) >> N

VAR16A * VAR16B << N PROD = (VAR16A*VAR16B) << N

VAR32 * VALUE16 >> N PROD = (VAR32*value16) >> N

VAR32 * VALUE16 << N PROD = (VAR32*value16) << N

VAR32 * VAR16 >> N PROD = (VAR32*VAR16) >> N

VAR32 * VAR16 << N PROD = (VAR32*VAR16) << N

Operands VAR16D: destination integer variable

VAR16S: source integer variable

VAR32D: destination long/fixed variable

VAR32S: source long/fixed variable

value16: 16-bit immediate integer value

value32: 32-bit immediate long value

N: result shift factor

 Technosoft 2022 607 ESM User Manual

Binary code

 Technosoft 2022 608 ESM User Manual

Description Multiplies 2 operands. The first operand (left one) can be a 16-bit or 32-bit TML
variable. The second operand (right one) can be a 16-bit immediate value or
another 16-bit TML variable. The result is saved in a dedicated 48-bit product
register left or right shifted by 0 to 15 bits. The TML long variables PROD and
PRODH show the 32LSB respectively the 32 MSB of the product register.

Execution Product register = (first operand * second operand) shifted to left or right with
the specified number of bits

Example1
int Var1;

long var2;

...

Var1 * 0x125;

Var2 = PROD;

Before instruction After instruction

Var1 0x1256 Var1 0x1256

Product register x Product register 0x00000014FC6E

Var2 x Var2 0x0014FC6E

Example2
int Var1;

 long Var2;

...

Var1 * 0x125 << 12;

Var2 = PRODH;

Before instruction After instruction

Var1 0x1256 Var1 0x1256

Product register x Product register 0x00014FC6E000

Var2 X Var2 0x00014FC6

 Technosoft 2022 609 ESM User Manual

Example3
int Var2, Var3;

 long Var4;

...

Var2 * Var3 >> 4;

Var4 = PROD;

Before instruction After instruction

Var2 0x1256 Var2 0x1256

Var3 0x125 Var3 0x125

Product register x Product register 0x000000014FC6

Var4 x Var4 0x00014FC6

Example4
int Var2, Var3;

 long Var7;

...

Var2 * Var3 << 8;

Var7 = PROD(H);

Before instruction After instruction

Var2 0x1256 Var2 0x1256

Var3 0x125 Var3 0x125

Product register x Product register 0x000014FC6E00

Var7 x Var7 0x000014FC

 Technosoft 2022 610 ESM User Manual

Example5

long Var1, Var2;

 ...

Var1 * 0x125;

Var2 = PROD;

Before instruction After instruction

Var1 0x001256AB Var1 0x1256

Product register x Product register 0x000014FD31B7

Var2 x Var2 0x14FD31B7

Example6
long Var1, Var2;

...

Var1 * 0x125 << 12;

Var2 = PROD(H);

Before instruction After instruction

Var1 0x001256AB Var1 0x1256

Product register x Product register 0x014FD31B7000

Var2 x Var2 0x014FD31B

 Technosoft 2022 611 ESM User Manual

Example7
long Var2, Var9;

int Var3;

...

Var2 * Var3 >> 4;

Var9 = PROD(H);

Before instruction After instruction

Var2 0x001256AB Var2 0x001256AB

Var3 0x125 Var3 0x125

Product register x Product register 0x0000014FD31B

Var9 x Var9 0x0000014F

Example8
long Var2, Var9;

int Var3;

...

Var2 * Var3 << 8;

Var9 = PROD;

Before instruction After instruction

Var2 0x001256AB Var2 0x001256AB

Var3 0x125 Var3 0x125

Product register x Product register 0x0014FD31B700

Var9 X Var9 0xFD31B700

 Technosoft 2022 612 ESM User Manual

6.3.3.4.43. /

Syntax

VAR32 /= VAR16 divide VAR32 with VAR16

Operands VAR16: the divisor, integer variable

VAR32: the dividend, fixed variable

Binary code

Description The left operand – the dividend is divided by the right operand – the divisor, and
the result is saved in the left operand. The dividend / quotient is a 32-bit fixed
variable and the divisor a 16-bit integer variable.

Execution Left operand = left operand / right operand

Example
fixed var1; // Define fixed variable user_1

int var2; // Define integer variable user_2

var1 = 11.0;

var2 = 3;

var1 /= var2;

Before instruction After instruction

Var1 11.0 (0xB0000) Var1 3.6666 (0x3AAAA)

Var2 3 Var2 3

 Technosoft 2022 613 ESM User Manual

6.3.3.4.44. >>

Syntax

VAR16 >>= N shift VAR16 right by N

VAR32 >>= N shift VAR32 right by N

PROD >>= N shift PROD (product reg.) right by N

Operands VAR16: integer variable

VAR32: long or fixed variable

PROD: 48-bit product register

N: shift factor

Binary code

Description The operand is right shifted with the specified number of bits (N). High order bits

are sign-extended and the low order bits are lost. If the operand is PROD, the
entire 48-bit product register is right shifted.

Execution Variable = Value of variable shifted to right with N bits

 Technosoft 2022 614 ESM User Manual

Example1 int Var1;

 ...

Var1 >>= 4;

Before instruction After instruction

Var1 0x1256 Var1 0x0125

Example2 long Var1;

 ...

Var1 >>= 12;

Before instruction After instruction

Var1 0x1256ABAB Var1 0x0001256A

Example3 PROD >>= 4;

Before instruction After instruction

Product register 0x12560000ABCD Product register 0x0012560000ABC

 Technosoft 2022 615 ESM User Manual

6.3.3.4.45. <<

Syntax

VAR16 <<= N shift VAR16 left by N

VAR32 <<= N shift VAR32 left by N

PROD <<= N shift PROD (product reg.) right by N

Operands VAR16: integer variable

VAR32: long variable

PROD: product register

N: shift factor

Binary code

Description The operand is left shifted with the specified number of bits (N). High order bits

are lost and the low order bits are zeroed. If the operand is PROD, the entire 48-
bit product register is left shifted.

Execution Variable = Value of variable shifted to left with N bits

 Technosoft 2022 616 ESM User Manual

Example1
int Var1;

...

Var1 <<= 4;

Before instruction After instruction

Var1 0x1256 Var1 0x2560

Example2
long Var1;

...

Var1 <<= 12;

Before instruction After instruction

Var1 0x1256ABAB Var1 0x6AABAB000

Example3
PROD <<= 4;

Before instruction After instruction

PROD 0x12560000ABCD PROD 0x2560000ABCD0

 Technosoft 2022 617 ESM User Manual

6.3.3.4.46. ABORT

Syntax

ABORT Abort cancelable TML function

Operands –

Binary code

Description ABORT command cancels the execution of a TML function called using CALLS
instruction. After the execution of ABORT, the TML program continues with the
next instruction after the cancelable call of the function.

Example
....

CALLS First_function; //Cancelable call of First_function

STOP; //Stop the motion

....

END; //End of TML program

First_Function: //definition of First_Function

 CALL Second_Function; //Call function Second_Function

 MODE PP;

....

RET; //Return from First_Function

Second_Function: //definition of First_Function

 GOTO user_label, user_var,EQ;//Branch to user_labelif

//user_var ==0

ABORT; //Cancel the execution of First_Function

 Technosoft 2022 618 ESM User Manual

//Next TML instruction executed is STOP;

user_label:

....

RET; //Return from Second_function

 Technosoft 2022 619 ESM User Manual

6.3.3.4.47. ADDGRID

Syntax

ADDGRID (value_1, value_2,…) Add the specified groups to GROUP ID

Operands value_1, value_2: specify a group number between 1 and 8

Binary code

Description The command adds more groups to the group ID. On each axis, the group ID
represents a filter for a multicast transmission. When a multicast message is
received, each axis compares the message group ID with its own group ID. If the
two group IDs have at least one group in common, the message is accepted. For
example, if an axis is member of group 1 and group 3, it will receive all the
messages sent with a group ID including group 1 or group 3. The group ID is an
8-bit integer value. Each bit corresponds to one group: bit 0 – group 1, bit 1 –
group 2… bit 7 – group 8.

After the execution of this command, the group ID value is modified as follows:

• Bit 0 is set to 1, if (group) 1 occurs in the parenthesis

• Bit 1 is set to 1, if (group) 2 occurs in the parenthesis

• …

• Bit 7 is set to 1, if (group) 8 occurs in the parenthesis.

Example

//local axis has group ID = 1 -> belongs to group 1

ADDGRID (2, 4); //local axis belongs also to groups 2 and 4

//new group ID = 11 (00001011b)

....

[G4] {STOP;} //send stop motion to all axes from group 4

//local axis will stop too as member of group 4

 Technosoft 2022 620 ESM User Manual

6.3.3.4.48. AXISID

Syntax

AXISID value16 Set AXIS ID address

AXISID VAR16 Set AXIS ID with value of VAR16

Operands value16: immediate value between 1 and 255

 VAR16: integer variable

Binary code

Description The command changes the axis ID. In multiple-axis configurations, each axis is
identified through a unique number between 1 and 255 – the axis ID. If the
destination of a message is an axis ID, the message is received only by the axis
with the same axis ID.

After the execution of this command, the axis ID is set with the immediate value
specified or the value of the 16-bit variable.

Example

AXISID 10; //from now on, the local axis ID is 10

....

[10] {AXISID 9;} //change the ID of axis 10 to 9 (this

//instruction is send and executed on

//the actual axis 10)

....

 Technosoft 2022 621 ESM User Manual

[9] {CSPD = 30;} //Send CPOS = 30 to axis 9 (previous axis 10)

6.3.3.4.49. AXISOFF

Syntax

AXISOFF AXIS is OFF (deactivate control)

Operands –

Binary code

Description The command deactivates the drive control loops, the reference generator and
the PWM output commands for the power stage (all the switching devices are off).
All the measurements remain active and therefore the motor currents, speed,
position as well as the supply voltage continue to be updated and monitored. The
AXISOFF command is automatically generated when a protection is triggered or
when the drive Enable input goes from status enabled to status disabled.

Example

// Execute repetitive moves. After each one, set AXISOFF.

// Motor may move freely. Restart after 20s. Position

// feedback: 500 lines incremental encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 6000;//position command = 3[rot]

CPA; //position command is absolute

Loop: MODE PP; // position profile

 CPOS += 6000; set new position command

UPD; //execute immediate

 AXISON; //Activate the control loops and PWM outputs

!MC; // set event on motion complete

 Technosoft 2022 622 ESM User Manual

WAIT!;//Wait until the event occurs i.e. the motor stops

AXISOFF; //Deactivate the control loops and PWM outputs

!RT 20000; //set a 20s delay (1s = 1000 slow loop samplings)

WAIT!; //Wait until the event occurs (to pass the 20s)

GOTO Loop; //Restart the motion

6.3.3.4.50. AXISON

Syntax

AXISON AXIS is ON (activate control)

Operands –

Binary code

Description The command activates the drive control loops, the reference generator and the
PWM output commands for the power stage. The AXISON command restores the
normal operation after an AXISOFF. It is typically used following a fault reset
command FAULTR, or after the drive/motor Enable input goes from status
disabled to status enabled.

When AXISON is set after an AXISOFF command, the reference generator
resumes its calculations for last programmed motion mode from the same point
left before the AXISOFF. If the load/motor has moved during AXISOFF, its actual
values for position and speed may differ quite a lot from the values of the target
position and speed provided by the reference generator. In order update the
reference generator:

• Set again the motion mode, even if it remains the same. The motion mode
commands, automatically set the target update mode zero (TUM0), which
updates the target position and speed with the actual measured values of the
load position and speed

• Execute update command UPD

• Execute AXISON

If first AXISON is issued after power on before setting any motion mode, the drive
applies zero voltages to the motor.

 Technosoft 2022 623 ESM User Manual

Example

// Execute repetitive moves. After each one, set AXISOFF.

// Motor may move freely. Restart after 20s. Position

// feedback: 500 lines incremental encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 6000;//position command = 3[rot]

CPA; //position command is absolute

Loop: MODE PP; // position profile

 CPOS += 6000; set new position command

UPD; //execute immediate

 AXISON; //Activate the control loops and PWM outputs

!MC; // set event on motion complete

WAIT!;//Wait until the event occurs i.e. the motor stops

AXISOFF; //Deactivate the control loops and PWM outputs

!RT 20000; //set a 20s delay (1s = 1000 slow loop samplings)

WAIT!; //Wait until the event occurs (to pass the 20s)

GOTO Loop; //Restart the motion

 Technosoft 2022 624 ESM User Manual

6.3.3.4.51. BEGIN

Syntax

BEGIN Beginning of a TML program

Operands –

Binary code

Description This command must be the first in a TML program. In the AUTORUN mode, the
drive/motor reads the first EEPROM memory location at address 0x4000 and
checks if the binary code is 0x649C corresponding to the TML instruction BEGIN.
If this condition is true, the TML program from the EEPROM memory is executed
starting with the next instruction after BEGIN. If the condition is false, the
drive/motor enters in the slave mode and waits to receive commands from a host
via a communication channel.

Example

BEGIN; // Starting point of a TML program

...

ENDINIT; //End of initialization

...

END; //end of main section of a TML program

 Technosoft 2022 625 ESM User Manual

6.3.3.4.52. CALL

Syntax

CALL Label Unconditional CALL

CALL value16 Unconditional CALL

CALL VAR16 Unconditional CALL

CALL Label, VAR, Flag CALL if VAR Flag 0

CALL value16, VAR, Flag CALL if VAR Flag 0

CALL VAR16, VAR, Flag CALL if VAR Flag 0

Operands Label: a label providing the 16-bit value of a TML function address

 Value16: immediate 16-bit of a TML function address

VAR16: integer variable containing the TML function address

VAR: 16 or 32-bit TML test variable compared with 0

Flag: one of the conditions: EQ, NEQ, LT, LEQ, GT, GEQ

Binary code

 Technosoft 2022 626 ESM User Manual

Description Calls a TML function (subroutine). A TML function is a set of TML commands
which starts with a label and ends with the RET instruction. The label gives the
TML function address and name. TML function address may also be specified by
an immediate value or by the value of a 16-bit TML variable. The call can be
unconditional or unconditional. In a conditional call, a condition is tested. If the
condition is true the TML function is executed, else the next TML command is
carried out. The condition is specified by a 16-bit or 32-bit test variable (VT=0 for
16-bit variable and VT = 1 for 32-bit variable) and a test condition added after the
label with the TML function address. The test variable is always compared with
zero. The possible test conditions are:

EQ if VAR = 0

NEQ if VAR ≠ 0

LT if VAR < 0

 Technosoft 2022 627 ESM User Manual

LEQ if VAR ≤ 0

GT if VAR > 0

GEQ if VAR ≥ 0

Example
CALL Function1, var1, GEQ; //call Function1 if i_var1 >= 0

CALL Function1, var1, EQ; //call Function1, if i_var1 = 0

CALL Function1, var1, NEQ; //call Function1, if i_var1 != 0

CALL Function1; //call Function1 unconditionally

...

END; // end of TML program main section

Function1:

...

RET;

6.3.3.4.53. CALLS

CALLS Cancelable call of a TML function

Syntax

CALLS Label Cancelable CALL of a TML function

CALLS VAR16 Cancelable CALL with address set in VAR16

Operands Label: 16-bit program memory address

VAR16: integer variable

 Technosoft 2022 628 ESM User Manual

Binary code

Description Calls a TML function (subroutine) with possibility to interrupt the function
execution using ABORT command. This is a cancelable call. A TML function is a
set of TML commands which starts with a label and ends with the RET instruction.
The label gives the TML function address and name. TML function address may
also be specified by an immediate value or by the value of a 16-bit TML variable.

Only one function may be called with a cancelable call at a time. A cancelable call
issued while another one is still active (the called function is in execution) is
ignored and a command error is set in error register MER.14. Also status register
low SRL.7 is set. While a cancelable call is active, SRL.8 = 1.

Example

...

CCALL fct1; //cancelable call of Function1

STOP;

...

END;

Function1: // Function1 definition

...

ABORT; // if this command is encountered or

 // got via a communication channel

... // next instruction executed is STOP

RET;

 Technosoft 2022 629 ESM User Manual

6.3.3.4.54. CANBR

Syntax

CANBR value16 Set CAN-bus Baud Rate to value16

CANBR VAR16 Set CAN-bus Baud Rate to VAR16

Operands value16: 16-bit unsigned integer immediate value

 VAR16: 16-bit integer variable

Binary code

Description Sets the baud rate and bit sampling timing for the CAN-bus communication
channel. The new baud settings can be provided either as an immediate value or
by the value of a TML variable. In both cases, the possible values are:

The current CAN-bus settings are saved in the TML register CBR, and may be
read at any moment. The CAN-bus baud rate is set at power on using the
following algorithm:

a. With the value read from the EEPROM setup table

b. If the setup table is invalid, with the last baud rate read from a valid setup
table

 Technosoft 2022 630 ESM User Manual

c. If there is no baud rate set by a valid setup table, with 500kb

Remarks:

• Use this command when a drive/motor operates in AUTORUN (after power on
starts to execute the TML program from the EEPROM) and it must
communicate with a host at a CAN baud rate different from the default value.
In this case, the TML program must start with a CAN baud rate change.

• An alternate solution to the above case is to set via CANBR command the
desired baud rate and then to save it in the EEPROM, with the command
SAVE. After a reset, the drive/motor starts directly with the new baud rate, if
the setup table was valid. Once set, the new default baud rate is preserved,
even if the setup table is later on disabled, because the default CAN baud rate
is stored in a separate area of the EEPROM.

Example

CANBR 0x1273; // set CAN-bus for 1Mb

 Technosoft 2022 631 ESM User Manual

6.3.3.4.55. CHECKSUM

Syntax

CHECKSUM, TM Val_S, Val_E, VARD Checksum between addresses Val_S and Val_E

CHECKSUM, TM VAR_S, VAR_E, VARD Checksum between addresses set in variables
VAR_S and VAR_E

Operands Val_S: 16-bit unsigned integer value representing the checksum start address

Val_E: 16-bit unsigned integer value representing the checksum end address

VAR_S: 16-bit variable containing the checksum start address

VAR_E: 16-bit variable containing the checksum end address

VARD: 16-bit variable containing the checksum result

TM: Memory type (see TypeMem table below)

Binary code

Description Computes the sum module 65536 of all the memory locations between a start
address and an end address. The start address and the end address may be
specified as 16-bit unsigned immediate values or via 2 16-bit TML variables. The
checksum result is saved in a 16-bit destination variable. The memory location can
be of 3 types: RAM for data (dm), RAM for TML programs (pm), EEPROM SPI-
connected for TML programs (spi).

 Technosoft 2022 632 ESM User Manual

Example

// compute checksum between EEPROM addresses 0x5000 and 0x5007

int user_var;

....

CHECKSUM, spi 0x5000, 0x5007, user_var; // user_var = checksum value

Before instruction After instruction

user_var x user_var 0xD467

EEPROM start address
0x5000

0xB004 EEPROM start address
0x5000

0xB004

EEPROM address 0x5001 0x0FF1 EEPROM address 0x5001 0x0FF1

EEPROM address 0x5002 0x0366 EEPROM address 0x5002 0x0366

EEPROM address 0x5003 0x0404 EEPROM address 0x5003 0x0404

EEPROM address 0x5004 0x0C09 EEPROM address 0x5004 0x0C09

EEPROM address 0x5005 0x0010 EEPROM address 0x5005 0x0010

EEPROM address 0x5006 0x00E7 EEPROM address 0x5006 0x00E7

EEPROM address 0x5007 0x0008 EEPROM address 0x5007 0x0008

 Technosoft 2022 633 ESM User Manual

6.3.3.4.56. CIRCLE

Only available on multi-axis Motion Controller

Syntax

CIRCLE1 Radius, Theta_inc
Vector CIRCLE segment

CIRCLE2 Radius, Theta_start

Operands Radius – circle radius

 Theta_start – start angle for circular segment

Theta_inc – angle increment for circular segment

Binary code

Description CIRCLE1 and CIRCLE2 define a circular segment for 2D trajectory executed in
Vector Mode. Positive values for Theta_inc mean CCW movement while negative
values mean CW movement.

Based on Radius, Theta_inc and Theta_start the TML compiler from EasyMotion
Studio computes the actual parameters used by the motion controller to generate
the PVT points for slave axes.

If the points are sent from a host then the following relations must be used to
compute the actual parameters of the circular segment:

 Technosoft 2022 634 ESM User Manual

Example

// Vector mode – circle with radius 3.14mm. Position feedbacks: 500

// lines incremental encoder

 SETMODE 0xCF00; //Clear buffer

 VPLANE (A, B, C); //Define coordinate system and tangent axis

 RESRATIOX=0u;

 RESRATIOY=0u;

 NLINESTAN=2000;

 MODE VM; // Set Vector Mode

 // Circular segment of radius 3.14159[mm], with initial angle 0[deg]
and angle increment 360[deg])

 CIRCLE1 1L, 360.; CIRCLE2 1L, 0.;

 UPD; //Execute immediate

 // Insert End Segment

 VSEG1 0L, 0L; VSEG2 0L, 0L;

 Technosoft 2022 635 ESM User Manual

6.3.3.4.57. CPA

Syntax

CPA Command Position is Absolute

Operands –

Binary code

Description After the execution of this instruction, all subsequent position commands will be
considered as absolute in the following motion modes: trapezoidal profiles, S-
curve profiles, PVT and PT. This setting remains until the execution of a CPR
command.

Example

//Position profile

//Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 16.6667;//slew speed = 500[rpm]

CPOS = 12000;//position command = 6[rot]

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

 Technosoft 2022 636 ESM User Manual

6.3.3.4.58. CPR

Syntax

CPR Command Position is Relative

Operands –

Binary code

Description After the execution of this instruction, all subsequent position commands will be
considered as relative in the following motion modes: trapezoidal profiles, S-curve
profiles, PVT and PT. This setting remains until the execution of a CPA
command. In the trapezoidal profile mode, the position to reach can be computed
in 2 ways: standard (default) or additive. In standard relative mode, the position to
reach is computed by adding the position increment to the instantaneous position
in the moment when the command is executed. In the additive relative mode, the
position to reach is computed by adding the position increment to the previous
position to reach, independently of the moment when the command was issued.

The additive relative mode is activated by setting ACR.11 = 1 and is automatically
disabled after an update command UPD, which sets ACR.11 = 0 restoring the
standard relative mode.

Example

//Position profile

//Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 16.6667;//slew speed = 500[rpm]

CPOS = 7000;//position command = 3.5[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

 Technosoft 2022 637 ESM User Manual

!MC; WAIT!; //wait for completion

6.3.3.4.59. DINT

Syntax

DINT Disable TML INTerrupts

Operands –

Binary code

Description After the execution of this instruction, all the TML interrupts are globally disabled
independently of their status in the interrupt control register ICR. Use the EINT
instruction to globally enable TML interrupts.

After power on, the TML interrupts are globally enabled together with the TML
interrupts Int0, Int1, Int2 and Int3. These interrupts handle the drive/motor
protections and the transitions on the Enable input, using a default set of interrupt
service routines (ISR).

Remark: Some of the drive/motor protections may not work properly if the TML
Interrupts are not handled correctly. In order to avoid this situation keep in mind
the following rules:

• The TML interrupts must be kept globally enabled to allow execution of the ISR
for those TML interrupts triggered by protections. As during a TML interrupt
execution, the TML interrupts are globally disabled, you should keep the ISR as
short as possible, without waiting loops. If this is not possible, you must globally
enable the interrupts with EINT command during your ISR execution.

• If you modify the interrupt service routines for Int 0 to Int 4, make sure that you
keep the original TML commands from the default ISR. Put in other words, you
may add your own commands, but these should not interfere with the original
TML commands. Moreover, the original TML commands must be present in all
the ISR execution paths.

Example

DINT; //globally disable all TML interrupts

 Technosoft 2022 638 ESM User Manual

6.3.3.4.60. DIS2CAPI

Syntax

DIS2CAPI DISable 2nd CAPture Index

Operands –

Binary code

Description After the execution of this instruction the 2nd capture/encoder index input
capability to detect transitions is disabled.

Use the EN2CAPI0 or EN2CAPI1 instructions to enable this input capability to
detect high-low or low-high transitions.

Example

DIS2CAPI; //disable 2nd capture/encoder index input

 Technosoft 2022 639 ESM User Manual

6.3.3.4.61. DISCAPI

Syntax

DISCAPI DISable CAPture Index

Operands –

Binary code

Description After the execution of this instruction the 1st capture/encoder index input
capability to detect transitions is disabled.

Use the ENCAPI0 or ENCAPI1 instructions to enable this input capability to
detect high-low or low-high transitions.

Example

DISCAPI; //disable 1st capture/encoder index input

 Technosoft 2022 640 ESM User Manual

6.3.3.4.62. DISLSN

Syntax

DISLSN DISable Limit Switch Negative

Operands –

Binary code

Firmware version FAxx

Firmware version FBxx

Description After the execution of this instruction, the negative limit switch input capability to
detect transitions is disabled.

Use the ENLSN0 or ENLSN1 instructions to enable this input capability to detect
high-low or low-high transitions.

Remark: The main task of the limit switch inputs i.e. to protect against accidental
moves outside the working area is performed independently of the fact that the
limit switch inputs are enabled or not to detect transitions

Example

DISLSN; //disable LSN input capability to detect transitions

 Technosoft 2022 641 ESM User Manual

6.3.3.4.63. DISLSP

Syntax

DISLSP DISable Limit Switch Positive

Operands –

Binary code

Firmware version FAxx

Firmware version FBxx

Description After the execution of this instruction, the positive limit switch input capability to
detect transitions is disabled.

Use the ENLSP0 or ENLSP1 instructions to enable this input capability to detect
high-low or low-high transitions.

Remark: The main task of the limit switch inputs i.e. to protect against accidental
moves outside the working area is performed independently of the fact that the
limit switch inputs are enabled or not to detect transitions

Execution Disable positive limit switch input capability to detect transitions

Example

DISLSN; //disable LSN input capability to detect transitions

6.3.3.4.64. EINT

Syntax

 Technosoft 2022 642 ESM User Manual

EINT Enable TML INTerrupts

Operands –

Binary code

Description After the execution of this instruction, the TML interrupts are globally enabled. If
an interrupt flag is set and the interrupt is enabled in the interrupt control register
ICR, the interrupt request is accepted and the associated interrupt service routine
is called. The TML interrupts can be globally disabled using the DINT instruction.

Example
EINT; //globally enable all TML interrupts

 Technosoft 2022 643 ESM User Manual

6.3.3.4.65. EN2CAPI0

Syntax

EN2CAPI0 Enable 2ndCAPture Index 1->0

Operands –

Binary code

Description Enables 2nd capture/encoder index input capability to detect a transition from
1(high) to 0(low). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

Example

//Stop motion on next 2nd encoder index

EN2CAPI0; //Set event: When the 2nd encoder index goes high->low

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

 Technosoft 2022 644 ESM User Manual

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

6.3.3.4.66. EN2CAPI1

Syntax

EN2CAPI1 Enable 2ndCAPture Index 0->1

Operands –

Binary code

Description Enables 2nd capture/encoder index input capability to detect a transition from
0(low) to 1(high). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

 Technosoft 2022 645 ESM User Manual

Example

//Stop motion on next 2nd encoder index

EN2CAPI1; //Set event: When the 2nd encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

6.3.3.4.67. ENCAPI0

Syntax

ENCAPI0 Enable CAPture Index 1->0

Operands –

Binary code

Description Enables 1st capture/encoder index input capability to detect a transition from
1(high) to 0(low). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

 Technosoft 2022 646 ESM User Manual

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

Example

//Stop motion on next 1st encoder index

ENCAPI0; //Set event: When the 1st encoder index goes high->low

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

 Technosoft 2022 647 ESM User Manual

6.3.3.4.68. ENCAPI1

Syntax

ENCAPI1 Enable CAPture Index 0->1

Operands –

Binary code

Description Enables 1st capture/encoder index input capability to detect a transition from
0(low) to 1(high). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

Example

//Stop motion on next 1st encoder index

ENCAPI1; //Set event: When the 1st encoder index goes low->high

!CAP;

STOP!;//Stop the motion when event occurs

WAIT!;//Wait until the event occurs

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

 Technosoft 2022 648 ESM User Manual

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

6.3.3.4.69. END

Syntax

END END of a TML program

Operands –

Binary code

Description The END command indicates the end of a TML program main section. Next TML

instructions (if present) are not executed. After this command the TML program
should contain TML functions and TML interrupt service routines as well as other
data like the cam tables. The END command effectively stops the execution a
TML program putting the drive/motor in a wait loop for TML commands received
via a communication channel.

Remark: The END instruction does not modify the control loops. Use TML
commands AXISON / AXISOFF to enable / disable the control loops, the
reference generator and the PWM outputs.

Example

BEGIN; // Starting point of a TML program

...

ENDINIT; //End of initialization

...

END; //end of main section of a TML program

 Technosoft 2022 649 ESM User Manual

6.3.3.4.70. ENDINIT

Syntax

ENDINIT END of INITialization

Operands –

Binary code

Description The ENDINIT instruction marks the END of the INITialization part of the TML

program. This command uses the available setup data to perform key
initializations, but does not activate the controllers or the PWM outputs. These are
activated with the AXISON command. After power on, the ENDINIT command
may be executed only once. Subsequent ENDINIT commands are ignored. The
first AXISON command must be executed only after the ENDINIT command.

Example

BEGIN; // Starting point of a TML program

...

ENDINIT; //End of initialization

...

END; //end of main section of a TML program

 Technosoft 2022 650 ESM User Manual

6.3.3.4.71. ENEEPROM

Syntax

ENEEPROM ENnable communication with the EEPROM

Operands –

Binary code

Description Enables the SPI-based communication with the drive/motor EEPROM after this
was disabled by the initialization of feedback devices like SSI or EnDat encoders,
which use the same SPI link as the EEPROM. This initialization is done during the
ENDINIT command.

The ENEEPROM command is intended for the hosts working with Technosoft
drives set in configurations with SSI or EnDat encoders as position feedback.
Following this command, the internal SPI-link with the SSI or EnDat encoders is
disabled and the SPI-link with the EEPROM is enabled. This offers access to the
drive EEPROM after execution of the ENDINIT command, without resetting the
drives.

Remark: The ENEEPROM command must be executed only AFTER issuing the
commands AXISOFF and END which stop the motor control and TML program
execution

Example

ENEEPROM; // enable EEPROM

 Technosoft 2022 651 ESM User Manual

6.3.3.4.72. ENIO

Syntax

ENIO

Operands –

Binary code

Description

Example

ENIO;

6.3.3.4.73. ENLSN0

Syntax

ENLSN0 Enable Limit Switch Negative 1->0

Operands –

Binary code

Firmware version FAxx

 Technosoft 2022 652 ESM User Manual

Firmware version FBxx

Description Enables negative limit switch input capability to detect a transition from 1(high) to
0(low). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

Example

//Reverse when the active low negative limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

ENLSN0;//Enable negative limit switch for high->low transitions

!LSN; //Set event on negative limit switch(high->low transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

 Technosoft 2022 653 ESM User Manual

UPD; //execute immediate

6.3.3.4.74. ENLSN1

Syntax

ENLSN1 Enable Limit Switch Negative 0->1

Operands –

Binary code

Firmware version FAxx

Firmware version FBxx

Description Enables negative limit switch input capability to detect a transition from 0(low) to
1(high). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

 Technosoft 2022 654 ESM User Manual

Example

//Reverse when the active high negative limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

ENLSN1;//Enable negative limit switch for low->high transitions

!LSN; //Set event on negative limit switch(low->high transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

 Technosoft 2022 655 ESM User Manual

6.3.3.4.75. ENLSP0

Syntax

ENLSP0 Enable Limit Switch Positive 1->0

Operands –

Binary code

Firmware version FAxx

Firmware version FBxx

Description Enables positive limit switch input capability to detect a transition from 1(high) to
0(low). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

 Technosoft 2022 656 ESM User Manual

Example

//Reverse when the active low positive limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

ENLSP0;//Enable positive limit switch for high->low transitions

!LSP; //Set event on positive limit switch(high->low transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

 Technosoft 2022 657 ESM User Manual

6.3.3.4.76. ENLSP1

Syntax

ENLSP1 Enable Limit Switch Positive 0->1

Operands –

Binary code

Firmware version FAxx

Firmware version FBxx

Description Enables positive limit switch input capability to detect a transition from 0(low) to
1(high). When the first transition occurs:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for the setup configurations which use different
sensors for load and motor and foresee a transmission ratio between them. For
all the other setup configurations, the master position is saved in CAPPOS2.

 Technosoft 2022 658 ESM User Manual

Example

//Reverse when the active high positive limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

ENLSP1;//Enable positive limit switch for low->high transitions

!LSP; //Set event on positive limit switch(low->high transition)

WAIT!;//Wait until the event occurs

!MC; // limit switch is active -> quick stop mode active

WAIT!;// wait until the motor stops because only then the new

// motion commands are accepted

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

 Technosoft 2022 659 ESM User Manual

6.3.3.4.77. EXTREF

Syntax

EXTREF value Set EXTernal REFerence type

Operands value: type of reference 0, 1 or 2

Binary code

Description Sets the external reference type depending on the parameter value:

• value = 0: online – the reference is sent via a communication channel in one
of the variables EREFP, EREFS, EREFT, EREFV function of the control mode

• value = 1: analogue – the reference is read from a dedicated analogue input

• value = 2: digital – the reference is provided as pulse & direction or encoder
like signals

Example

EXTREF 1; // the external reference is read from the analogue

// input dedicated for this purpose

 Technosoft 2022 660 ESM User Manual

6.3.3.4.78. FAULTR

Syntax

FAULTR FAULT Reset

Operands –

Binary code

Description Gets out the drive/motor from the FAULT status in which it enters when an error

occurs. After a FAULTR command, most of the error bits from MER are cleared
(set to 0), the Ready output (if present) is set to ready level, the Error output (if
present) is set to no error level.

Remarks:

• The FAULT reset command does not change the status of MER.15 (enable
input on disabled level), MER.7 (negative limit switch input active), MER.6
(positive limit switch input active) and MER.2 (invalid setup table)

• The drive/motor will return to FAULT status if there are errors when the
FAULTR command is executed

Example

FAULTR; // reset fault status

6.3.3.4.79. GOTO

Syntax

GOTO Label Unconditional GOTO to Label

GOTO Value16 Unconditional GOTO to Value16

GOTO VAR16 Unconditional GOTO to address stored in VAR16Addr

GOTO Label, VAR, Flag GOTO Label if VAR Flag 0

GOTO Value16, VAR, Flag GOTO Value16 if VAR Flag 0

GOTO VAR16, VAR, Flag GOTO address set in Var16Addr if VAR16 Flag 0

 Technosoft 2022 661 ESM User Manual

Operands Label: a label providing the 16-bit value of a jump address

 Value16: immediate 16-bit jump address

VAR16: integer variable containing the jump address

VAR: 16 or 32-bit TML test variable compared with 0

Flag: one of the conditions: EQ, NEQ, LT, LEQ, GT, GEQ

Binary code

 Technosoft 2022 662 ESM User Manual

Description Executes a jump to the TML program position specified via the jump address. The
jump address is provided via a label, an immediate value or by the value of a 16-
bit TML variable. The jump can be unconditional or unconditional. In a conditional
jump, a condition is tested. If the condition is true the jump is executed, else the
next TML command is carried out. The condition is specified by a 16-bit or 32-bit
test variable and a test condition added after the label with the jump address. The
test variable is always compared with zero. The possible test conditions are:

EQ if VAR = 0

NEQ if VAR ≠ 0

LT if VAR < 0

LEQ if VAR ≤ 0

GT if VAR > 0

GEQ if VAR ≥ 0

Example

GOTO label1, var1, LT; // jump to label1 if var1 < 0

GOTO label2, var1, LEQ; // jump to label2 if var1 <= 0

GOTO label3, var1, GT; // jump to label3 if var1 > 0

GOTO label4; // unconditional jump to label4

GOTO var_address; // unconditional jump to jumps address

// provided by var_address value

 Technosoft 2022 663 ESM User Manual

6.3.3.4.80. GROUPID

Syntax

GROUPID (value_1, value_2,…) Set GROUP ID address

Operands value_1, value_2: specify a group number between 1 and 8

Binary code

Description The command sets the group ID. On each axis, the group ID represents a filter
for a multicast transmission. When a multicast message is received, each axis
compares the message group ID with its own group ID. If the two group IDs have
at least one group in common, the message is accepted. For example, if an axis
is member of group 1 and group 3, it will receive all the messages sent with a
group ID including group 1 or group 3. The group ID is an 8-bit integer value.
Each bit corresponds to one group: bit 0 – group 1, bit 1 – group 2… bit 7 – group
8.

After the execution of this command, the group ID value is set as follows:

• Bit 0 is set to 1, if (group) 1 occurs in the parenthesis, else it is set to 0

• Bit 1 is set to 1, if (group) 2 occurs in the parenthesis, else it is set to 0

• …

• Bit 7 is set to 1, if (group) 8 occurs in the parenthesis, else it is set to 0.

Example

GROUPID (1, 3); //local axis belongs to groups 1 and 3

...

[G3] {STOP;} //send stop command to all axes from group 3

//the command is executed by local axis too

 Technosoft 2022 664 ESM User Manual

6.3.3.4.81. INITCAM

Syntax

INITCAM LoadAddress, RunAddress Copy cam table from EEPROM to RAM

Operands LoadAddress: 16-bit unsigned integer - cam table start address in the EEPROM

RunAddress: 16-bit unsigned integer - cam table start address in the RAM

Binary code

Description Prepares a cam table for use. The cam tables are first downloaded into the
EEPROM memory of the drive/motor, together with the rest of the TML program.
Then using INITCAM command a cam table is copied from the EEPROM memory
into the drive/motor RAM memory. The LoadAddress is the start address in the
EEPROM memory where the cam table was downloaded and the RunAddress is
the start address in the RAM memory where to copy the cam table. After the
execution of this command the TML variable CAMSTART takes the value of the
RunAddress

Example

INITCAM 18864,2560; //Copy CAM table from EEPROM memory

//(address 0x49B0) to RAM memory

//(address 0xA00)

 Technosoft 2022 665 ESM User Manual

6.3.3.4.82. LOCKEEPROM

Syntax

LOCKEEPROM value16 LOCK/unlock EEPROM

Operands value16: integer value between 0 and 3

Binary code

Description Locks or unlocks the EEPROM write protection. When the EEPROM is write-
protected, it is not possible to write data into the EEPROM, with the exception of
the TML command SAVE. Value16 may have the following values:

0 – Disables EEPROM write protection

1 – Enables write protection for the last quarter of the EEPROM

2 – Enables write protection for the last half of the EEPROM

3 – Enables write protection for the entire EEPROM

Example

//An EEPROM has 8Kwords. In the TML program space occupies the

//address range: 4000-5FFFh.

LOCKEEPROM 0; // disable EEPROM write protection

LOCKEEPROM 1; // protect the address range: 5800-5FFFh,

LOCKEEPROM 2; // protect the address range: 5000-5FFFh

LOCKEEPROM 3; // protect the entire address range: 4000-5FFFh

 Technosoft 2022 666 ESM User Manual

6.3.3.4.83. LPLANE

Only available on multi-axis Motion Controller

Syntax

LPLANE (X_axis, Y_axis, Z_axis) Linear interpolation PLANE

Operands X_axis, Y_axis, Z_axis: slave axes defining the coordinate system

Binary code

Description Sets the 2D/3D coordinate system for Linear Interpolation Mode using slave axes
specified with X_axis, Y_axis and Z_axis.

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, C); //Slaves A and C define the coordinate system

 MODE LI; // Set Linear Interpolation Mode

 // Increment position with (X, Y) = (0.5[rot], 0.05[rot])

 LPOS1 1000L, 100L; LPOS2 1000L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (0.05[rot], 0.5[rot])

 LPOS1 100L, 1000L; LPOS2 100L, 1000L;

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 Technosoft 2022 667 ESM User Manual

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

6.3.3.4.84. LPOS

Only available on multi-axis Motion Controller

Syntax

LPOS1 Pos_X, Pos_Y, Pos_Z
3D Linear interpolation POS segment

LPOS2 Pos_X, Pos_Y, Pos_Z

LPOS1 Pos_X, Pos_Y
2D Linear interpolation POS segment

LPOS2 Pos_X, Pos_Y

Operands Pos_X: X axis position increment for 2D/3D trajectory

 Pos_Y: Y axis position increment for 2D/3D trajectory

 Pos_Z : Z axis position increment for 3D trajectory

Binary code

 Technosoft 2022 668 ESM User Manual

Description LPOS1 and LPOS2 define a segment for 2D/3D trajectory executed in Linear
Interpolation mode. Based on Pos_X, Pos_Y and Pos_Z the TML compiler from
EasyMotion Studio computes the actual parameters used by the motion controller
to generate the PVT points for slave axes.

If the points are sent from a host then the following relations must be used to
compute the actual parameters of the segment:

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, C); //Slaves A and C define the coordinate system

 MODE LI; // Set Linear Interpolation Mode

 Technosoft 2022 669 ESM User Manual

 // Increment position with (X, Y) = (0.5[rot], 0.05[rot])

 LPOS1 1000L, 100L; LPOS2 1000L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (0.05[rot], 0.5[rot])

 LPOS1 100L, 1000L; LPOS2 100L, 1000L;

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

 Technosoft 2022 670 ESM User Manual

6.3.3.4.85. MODE CS

Syntax

MODE CS Set axis in MODE Camming Slave

Operands –

Binary code

Description Sets the drive/motor to operate in the electronic camming slave mode. In this

mode, the drive/motor performs a position control with reference set by a cam
profile function of the master position. The cam profile is defined by a cam table –
a set of (X, Y) points, where X is cam table input i.e. the master position and Y is
the cam table output i.e. the corresponding slave position. Between the points
the drive/motor performs a linear interpolation.

The new motion mode becomes effective at the next update command UPD.

Example

// Electronic camming slave. Master position is read from 2nd

// encoder inputs. Master resolution: 2000 counts/rev

CAMSTART = 0xF000; //Initialize CAM table start address

EXTREF 2; // master position read from P&D or 2nd encoder

CAMOFF = 200; //Cam offset from master

CAMX = 0.5; //Cam input correction factor

CAMY = 1.5; //Cam output correction factor

MASTERRES = 2000; // master resolution

MODE CS; //Set electronic camming slave mode

TUM1; //Set Target Update Mode 1

SRB ACR, 0xEFFF, 0x0000; //Camming mode: Relative

 Technosoft 2022 671 ESM User Manual

UPD; //execute immediate

6.3.3.4.86. MODE GS

Syntax

MODE GS Set axis in MODE Gear Slave

Operands –

Binary code

Description Sets the drive/motor to operate in the electronic gearing slave mode. The
drive/motor performs a position control and follows the master position with a
programmable gear ratio. At each slow loop sampling period, the slave computes
the master position increment and multiplies it with its programmed gear ratio. The
result is the slave position reference increment, which added to the previous slave
position reference gives the new slave position reference.

The new motion mode becomes effective at the next update command UPD.

Example

//Electronic gearing. Master position is received via
//communication channel inputs. Master resolution: 2000 counts/rev

// On slave axis (Axis ID = 1):

GEAR = 0.3333; // gear ratio

GEARMASTER = 3; //gear ratio denominator

GEARSLAVE = 1; //gear ratio numerator

EXTREF 0; // master position got via communication channel

MASTERRES = 2000; // master resolution

REG_ON; //Enable superposition

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

 Technosoft 2022 672 ESM User Manual

CACC = 0.9549; //Limit maximum acceleration at 3000[rad/s^2]

UPD; //execute immediate

6.3.3.4.87. MODE LI

Only available on multi-axis Motion Controller

Syntax

MODE LI MODE Linear Interpolation mode

Operands –

Binary code

Description Sets the motion controller to operate in linear interpolation mode. In this mode the
motion controller generates a 2D/3D trajectory based on linear segments. The
motion mode is configured with SETMODE command.

The path segments can be stored in the non-volatile memory of the motion
controller or received via a communication channel from a host.

Each segment is split in PVT points and sent to the slaves which, using 3rd order
interpolation, rebuild the trajectory. The segments sequence must finish with the
end segment. If the sequence doesn’t have an end segment then the motion
controller enters in Quickstop mode and the stops the slaves.

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 Technosoft 2022 673 ESM User Manual

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, C); //Slaves A and C define the coordinate system

 MODE LI; // Set Linear Interpolation Mode

 // Increment position with (X, Y) = (0.5[rot], 0.05[rot])

 LPOS1 1000L, 100L; LPOS2 1000L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (0.05[rot], 0.5[rot])

 LPOS1 100L, 1000L; LPOS2 100L, 1000L;

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

 Technosoft 2022 674 ESM User Manual

6.3.3.4.88. MODE PC

Syntax

MODE PC MODE Position Contouring

Operands –

Binary code

Description Sets the drive/motor to operate in the position contouring mode. In the contouring

modes, an arbitrary path is described via a series of points. Between the points,
linear interpolation is performed, leading to a contour described by a succession
of linear segments. In the position contouring, the drive/motor performs a position
control and the path represents a position reference.

The new motion mode becomes effective at the next update command UPD.

Example

// Position contouring with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

MODE PC;//Set Position Contouring

TUM1;//Start from actual value of position reference

SEG 100U, 20.00000;// 1st point

UPD; //Execute immediate

SEG 100U, 0.00000; // 2nd point

SEG 0, 0.0; //End of contouring

 Technosoft 2022 675 ESM User Manual

6.3.3.4.89. MODE PE

Syntax

MODE PE MODE Position External

Operands –

Binary code

Description Sets the drive/motor to operate in the position external mode. In this mode, the
drive/motor performs a position control with the position reference provided by
another device. There are 2 types of external references (selectable via the TML
instruction EXTREF):

• Analogue – read from a dedicated analogue input (TML variable AD5)

• Online – received online via a communication channel from a host and
saved in the TML variable EREFP

You can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. This feature is activated by setting
UPGRADE.2=1 and the maximum speed value in CSPD.

The new motion mode becomes effective at the next update command UPD.

Example
//Read position command from the analogue reference input

EXTREF 1;

MODE PE; //External position

CSPD = 100;// Limit = 3000[rpm]

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

UPD; //execute immediate

 Technosoft 2022 676 ESM User Manual

6.3.3.4.90. MODE PP

Syntax

MODE PP MODE Position Profile

Operands –

Binary code

Description Sets the drive/motor to operate in the trapezoidal position profile mode. In this
mode, the drive/motor performs a position control. The built-in reference
generator computes a position profile with a trapezoidal shape of the speed, due
to a limited acceleration. You specify either a position to reach in absolute mode
or a position increment in relative mode, plus the slew (maximum travel) speed
and the acceleration/deceleration rate.

The new motion mode becomes effective at the next update command UPD.

Example

// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; WAIT!; //wait for completion

 Technosoft 2022 677 ESM User Manual

6.3.3.4.91. MODE PSC

Syntax

MODE PSC MODE Position S-curve

Operands –

Binary code

Description Sets the drive/motor to operate in the S-curve profile mode. In this mode, the

drive/motor performs a position control. The built-in reference generator computes
a position profile with an S-curve shape of the speed. This shape is due to the
jerk limitation, leading to a trapezoidal or triangular profile for the acceleration and
an S-curve profile for the speed. You specify either a position to reach in absolute
mode or a position increment in relative mode, plus the slew (maximum travel)
speed, the maximum acceleration/deceleration rate and the jerk rate. The jerk
rate is set indirectly via the jerk time, which represents the time needed to reach
the maximum acceleration starting from zero

The new motion mode becomes effective at the next update command UPD.

Example

// S-curve profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

TJERK = 50;//jerk = 2e+004[rad/s^3]

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PSC; // set S-curve profile mode

SRB ACR, 0xFFFE, 0x0000; //Stop using an S-curve profile

UPD; //execute immediate

 Technosoft 2022 678 ESM User Manual

!MC; WAIT!; //wait for completion

6.3.3.4.92. MODE PT

Syntax

MODE PT MODE Position Time

Operands –

Binary code

Description Sets the drive/motor to operate in the PVT mode. In this mode, the drive/motor
performs a position control. The built-in reference generator computes a
positioning path using a series of points. Each point specifies the desired
Position, and Time, i.e. contains a PT data. Between the PT points the reference
generator performs a linear interpolation.

The new motion mode becomes effective at the next update command UPD.

Example

// PT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

SETPVT 0xC000; //Clear PT buffer, disable counter check

//Don’t change counter & buffer low condition

MODE PT; // Set PT Mode

TUM1;//Start from actual value of position reference

CPR;

PTP 2000L, 100U, 0; //PT(1[rot], 0.1[s])

UPD; //Execute immediate

PTP 0L, 100U, 0; //PT(1[rot],0.2[s])

PTP -2000L, 100U, 0; //PT(0[rot],0.3[s])

 Technosoft 2022 679 ESM User Manual

!MC; WAIT!; //wait for completion

6.3.3.4.93. MODE PVT

Syntax

MODE PVT MODE Position Velocity Time

Operands –

Binary code

Description Sets the drive/motor to operate in the PVT mode. In this mode, the drive/motor
performs a position control. The built-in reference generator computes a
positioning path using a series of points. Each point specifies the desired
Position, Velocity and Time, i.e. contains a PVT data. Between the PVT points the
reference generator performs a 3rd order interpolation.

The new motion mode becomes effective at the next update command UPD.

Example

// PVT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MASTERID = 4081; // Set host address to 255 (255<<4+1)

SETPVT 0xC000; //Clear PVT buffer, disable counter check

//Don’t change counter & buffer low condition

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

CPR; // Relative mode

PVTP 400L, 60, 10U, 0;//PVT(0.2[rot], 1800[rpm], 0.01[s])

UPD; //Execute immediate

 Technosoft 2022 680 ESM User Manual

PVTP 400L, 0, 10U, 0;//PVT(0.4[rot], 0[rpm], 0.02[s])

!MC; WAIT!; //wait for completion

6.3.3.4.94. MODE SC

Syntax

MODE SC MODE Speed Contouring

Operands –

Binary code

Description Sets the drive/motor to operate in speed contouring mode. In the contouring

modes, you can program an arbitrary path via a series of points. Between the
points, linear interpolation is performed, leading to a contour described by a
succession of linear segments. In the speed contouring, the drive/motor performs
a speed control and the path represents a speed reference.

The new motion mode becomes effective at the next update command UPD.

Example

// Speed contouring with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

MODE SC;//Set Speed Contouring

TUM1;//Start from actual value of position reference

SEG 100U, 20.00000;// 1st point

UPD; //Execute immediate

SEG 100U, 0.00000; // 2nd point

SEG 0, 0.0; //End of contouring

 Technosoft 2022 681 ESM User Manual

6.3.3.4.95. MODE SE

Syntax

MODE SE MODE Speed External

Operands –

Binary code

Description Sets the drive/motor to operate in the speed external mode. In this mode, the
drive/motor performs a speed control with the speed reference provided by
another device. There are 2 types of external references (selectable via the TML
instruction EXTREF):

• Analogue – read from a dedicated analogue input (TML variable AD5)

• Online – received online via a communication channel from a host and
saved in the TML variable EREFS

You can limit the maximum acceleration at sudden changes of the speed
reference and thus to reduce the mechanical shocks. This feature is activated by
setting UPGRADE.2=1 and the maximum acceleration value in CSPD.

The new motion mode becomes effective at the next update command UPD.

Example

// External mode online. Read speed reference from variable EREFS

// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

EREFS = 33.3333;// EREFS initial = 1000[rpm]

EXTREF 0;

MODE SE; //External speed

CACC = 0.3183;// Limit = 1000[rad/s^2]

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

UPD; //execute immediate

 Technosoft 2022 682 ESM User Manual

6.3.3.4.96. MODE SP

Syntax

MODE SP MODE Speed Profile

Operands –

Binary code

Description Sets the drive/motor to operate in trapezoidal speed profile mode. In this mode,

the drive/motor performs a speed control. The built-in reference generator
computes a speed profile with a trapezoidal shape, due to a limited acceleration

The new motion mode becomes effective at the next update command UPD.

Example:

// Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 6.6667; //jog speed = 200[rpm]

MODE SP; // set speed profile mode

UPD; //execute immediate

 Technosoft 2022 683 ESM User Manual

6.3.3.4.97. MODE TC

Syntax

MODE TC MODE Torque Contouring

Operands –

Binary code

Description Sets the drive/motor to operate in torque contouring mode. In the contouring

modes, you can program an arbitrary path via a series of points. Between the
points, linear interpolation is performed, leading to a contour described by a
succession of linear segments. In the torque contouring, the drive/motor performs
a torque control and the path represents a current reference.

Remark: The torque contouring mode has been foreseen for testing during the
setup phase

The new motion mode becomes effective at the next update command UPD.

Example

// current scaling: 1A = 1984 IU

MODE TC; //Set Torque Contouring

REF0 = 992; //Initial reference set to 0.5[A]

SEG 2999U, 0.06601;

UPD; //Execute immediate

SEG 1U, 0.03745;

SEG 1999U, 0.29800;

SEG 1U, 0.28970;

SEG 2999U, -0.26468;

SEG 1U, -0.22781;

SEG 0, 0.0; //End of contouring

 Technosoft 2022 684 ESM User Manual

6.3.3.4.98. MODE TEF

Syntax

MODE TEF MODE Torque External Fast

MODE TES MODE Torque External Slow

Operands –

Binary code

Description Sets the drive/motor to operate in the torque external mode. In this mode, the
drive/motor performs a torque control with a current reference provided by another
device. There are 2 types of external references (selectable via the TML
instruction EXTREF):

• Analogue – read from a dedicated analogue input (TML variable AD5)

• Online – received online via a communication channel from a host and
saved in the TML variable EREFT

When the current reference is read from the analogue input, the reference update
can be done in 2 ways:

• MODE TES – at each slow loop sampling period

• MODE TEF – at each fast loop sampling period

When the current reference is received online via a communication channel only
option MODE TES is possible.

 Technosoft 2022 685 ESM User Manual

The new motion mode becomes effective at the next update command UPD.

Example

//Set torque mode with reference read from an analogue input

EXTREF 1; // external type: analogue input

MODE TEF; //External torque, update in fast loop

UPD; //execute immediate

6.3.3.4.99. MODE TT

Syntax

MODE TT MODE Torque Test

Operands –

Binary code

Description Sets the drive/motor to operate in torque test mode. In this mode a current
command can be set using a test reference consisting of a limited ramp. For AC
motors (like for example the brushless motors), the test mode offers also the
possibility to rotate a current reference vector with a programmable speed. As
result, these motors can be moved in an “open-loop” mode without using the
position sensor. The main advantage of this test mode is the possibility to conduct
in a safe way a series of tests, which can offer important information about the
motor parameters, drive status and the integrity of the its connections.

Remark: The torque test mode has been foreseen to facilitate the testing during
the setup phase. It is not intended for normal operation

The new motion mode becomes effective at the next update command UPD.

 Technosoft 2022 686 ESM User Manual

Example

//Torque test mode, brushless AC motor. The drive has

//peak current 16.5A -> 32736 IU (internal current units)

//360° electric angle -> 65536 internal units

// fast loop sampling period = 0.1ms. Motor has 2 pole pairs

MODE TT; //Torque Test Mode

REFTST_A = 1984;//Reference saturation = 1[A]

RINCTST_A = 20;//Reference increment = 10[A/s]

THTST = 0;//Electric angle = 0[deg]

TINCTST = 7;//Electric angle increment ~= 2e+002[deg/s]

UPD; //update immediate

 Technosoft 2022 687 ESM User Manual

6.3.3.4.100. MODE VC

Syntax

MODE VC MODE Voltage Contouring

Operands –

Binary code

Description Sets the drive/motor to operate in voltage contouring mode. In the contouring
modes, you can program an arbitrary path via a series of points. Between the
points, linear interpolation is performed, leading to a contour described by a
succession of linear segments. In the voltage contouring, the drive/motor
performs a voltage control and the path represents a voltage reference.

Remark: The voltage contouring mode has been foreseen for testing during the
setup phase

The new motion mode becomes effective at the next update command UPD.

Example
MODE VC; //Set Voltage Contouring

REF0 = 7744; //Initial reference set to 3[V]

SEG 4999U, -0.51620;

UPD; //Execute immediate

SEG 1U, -0.49203;

SEG 1999U, 1.93600;

SEG 1U, 1.92673;

SEG 2000U, 0.00000;

SEG 999U, -9.03500;

SEG 1U, -9.03134;

 Technosoft 2022 688 ESM User Manual

SEG 0, 0.0; //End of contouring

6.3.3.4.101. MODE VES

Syntax

MODE VES MODE Voltage External Slow

MODE VEF MODE Voltage External Fast

Operands –

Binary code

Description Sets the drive/motor to operate in the voltage external mode. In this mode, the
drive/motor performs a voltage control with a voltage reference provided by
another device. There are 2 types of external references (selectable via the TML
instruction EXTREF):

• Analogue – read from a dedicated analogue input (TML variable AD5)

• Online – received online via a communication channel from a host and
saved in the TML variable EREFT

When the voltage reference is read from the analogue input, the reference update
can be done in 2 ways:

• MODE VES – at each slow loop sampling period

• MODE VEF – at each fast loop sampling period

When the voltage reference is received online via a communication channel only
option MODE TES is possible.

 Technosoft 2022 689 ESM User Manual

Remark: The voltage contouring mode has been foreseen for testing during the
setup phase

The new motion mode becomes effective at the next update command UPD.

Example

//Read voltage reference from variable EREFV

EREFV = 30;// EREFV initial = 30[IU]

EXTREF 0;

MODE VES; //External voltage

UPD; //execute immediate

 Technosoft 2022 690 ESM User Manual

6.3.3.4.102. MODE VT

Syntax

MODE VT MODE Voltage Test

Operands –

Binary code

Description Sets the drive/motor to operate in voltage test mode. In this mode a voltage
command can be set using a test reference consisting of a limited ramp. For AC
motors (like for example the brushless motors), the test mode offers also the
possibility to rotate a voltage reference vector with a programmable speed. As
result, these motors can be moved in an “open-loop” mode without using the
position sensor. The main advantage of this test mode is the possibility to conduct
in a safe way a series of tests, which can offer important information about the
motor parameters, drive status and the integrity of the its connections.

Remark: The voltage test mode has been foreseen to facilitate the testing during
the setup phase. It is not intended for normal operation

The new motion mode becomes effective at the next update command UPD.

Example

MODE VT; //Voltage Test Mode

REFTST_V = 5022; //Reference saturation value = 1[V]

RINCTST_V = 4; //Reference increment value = 1[V/s]

UPD; //Update immediate

 Technosoft 2022 691 ESM User Manual

6.3.3.4.103. MODE VM

Only available on multi-axis Motion Controller

Syntax

MODE VM MODE Vector Mode

Operands –

Binary code

Description Sets the motion controller to operate in vector mode. In this mode the motion
controller generates a 2D trajectory using circular and linear segments. The
motion mode is configured with SETMODE command.

The path segments can be stored in the non-volatile memory of the motion
controller or received via a communication channel from a host.

Each segment is split in PVT points and sent to the slaves which, using 3rd order
interpolation, rebuild the trajectory. The segments sequence must finish with the
end segment. If the sequence doesn’t have an end segment then the motion
controller enters in Quickstop mode and the stops the slaves.

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 VPLANE (A, B, C);

 MODE VM; // Set Vector Mode

 // Increment position with (X, Y) = (0.1[rot], 0.1[rot])

 VSEG1 200L, 200L; VSEG2 200L, 200L;

 UPD; //Execute immediate

 Technosoft 2022 692 ESM User Manual

 // Circular segment of radius 3.14159[mm], with initial angle 20[deg]

 // and angle increment 50[deg])

 CIRCLE1 1L, 50.; CIRCLE2 1L, 20.;

 // Increment position with (X, Y) = (0.5[rot], 1[rot])

 VSEG1 1000L, 2000L; VSEG2 1000L, 2000L;

 // Circular segment of radius 6.28319[mm], with initial angle 10[deg]

 // and angle increment 90[deg])

 CIRCLE1 2L, 90.; CIRCLE2 2L, 10.;

 // Insert End Segment

 VSEG1 0L, 0L; VSEG2 0L, 0L;

 WMC (A, B, C); // wait for motion completion

 Technosoft 2022 693 ESM User Manual

6.3.3.4.104. NOP

Syntax

NOP No Operation

Operands –

Binary code

Description No operation is executed. The TML program will continue with the next
instruction. The NOP instruction may be used to introduce a delay between two
instructions.

Example

Var1=100;

LOOP: // execute a 100 times a loop

Var1-=1; // decrement Var1 by 1

NOP; // no operation

GOTO LOOP, Var1, GEQ; // stay in loop if Var1 >= 0

 Technosoft 2022 694 ESM User Manual

6.3.3.4.105. OUT

Syntax

OUT(n1, n2, …) = value16 OUTput value16 to I/O n1, n2, …

OUT(n1, n2, …) = VAR16 OUTput VAR16 value to n1, n2, …

Operands n1, n2: IO line number

value16: 16-bit integer immediate value

VAR16: 16-bit integer variable

Binary code

Description The instruction sets one or several output lines simultaneously with the immediate
value or the value of the specified variable.

Each bit from the the output line has associated through its number identifier
associated an control bit identified If the above bits from VAR are set to 1, the
corresponding outputs are set high (1), else the outputs are set low (0).

In TML the output lines are numbered from 0 to 15. Each product has a specific
number of outputs, therefore only a part of the 15 output lines is used.

Warning! Check carefully your drive/motor for the available outputs. Do not use
this command if any of the above outputs is not available. You can always set
separately each of the outputs using the OUT command

This instruction uses a 9-bit short address for the destination variable. Bit 9 value
X specifies the destination address range:

 Technosoft 2022 695 ESM User Manual

Example

int user_var;

user_var = 0x800A;// setup user_var variable

OUTPORT user_var;//Send variable address to external output port

// The command sets high the outputs: #25/Ready, #31 and #29

// and low the outputs: #12/Error, #30 and #28

 Technosoft 2022 696 ESM User Manual

6.3.3.4.106. OUTPORT

Syntax

OUTPORT VAR16 OUTput VAR16 value to IOPORT

Operands VAR16: 16-bit integer variable

Binary code

Description The instruction sets simultaneously the following drive/motor output lines:

• Ready output (#25/READY) – set by bit 15 from VAR16

• Error output (#12/ERROR) – set by bit 14 from VAR16

• General-purpose outputs: #31, #30, #29, #28 – set by bits 3, 2, 1, and 0 from
VAR16

If the above bits from VAR are set to 1, the corresponding outputs are set high
(1), else the outputs are set low (0).

In TML the I/O lines are numbered: #0 to #39. Each product has a specific
number of inputs and outputs, therefore only a part of the 40 I/O lines is used.
The I/O numbering is common for all the products; hence each product has its
own list of available I/Os.

Warning! Check carefully your drive/motor for the available outputs. Do not use
this command if any of the above outputs is not available. You can always set
separately each of the outputs using the OUT command

This instruction uses a 9-bit short address for the destination variable. Bit 9
value X specifies the destination address range:

 Technosoft 2022 697 ESM User Manual

Example

int user_var;

user_var = 0x800A;// setup user_var variable

OUTPORT user_var;//Send variable address to external output port

// The command sets high the outputs: #25/Ready, #31 and #29

// and low the outputs: #12/Error, #30 and #28

6.3.3.4.107. PING/PONG

Syntax

PING value16 Request the axis ID and firmware version from a group of axes

– Answer to PING

Operands value16: 16 bit immediate value, used to compute each axis answer delay

Remark: The online instructions are intended only for host/master
communication and cannot reside in a TML program. Therefore their syntax is
fictive, the only goal being to identify these commands.

In the Command interpreter, you can check which drives/motors are connected in
your network by sending a PING request with syntax PING value16. The PONG
answers from all the axes are displayed in the output window.

Binary code

 Technosoft 2022 698 ESM User Manual

Description By broadcasting a PING command, the host/master can find the axis ID of all the
drives/motors present in the network. When the PING request is sent via an RS-
232 link the host bit (H) from the expeditor address must be set to 1. For details,
see serial communication protocol description.

The operand of PING, value16, represents a time interval measured in µs. This
time is multiplied with the axis ID of each axis to provide a time delay for sending
the PONG answer. For example if value16 is 2000 then the drive/motor with axis
ID = 100 will answer after a delay of 100 x 2000µs = 0.2s. The time delay is
necessary only if the host is connected via an RS-232 link with one of the
drives/motors from a CAN-bus network. If the host is directly connected on the
CAN-bus network, value16 can be 0.

Remark: If the PING command is sent from the Command Interpreter without
operand, the value16 is set by default at 2000. This value corresponds to the
highest serial baud rate of 115200. For smaller baud rates the value16 must be
increased proportionally.

Each axis will answer to a PING command with a PONG message, which
provides the Axis ID and the firmware version of the expeditor. The firmware
version has the form: FxyzA, where xyz is the firmware number (3 digits) and A is
the firmware revision. The PING message will include the ASCII code of 4
characters: 3 digits for the firmware number + 1 letter for the firmware revision.

 Technosoft 2022 699 ESM User Manual

6.3.3.4.108. PTP

Syntax

PTP P_value, T_value, C_value Define a PT point via immediate values

PTP P_var, T_var, C_value Define a PT point via TML variables

Operands P_value – 32-bit long integer immediate value: PT point position

T_value – 16-bit unsigned integer immediate value: PT point time

C_value – 7-bit integer immediate value, PVT point integrity counter

P_var – long variable, contains the PT point position

T_var – integer variable, contains the PVT point time

Binary code

Description Defines a PT point. The PT position and time values may be provided either as
immediate values or via the values of 2 TML variables.

A PT point also includes a 7-bit integrity counter. The host must increment by one
the integrity counter each time when it sends a new PT point. If the integrity
counter error checking is activated, every time when the drive/motor receives a
new PT point, it compares its internally computed integrity counter value with the
one sent with the PTP command. The PT point is accepted only if the two values
are equal. If the values of the two integrity counters do not match, the integrity
check error is triggered, the drive/motor sends the PVTSTS to the host with

 Technosoft 2022 700 ESM User Manual

PVTSTS.12 =1 and the PT point received is discarded. Each time a PT point is
accepted, the drive/motor automatically increments its internal integrity counter.

Example

SETPT 0xCF00; //Clear PT buffer

MODE PT; // Set PT Mode

TUM1; //Start from actual value of position reference

CPR;

PTP 2000L, 2000U, 0; //PT(1[rot], 2[s])

UPD; //Execute immediate

PTP 6000L, 500U, 0; //PT(4[rot],2.5[s])

PTP -2000L, 500U, 0; //PT(3[rot],3[s])

!MC; WAIT!; //wait for completion

 Technosoft 2022 701 ESM User Manual

6.3.3.4.109. PVTP

Syntax

PVTP P_value, V_value, T_value, C_value Define a PVT point via immediate values

PVTP P_var, V_var, T_var, C_value Define a PVT point via TML variables

Operands P_value – 24-bit long integer immediate value: PVT point position

V_value – 24-bit fixed immediate value (16MSB integer part and 8LSB fractional
part): PVT point velocity

T_value – 9-bit integer immediate value: PVT point time

C_value – 7-bit integer immediate value, PVT point integrity counter

P_var – long variable, contains the PVT point position

V_var – fixed variable, contains the PVT point velocity

T_var – integer variable, contains the PVT point time

Binary code

Description Defines a PVT point. The PVT position, velocity and time values may be provided
either as immediate values or via the values of 3 TML variables.

 Technosoft 2022 702 ESM User Manual

A PVT point also includes a 7-bit integrity counter. The host must increment by
one the integrity counter each time when it sends a new PVT point. If the integrity
counter error checking is activated, every time when the drive/motor receives a
new PVT point, it compares it’s internally computed integrity counter value with the
one sent with the PVTP command. The PVT point is accepted only if the two
values are equal. If the values of the two integrity counters do not match, the
integrity check error is triggered, the drive/motor sends the PVTSTS to the host
with PVTSTS.12 =1 and the PVT point received is discarded. Each time a PVT
point is accepted, the drive/motor automatically increments its internal integrity
counter.

Example

SETPVT 0xCF00; //Clear PVT buffer

MODE PVT; // Set PVT Mode

TUM1; //Start from actual value of position reference

CPR;

PVTP 12000L, 0.04, 300U, 0;//PVT(6[rot], 1.199[rpm], 0.3[s])

UPD; //Execute immediate

PVTP -8000L, 0, 200U, 0;//PVT(2[rot], 0[rpm], 0.5[s])

!MC; WAIT!; //wait for completion

 Technosoft 2022 703 ESM User Manual

6.3.3.4.110. REG OFF

Syntax

REG_OFF REGistration OFF

Operands –

Binary code

Description Disables the superposition of the electronic gearing mode with a second motion
mode. When you disable the superposed mode, the electronic gearing slave
mode is stopped and the drive/motor executes only the other motion. If you want
to remain in the electronic gearing slave mode, set first the electronic gearing
slave move and then disable the superposed mode.

Example

REG_OFF; //Disable superposition

MODE GS; //Set as slave, position mode

UPD; //execute immediate

// drive/motor remains in gear slave mode without superposition

 Technosoft 2022 704 ESM User Manual

6.3.3.4.111. REG ON

Syntax

REG_ON REGistration ON

Operands –

Binary code

Description The instruction enables the superposition of the electronic gearing mode with a

second motion mode. When this superposed mode is activated, the position
reference is computed as the sum of the position references for each of the 2
superposed motions.

You may enable the superposed mode at any moment, independently of the
activation/deactivation of the electronic gearing slave. If the superposed mode is
activated during an electronic gearing motion, any subsequent motion mode
change is treated as a second move to be superposed over the basic electronic
gearing move, instead of replacing it. If the superposed mode is activated during
another motion mode, a second electronic gearing mode will start using the
motion parameters previously set. This move is superposed over the first one.
After the first move ends, any other subsequent motion will be added to the
electronic gearing.

Example

//Set electronic gearing slave more with superposed mode enabled.
//Master resolution: 2000 counts/rev

GEAR = 0.3333; // gear ratio

GEARMASTER = 3; //gear ratio denominator

GEARSLAVE = 1; //gear ratio numerator

EXTREF 0; // master position got via communication channel

MASTERRES = 2000; // master resolution

 Technosoft 2022 705 ESM User Manual

REG_ON; //Enable superposition

MODE GS; //Set as slave, position mode

TUM1; //Set Target Update Mode 1

SRB UPGRADE, 0xFFFF, 0x0004; //UPGRADE.2 = 1

CACC = 0.9549; //Limit maximum acceleration at 3000[rad/s^2]

UPD; //execute immediate

 Technosoft 2022 706 ESM User Manual

6.3.3.4.112. REMGRID

Syntax

REMGRID (value_1, value_2, …) REMove specified groups from GRoup ID

Operands value_1, value_2: specify a group number between 1 and 8

Binary code

Description The command removes groups from the group ID. On each axis, the group ID
represents a filter for a multicast transmission. When a multicast message is
received, each axis compares the message group ID with its own group ID. If the
two group IDs have at least one group in common, the message is accepted. For
example, if an axis is member of group 1 and group 3, it will receive all the
messages sent with a group ID including group 1 or group 3. The group ID is an
8-bit integer value. Each bit corresponds to one group: bit 0 – group 1, bit 1 –
group 2… bit 7 – group 8.

After the execution of this command, the group ID value is modified as follows:

• Bit 0 is set to 0, if (group) 1 occurs in the parenthesis

• Bit 1 is set to 0, if (group) 2 occurs in the parenthesis

• …

• Bit 7 is set to 0, if (group) 8 occurs in the parenthesis.

Example

GROUPID (8);//local axis belongs to groups 8

ADDGRID (2, 5);//local axis belongs to groups 2, 5 and 8

...

REMGRID (5, 8);//local axis belongs only to group 2

 Technosoft 2022 707 ESM User Manual

6.3.3.4.113. RESET

Syntax

RESET Reset DSP processor

Operands –

Binary code

Description Resets the drive/motor. The command may be used by an external device to
reinitialize the drive/motor after downloading new setup data.

 Remark: The drive/motor key initializations are done at ENDINIT command, using
the available setup data. This process is irreversible. If later on the setup data is
changed, it is not possible to execute again the ENDINIT command. It is
necessary to reset the drive, and then to execute ENDINIT command

 Technosoft 2022 708 ESM User Manual

6.3.3.4.114. RET

Syntax

RET RETurn from a TML function

Operands –

Binary code

Description Ends the execution of a TML function and performs the return to the next TML

instruction after the function call.

Example
...

CALL Function1; // Call Function1

UPD; // Update immediate is next instruction

// executed after RET

...

Function1:

...

RET; //Exit from Function1

 Technosoft 2022 709 ESM User Manual

6.3.3.4.115. RETI

Syntax

RETI RETurn from a TML Interrupt function

Operands –

Binary code

Description Ends the execution of a TML ISR and returns to the TML command whose

execution was postponed by the TML interrupt. RETI globally enables the TML
interrupts which were globally disabled when the TML interrupt was accepted and
the ISR was called.

Example

Int5_WrapAround: // Int5 ISR: position wraparound

AXISOFF;

RETI; // return from TML ISR

 Technosoft 2022 710 ESM User Manual

6.3.3.4.116. RGM

Syntax

RGM Reset axis as Gear/Cam Master

Operands –

Binary code

Description Resets the drive/motor from the electronic gearing / camming master operation.
When set as master, the drive/motor sends either the load position APOS (if
OSR.15 = 0) or the position reference TPOS (if OSR.15 = 1) to the axis or the
group of axes specified in the TML parameter SLAVEID. Following a RGM
command, the master transmission is disabled. The instruction becomes effective
at the next update command UPD.

 Remark: Setting / resetting the master operation does not change the motion
mode of the master

Example

RGM; // exit from master mode;

UPD; // update

6.3.3.4.117. ROUT
Syntax

ROUT#n Reset OUT#n to low state (0)

Operands n: output line number (0<=n<=39)

 Technosoft 2022 711 ESM User Manual

Binary code

Description ROUT#n instruction sets low (0 logic) the output line number n. In TML the I/O
lines are numbered: #0 to #39. Each product has a specific number of inputs and
outputs, therefore only a part of the 40 I/O lines is used. The I/O numbering is
common for all the products; hence each product has its own list of available I/Os.

Example

ROUT#28; //Reset output line #28 to 0 (set low)

 Technosoft 2022 712 ESM User Manual

6.3.3.4.118. SAP

Syntax

SAP value32 Set Actual Position to value32

SAP VAR32 Set Actual Position to VAR32

Operands value32: 32-bit long immediate value

VAR32: long variable

Binary code

Description Sets/changes the referential for position measurement by changing
simultaneously the load position APOS and the target position TPOS values, while
keeping the same position error POSERR. You can specify the new position either
as an immediate value or via a 32-bit long variable. SAP command can be
executed at any moment during motion and has the following effect:

• If last motion mode setting was done with TUM1:

TPOS = new_value;

APOS = TPOS – POSERR;

• If last motion mode setting was done without TUM1, i.e. with TUM0:

APOS = new_value;

TPOS = APOS + POSERR;

Remark: In case of steppers controlled open loop with no position feedback,
SAP command sets the new position value only in TPOS.

 Technosoft 2022 713 ESM User Manual

This instruction uses a 9-bit short address for the destination variable. Bit 9
value X specifies the destination address range:

Example

// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//slew speed = 1000[rpm]

CPOS = 6000;//position command = 3[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!MC; // set event when motion is completed

WAIT!;//Wait until the event occurs i.e. the motor stops

// At this point TPOS=6000, APOS = 6000-POSERR

SAP 2000; // Set actual position 1[rot]

// Now, TPOS=2000, APOS=2000-POSERR

 Technosoft 2022 714 ESM User Manual

6.3.3.4.119. SAVE

Syntax

SAVE Save setup data in the EEPROM

Operands –

Binary code

Description Saves the actual values of all the TML parameters with setup data from the active

data RAM memory into the EEPROM memory, in the setup table. Through this
command, you can save all the setup modifications done, after the power on
initialization.

Example

SAVE; // Save setup data in the EEPROM setup table

 Technosoft 2022 715 ESM User Manual

6.3.3.4.120. SCIBR

Syntax

SCIBR value16 Set Serial Communication Interface Baud Rate to value16

SCIBR VAR16 Set Serial Communication Interface Baud Rate to VAR16

Operands value16: 16-bit integer immediate value between 0 and 4

 VAR16: integer variable

Binary code

Description Sets the baud rate on the RS232/RS485 serial communication interface (SCI).
The new baud rate can be provided either as an immediate value or by the value
of a TML variable. In both cases, the possible values are:

The serial baud rate is set at power on using the following algorithm:

a. With the value read from the EEPROM setup table

b. If the setup table is invalid, with the last baud rate read from a valid setup
table

c. If there is no baud rate set by a valid setup table, with 9600.

 Technosoft 2022 716 ESM User Manual

Remarks:

• Use this command when a drive/motor operates in AUTORUN (after power on
starts to execute the TML program from the EEPROM) and it must
communicate with a host at a baud rate different from the default value. In this
case, the TML program must start with a serial baud rate change.

• An alternate solution to the above case is to set via SCIBR command the
desired baud rate and then to save it in the EEPROM, with the command
SAVE. After a reset, the drive/motor starts directly with the new baud rate, if
the setup table was valid. Once set, the new default baud rate is preserved,
even if the setup table is later on disabled, because the default serial baud
rate is stored in a separate area of the EEPROM.

Example

SCIBR 4; // sets the SCI baud rate to 115200 baud

 Technosoft 2022 717 ESM User Manual

6.3.3.4.121. SEG

Syntax

SEG D_time, D_ref Define a contouring segment via immediate values

SEG VAR16, VAR32 Define a contouring segment via TML variables

Operands D_time –16-bit unsigned integer value: segment time

D_ref: 32-bit fixed immediate value: segment reference increment per time unit

VAR16 – 16-bit integer variable: segment time

VAR32 – 32-bit fixed variable: segment reference increment per time unit

Binary code

Description Defines a contouring segment. The time and the reference increment per time
unit may be provided either as immediate values or via the values of 2 TML
variables. The time represents the segment duration expressed in time units i.e.
in number of slow loop sampling periods. The reference increment represents
the amount of reference variation per time unit i.e. per slow loop sampling period.

SEG VAR16, VAR32 uses a 9-bit short address for the operand. Bit 9, value X,
specifies the destination address range:

Example

 Technosoft 2022 718 ESM User Manual

// Position contouring with position feedback on motor: 500 lines

// incremental encoder (2000 counts/rev)

MODE PC;//Set Position Contouring

TUM1;//Start from actual value of position reference

SEG 100U, 20.00000; //1st segment. At its end, TPOS increases with

 // 20*100 = 2000 counts (i.e. 1 rev)

UPD; //Execute immediate

SEG 100U, 0.00000; // 2nd segment. At its end TPOS remains the
same SEG 0, 0.0; //End of contouring

 Technosoft 2022 719 ESM User Manual

6.3.3.4.122. SEND

Syntax

SEND VAR16 SEND the content of VAR16

SEND VAR32 SEND the content of VAR32

Operands VAR16: integer variable

VAR32: long/fixed variable

Binary code

Description When the instruction is encountered, the content of VAR16/VAR32 is sent using
“Take Data 2” message type. The instruction uses a 9-bit short address for the
destination variable. Bit value X specifies the destination address range:

Execution The value of VAR16/VAR32 is sent using “Take Data 2” message.

Example

MASTERID = 33; // Set host ID / address = 2

//Send SRH & SRL if motion complete or pos. trigger 1 bits change

SRH_MASK = 0x0002;

SRL_MASK = 0x0400;

MER_MASK = 0xFFFF; // send MER on any bit change

SEND CAPPOS; // Send to host contents of variable CAPPOS

 Technosoft 2022 720 ESM User Manual

6.3.3.4.123. SetAsInput

Syntax

SetAsInput(n1, n2, n3,…) SetAsInput the I/O lines numbers n1, n2, n3

Operands n1, n2, n3: IO line number. It specifies the position of the control bit associated to
the I/O line in the IO_mask.

Binary code

Description Some drives/motors include I/O lines that may be used either as inputs or as
outputs. Before using these lines as inputs you have to use the SetAsInput
command with the input numbers as argument. The input numbers identifies the
corresponding bit from the IO_mask, i.e. input number 2 has associated bit 2 in
the IO_mask. In TML the input lines are numbered from 0 to 15.

 Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O
lines that may be used either as inputs or as outputs. Each product has a
specific number of inputs, therefore only a part of the 15 input lines is used.

• You need to set an I/O line as input, only once, after power on

Example

SetAsInput(2,5); //Set IO line 2 and 5 as inputs

v1 = IN(2); //Read I/O line 2 data into variable v1

 Technosoft 2022 721 ESM User Manual

6.3.3.4.124. SetAsOutput

Syntax

SetAsOutput(n1, n2, n3,…) SetAsOutput I/O lines numbered n1, n2, n3

Operands n1, n2, n3: IO line number. It specifies the position of the control bit associated to
the I/O line in the IO_mask.

Binary code

Description Some drives/motors include I/O lines that may be used either as inputs or as
outputs. Before using these lines as outputs you have to use the SetAsOutput
command having as argument the output lines numbers. The output lines numbers
identifies the control bit from the IO_mask, i.e. output number 7 has associated bit
7 in the IO_mask, setting to 1 bit 7 the IO line will be used as output. In TML the
output lines are numbered from 0 to 15.

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O
lines that may be used either as inputs or as outputs. Each product has a
specific number of inputs and outputs, therefore only a part of the 15 output
lines is used.

• You need to set an I/O line as output, only once, after power on

Example

SerAsOutput(7); //Set IO line 7 as output

Out(4,7)=0x0090; //Set I/O lines 4 and 7 to High.

 Technosoft 2022 722 ESM User Manual

6.3.3.4.125. SETIO
Syntax

SETIO#n IN SETIO#n as Input port

SETIO#n OUT SETIO#n as OUTput port

Operands n: I/O number 0<=n<=39)

Binary code

Description Some drives/motors include I/O lines that may be used either as inputs or as
outputs. Before using these lines, you need to specify how you want to use them,
with the SETIO commands:

SETIO#n OUT; //Set the I/O line #n as an input

SETIO#n IN; //Set the I/O line #n as an output

Remarks:

• Check the drive/motor user manual to find how are set, after power-on, the I/O
lines that may be used either as inputs or as outputs

• You need to set an I/O line as input or output, only once, after power on

In TML the I/O lines are numbered: #0 to #39. Each product has a specific
number of inputs and outputs, therefore only a part of the 40 I/O lines is used.
The I/O numbering is common for all the products; hence each product has its
own list of available I/Os.

Example

 Technosoft 2022 723 ESM User Manual

SETIO#12 OUT; //Set IO line 12 as output

ROUT#12; //Reset IO line 12 level low (0 logic)

SETIO#12 IN; //Set IO line 12 as input

v1 = IN#12; //Read I/O line 12 data into variable v1

 Technosoft 2022 724 ESM User Manual

6.3.3.4.126. SETMODE

Only available on multi-axis Motion Controller

Syntax

SETMODE value16 SET 2D/3D motion MODE

Operands value16: 16-bit integer immediate value

Binary code

Description Sets the Vector or Linear Interpolation Mode as specified by value16. Value16 has
the following significance:

Remark: after SETMODE execution, a copy of value16 is saved in the TML
variable MACOMMAND.

 Technosoft 2022 725 ESM User Manual

Example

// 3D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, B, C);

 MODE LI; // Set Linear Interpolation Mode

 //Increment position with (X, Y, Z) = (0.5[rot], 0.05[rot], 0.05[rot])

 LPOS1 1000L, 100L, 100L; LPOS2 1000L, 100L, 100L;

 UPD; //Execute immediate

 //Increment position with (X, Y, Z) = (0.05[rot], 0.5[rot], 0.05[rot])

 LPOS1 100L, 1000L, 100L; LPOS2 100L, 1000L, 100L;

 //Increment position with (X, Y, Z) = (0.5[rot], 0.1[rot], 0.25[rot])

 LPOS1 1000L, 200L, 500L; LPOS2 1000L, 200L, 500L;

 //Increment position with (X, Y, Z) = (0.5[rot], 0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L, 1000L; LPOS2 1000L, 1000L, 1000L;

 Technosoft 2022 726 ESM User Manual

6.3.3.4.127. SETPT

Syntax

SETPT value16 SETup PT mode operation

Operands value16: 16-bit integer immediate value

Binary code

Description Sets the PT mode operation as specified by the value16. Value16 has the
following significance:

 Remark: after SETPT execution, a copy of value16 is saved in the TML variable
PVTMODE.

 Technosoft 2022 727 ESM User Manual

Example

SETPT 0xE02F; //Leave PT buffer intact; Change integrity

//counter value to 17

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

CPR;

PVTP 2000L, 0.0667, 500U, 17;//PVT(1[rot], 1.9[rpm], 0.5[s])

UPD; //Execute immediate

PVTP 0L, 0.0667, 500U, 18;//PVT(1[rot], 1.99997[rpm], 1[s])

PVTP 6000L, 0, 500U, 19;//PVT(4[rot], 0[rpm], 1.5[s])

 Technosoft 2022 728 ESM User Manual

6.3.3.4.128. SETPVT

Syntax

SETPVT value16 SETup PVT mode operation

Operands value16: 16-bit integer immediate value

Binary code

Description Sets the PVT mode operation as specified by the value16. Value16 has the
following significance:

 Remark: after SETPVT execution, a copy of value16 is saved in the TML
variable PVTMODE.

Example

 Technosoft 2022 729 ESM User Manual

// PVT sequence. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

MASTERID = 4081; // Set host address to 255 (255<<4+1)

SETPVT 0xC000; //Clear PVT buffer, disable counter check

 //Don’t change counter & buffer low condition

MODE PVT; // Set PVT Mode

TUM1;//Start from actual value of position reference

CPR; // Relative mode

PVTP 400L, 60, 10U, 0;//PVT(0.2[rot], 1800[rpm], 0.01[s])

UPD; //Execute immediate

PVTP 400L, 0, 10U, 0;//PVT(0.4[rot], 0[rpm], 0.02[s])

!MC; WAIT!; //wait for completion

 Technosoft 2022 730 ESM User Manual

6.3.3.4.129. SETSYNC

Syntax

SETSYNC value16 SET SYNChronization value16

Operands value16: 16-bit integer immediate value

Binary code

Description Enables/disables the transmission of synchronization messages. The drive/motor,
were these messages are enabled, is master for the synchronization process. This
is performed in two steps. First, the master sends a synchronization message to
all axes, including to itself. When this message is received, all the axes read their
own internal time. Next, the master sends its internal time to all the slaves, which
compare it with their own internal time. If there are differences, the slaves correct
slightly their sampling periods in order to keep them synchronized with those of
the master. As effect, when synchronization procedure is active, the execution of
the control loops on the slaves is synchronized with those of the master within a
10µs time interval. Due to this powerful feature, drifts between master and slave
axes are eliminated. The TML command SETSYNC value activates the
synchronization procedure if value is different from 0. Value represents the time
interval in internal units between the synchronization messages sent by the
master. Recommended value is 20ms. Setting value to 0 stops the master
transmissions and deactivates the synchronization procedure.

Remark: The master for synchronization procedure can be any drive/motor from
the network or a host. The master for this process may or may not be the same
with the overall motion application master (if present).

Example

SETSYNC 20; //Send synchronization messages every 20[ms]

 Technosoft 2022 731 ESM User Manual

6.3.3.4.130. SGM

Syntax

SGM Set axis as Gear/Cam Master

Operands –

Binary code

Description Sets the drive/motor in the electronic gearing / camming master operation. When
set as master, the drive/motor sends either the load position APOS (if OSR.15 =
0) or the position reference TPOS (if OSR.15 = 1) to the axis or the group of axes
specified in the TML parameter SLAVEID. Following a SGM command, the master
transmission is enabled. The instruction becomes effective at the next update
command UPD.

 Remark: Setting / resetting the master operation does not change the motion
mode of the master

Example

// On master axis:

SLAVEID = 31; // send to axis 31

SGM; //Enable Master in Electronic Gearing mode

SRB OSR, 0xFFFF, 0x8000; // OSR.15=1 -> Send Position Reference

UPD; //execute immediate

 Technosoft 2022 732 ESM User Manual

6.3.3.4.131. SOUT

Syntax

SOUT#n Set OUT#n to high state (1)

Operands n: output line number (0<=n<=39)

Binary code

Description SOUT#n instruction sets high (1 logic) the output line number n. In TML the I/O
lines are numbered: #0 to #39. Each product has a specific number of inputs and
outputs, therefore only a part of the 40 I/O lines is used. The I/O numbering is
common for all the products; hence each product has its own list of available I/Os.

Example

SOUT#12; //Set output line #12 to 1 (set high)

 Technosoft 2022 733 ESM User Manual

6.3.3.4.132. SRB/SRBL

Syntax

SRB VAR16, ANDmask, ORmask Set/Reset Bits of VAR16 (short addressing)

SRBL VAR16, ANDmask, ORmask Set/Reset Bits of VAR16 (full addressing)

Operands VAR16: integer variable

ANDmask: 16-bit mask for AND operation

ORmask: 16-bit mask for OR operation

 Technosoft 2022 734 ESM User Manual

Binary code

Description Performs a logic AND between VAR16 and the AND mask, followed by a logic OR
between the result and the OR mask. The result is saved in VAR16. These
instructions may be used to set/reset individual bits from a register or a TML
variable without affecting the other ones. SRB performs these operations in a safe
way avoiding the interference with the other concurrent processes wanting to
change the same TML data. This is particularly useful for the TML registers, which
have bits that can be manipulated by both drive/motor and user at TML level.

SRB uses a 9-bit short address for the operand. Bit 9 value X specifies the
destination address range:

All predefined or user-defined TML data are inside these address ranges, hence
this instruction can be used without checking the variables addresses. However,
considering future developments, the TML also includes SRBL instruction using a
16-bit full address for the operand.

Example

int var1;

....

SRB var1, 0xFF0F, 0x0003; //Reset bits 4 to 7, set bits 0

//and 1 of var1

 Technosoft 2022 735 ESM User Manual

6.3.3.4.133. STARTLOG

Syntax

STARTLOG value START LOGGER

Operands value: integer value 1 or 2

Binary code

Description Starts the acquisition of the variables selected in the Setup Logger Variables
dialogue. Value may have the following values:

1 – acquire data at each current loop sampling or from n to n current loop
samplings

2 – acquire data at each position/speed sampling loop or from n to n
position/speed loop samplings

Where n is the number of samplings between two consecutive data acquisitions.

Remark: To start the data acquisition simultaneously on all the axes for multi-axis
data logging send a broadcast message with the STARTLOG command.

Example
// In the Setup Logger Variables, the number of samplings between

// data acquisitions is set to 1

STARTLOG 1; // Save data every current loop sampling

STARTLOG 2; // Save data every position/speed loop sampling

[b]{STARTLOG 1;} // Start multi-axis logging. The data is saved at

// every current loop sampling

 Technosoft 2022 736 ESM User Manual

6.3.3.4.134. STOPLOG

Syntax

STOPLOG STOP LOGGER

Operands –

Binary code

Description Stops the data acquisition of the variables selected in the Setup Logger
Variables dialogue. To upload and plot the data saved in the drive’s acquisition
buffer use the Logger | Upload Data menu command.

Remark: To stop the data acquisition on all the axes for multi-axis logging, send a broadcast
message with the STOPLOG command.

Example
STOPLOG; // Stop the data acquisition on the current axis

[b]{STOPLOG;} // Stop the data acquisition on all the axes.

 Technosoft 2022 737 ESM User Manual

6.3.3.4.135. STA

Syntax

STA Set Target position = Actual position

Operands –

Binary code

Description Sets the value of the target position (the position reference) to the value of the

actual load position i.e. TPOS = APOS_LD. The command may be used in closed
loop systems when the load/motor is still following a hard stop, to reposition the
target position to the actual load position.

 Remark: The STA command is automatically done if the next motion mode is set
without TUM1 (i.e. using the default target update mode TUM0). In this case the
target position and speed are both updated with the actual values of the load
position and respectively load speed: TPOS = APOS_LD and TSPD = ASPD_LD.

Example

MODE PC; //Set Position Contouring Mode 2

TUM1; //Set target update mode 1

SEG 100U, 5.00000; //Set 1st motion segment. Increment

//position reference with 5 counts for

//the next 100 sampling periods

UPD; //Update immediate

SEG 100U, 5.00000; //Set 2st motion segment.

SEG 100U, -20.00000; //Set 3st motion segment.

SEG 100U, 10.00000; //Set 4st motion segment.

SEG 0, 0.; //End of contouring mode

STA; //Set target position value (TPOS) equal to //the
actual position value (APOS_LD)

 Technosoft 2022 738 ESM User Manual

6.3.3.4.136. STOP

Syntax

STOP! STOP motion on event

Operands –

Binary code

Description Executes a STOP command when a programmed event occurs.

Example:

// Move at constant speed and stop when input 36 goes low.

// Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333;//jog speed = 1000[rpm]

MODE SP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

!IN#36 0; // Set event: when input #36 goes low

STOP!; //Stop the motion when event occurs

WAIT!; //Wait until the event occurs

 Technosoft 2022 739 ESM User Manual

6.3.3.4.137. TUM

Syntax

TUM0 Set Target Update Mode 0

TUM1 Set Target Update Mode 1

Operands –

Binary code

Description Sets the target update mode 0 or 1. The TUM0 and TUM1 instructions offer 2
choices for starting a new motion mode.

After a TUM1 command, the reference generator computes the new motion mode
trajectory starting from the actual values of position and speed reference.

After a TUM0 command, the reference generator first updates the position and
speed references with the actual values of the load position and speed
(TPOS=APOS_LD and TSPD=ASPD_LD) and then starts to compute the new
motion mode trajectory.

By default, each command setting a motion mode activates the TUM0 mode. In
order to activate the TUM1 mode, execute the TML instruction TUM1 AFTER the
command setting the motion mode and BEFORE the UPD command.

As a general rule, TUM1 mode is recommended for normal operation. Use TUM0
in the following situations:

• Recovery from an error setting AXISOFF command, where significant
differences may occur between the last target position and speed values

 Technosoft 2022 740 ESM User Manual

computed by the reference generator before the AXISOFF and the actual
values of the load/motor position and speed

• Precise relative positioning from the point where the load/motor has hit a
marker – to eliminate the following error

• When you start / stop your motor using only AXISON / AXISOFF commands

• If you switch from a torque control mode (where target position and speed are
not computed by the reference generator) to a motion mode performing
position or speed control

Remark: In open loop control of steppers, TUM0 is ignored as there is no position
and/or speed feedback

The instructions become effective at the next update command UPD.

Example1:

// Start a position profile with TUM1. Position feedback:

// 500 lines incremental encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

TUM1; //set Target Update Mode 1

UPD; //execute immediate

Example2:

// Start a position profile with TUM0. Position feedback:

// 500 lines incremental encoder (2000 counts/rev)

CACC = 0.3183; //acceleration rate = 1000[rad/s^2]

CSPD = 33.3333; //slew speed = 1000[rpm]

CPOS = 6000; //position command = 3[rot]

CPR; //position command is relative

SRB ACR 0xFFFF, 0x800; // and additive

MODE PP; // set trapezoidal position profile mode

// No need to set TUM0 before UPD as MODE PP does it automatically

 Technosoft 2022 741 ESM User Manual

UPD; //execute immediate

6.3.3.4.138. UPD

Syntax

UPD! UPDate motion on event !

Operands –

Binary code

Description Executes an UPD command when a programmed event occurs.

Example

// Start a speed profile and change speed after 3 seconds.

// Position feedback: 500 lines encoder (2000 counts/rev)

CACC = 0.1591;//acceleration rate = 500[rad/s^2]

CSPD = 40;//jog speed = 1200[rpm]

MODE SP;

TUM1;//set Target Update Mode 1

UPD;//execute immediate

!RT 3000; // set event after a wait time of 3s

CSPD = 20;//jog speed = 600[rpm]

UPD!;//Update on event

WAIT!; //Wait until the event occurs

 Technosoft 2022 742 ESM User Manual

6.3.3.4.139. VPLANE

Only available on multi-axis Motion Controller

Syntax

VPLANE (X_axis, Y_axis, Tangent_axis) Vector PLANE

Operands X_axis, Y_axis, Tangent_axis: slave axes defining the coordinate system

Binary code

Description Sets the 2D coordinate system for Vector Mode using the slave axes specified
with X_axis, Y_axis. and Tangent_axis.

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 VPLANE (A, B, C);// X_axis = A, Y_axis = B and Tangent_axis = C

 RESRATIOX=0u;

 RESRATIOY=0u;

 NLINESTAN=2000;

 MODE VM; // Set Vector Mode

 // Circular segment of radius 3.14159[mm], with initial angle 0[deg]
and angle increment 360[deg])

 CIRCLE1 1L, 360.; CIRCLE2 1L, 0.;

 UPD; //Execute immediate

 // Insert End Segment

 VSEG1 0L, 0L; VSEG2 0L, 0L;

 Technosoft 2022 743 ESM User Manual

 WMC (A, B, C); // wait for motion completion

6.3.3.4.140. VSEG

Only available on multi-axis Motion Controller

Syntax

VSEG1 Pos_X, Pos_Y
Vector linear SEGment

VSEG2 Pos_X, Pos_Y

Operands Pos_X: X axis position increment for 2D trajectory

 Pos_Y: Y axis position increment for 2D trajectory

Binary code

Description VSEG1 and VSEG2 define a linear segment for 2D trajectory executed in Vector
Mode.

Based on Radius, Theta_inc and Theta_start the TML compiler from EasyMotion
Studio computes the actual parameters used by the motion controller to generate
the PVT points for slave axes.

If the points are sent from a host then the following relations must be used to
compute the actual parameters of a path segment:

 Technosoft 2022 744 ESM User Manual

Example

// 2D linear interpolated profile. Position feedbacks: 500 lines

//incremental encoder

 SETMODE 0xCF00; //Clear buffer

 LPLANE (A, C); //Slaves A and C define the coordinate system

 MODE LI; // Set Linear Interpolation Mode

 // Increment position with (X, Y) = (0.5[rot], 0.05[rot])

 LPOS1 1000L, 100L; LPOS2 1000L, 100L;

 UPD; //Execute immediate

 // Increment position with (X, Y) = (0.05[rot], 0.5[rot])

 LPOS1 100L, 1000L; LPOS2 100L, 1000L;

 // Increment position with (X, Y) = (0.5[rot], 0.1[rot])

 LPOS1 1000L, 200L; LPOS2 1000L, 200L;

 // Increment position with (X, Y) = (0.5[rot], 0.5[rot])

 LPOS1 1000L, 1000L; LPOS2 1000L, 1000L;

 Technosoft 2022 745 ESM User Manual

6.3.3.4.141. WAIT!

Syntax

WAIT! WAIT motion event !

WAIT! value32 WAIT motion event ! but exit if time > value32

Operands value32: 32-bit long immediate value – wait loop timeout limit

Binary code

Description Stops the TML program execution, until the programmed event occurs. During this
period, only the TML commands received via a communication channel are
processed. You may also specify the timeout limit for the wait, by adding a time
value after the WAIT! command: value32. If the monitored event doesn’t occur in
the time limit set, the wait loop is interrupted; the event checking is reset and the
TML program passes to the next TML instruction. The timeout is measured in
internal time units i.e. slow loop sampling periods.

Example1

// Unconditional wait for a motion complete event

// Position profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CSPD = 10;//slew speed = 300[rpm]

CPOS = 4000;//position command = 2[rot]

CPR;//position command is relative

MODE PP;

 Technosoft 2022 746 ESM User Manual

UPD;//execute immediate

!MC; // set motion complete event

WAIT!; //wait for the programmed event to occur

// if the final position is not reached or the motion complete is

// not set because the settle band and time conditions are not met

// the TML program will remain at this point

Example2

//Conditional wait for a limit switch event

// Speed profile. Position feedback: 500 lines incremental

// encoder (2000 counts/rev)

CACC = 0.1591;//acceleration rate = 500[rad/s^2]

CSPD = 40; //jog speed = 1200[rpm]

MODE SP;

TUM1; //set Target Update Mode 1

UPD;//execute immediate

ENLSP1; // activate LSP input to detect low->high transitions

!LSP; // set event of LSP transition

WAIT! 5000; //Wait until the event occurs but no more than 5[s]

STOP; // stop motion

 Technosoft 2022 747 ESM User Manual

6.3.3.4.142. WAMPU

Syntax

WAMPU (Slave), value32 Wait for slave’s Absolute Motor Position Under value32

WAMPU (Slave), VAR32 Wait for slave’s Absolute Motor Position Under VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s motor absolute position becomes equal or under the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion of slave axes when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

 Technosoft 2022 748 ESM User Manual

Execution Activates the monitoring of the event on the slave axis, when motor absolute
position <= value32, respectively VAR32. The motion controller application
remains in a loop until the event on the slave axis occurs or it timeouts. This
operation erases a previous programmed event that has occurred.

Example

//Stop slave B and C when the motor position <= -3 rev on slave A

//Position feedback: 500 lines encoder (2000 counts/rev)

// Wait for event : When axis A motor absolute position is

// equal or under value -3 rot

WAMPU (A), -6000L;

(B,C) {

 STOP; // Stop motion with acceleration / deceleration set

}

 Technosoft 2022 749 ESM User Manual

6.3.3.4.143. WAMPO

Syntax

WAMPO (Slave) value32 Wait for slave’s Absolute Motor Position Over value32

WAMPO (Slave) VAR32 Wait for slave’s Absolute Motor Position Over VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s motor absolute position becomes equal or over the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion of slave axes when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

 Technosoft 2022 750 ESM User Manual

Execution Activates the monitoring of the event on the slave axis, when motor absolute
position >= value32, respectively VAR32. The motion controller application
remains in a loop until the event on the slave axis occurs or it timeouts. This
operation erases a previous programmed event that has occurred.

Example

//Reverse motion on B slave when motor position >= 1rev on C slave

//Position feedback: 500 lines encoder (2000 counts/rev)

(B) {

 //Speed profile on B slave

 CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

 CSPD = 3.3333;//jog speed = 100[rpm]

 MODE SP;

 TUM1; //set Target Update Mode 1

 UPD; // execute immediate

 }

CSPD = -40; //jog speed = -1200[rpm]

(B)CSPD = CSPD; //Send the local variable CSPD to variable CSPD of

// slaves (B)

// Wait for event : When axis C motor absolute position is equal

// or over value 1 rot

WAMPO (C), 2000L;

(B) {

 UPD; // Update immediate. Speed command is reversed

}

Remark: You can activate a new motion on a programmed event in 2 ways:

• Set UPD! command then wait for event occurrence. This will activate the new
motion immediately when the event occurs

• Wait the event then update the motion with UPD. This will activate the new
motion with a slight delay compared with the first option

 Technosoft 2022 751 ESM User Manual

6.3.3.4.144. WALPU

Syntax

WALPU (Slave) value32 Wait for slave’s Absolute Load Position Under value32

WALPU (Slave) VAR32 Wait for slave’s Absolute Load Position Under VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s load absolute position becomes equal or under the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion of slave axes when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

 Technosoft 2022 752 ESM User Manual

Execution Activates the monitoring of the event on the slave axis, when load absolute
position <= value32, respectively VAR32. The motion controller application
remains in a loop until the event on the slave axis occurs or it timeouts. This
operation erases a previous programmed event that has occurred.

Example

//Set the speed command when load absolute position is <= 10 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

// Wait for event : When axis B load absolute position is equal

// or under value 10 rot

CSPD = 13.3333;//new slew speed command = 500[rpm]

WALPU (B), 20000L;

(C)CSPD = CSPD; //Send the local variable CSPD to variable CSPD

// of slaves (C)

 Technosoft 2022 753 ESM User Manual

6.3.3.4.145. WALPO

Syntax

WALPO (Slave), value32 Wait slave’s Absolute Load Position Over value32

WALPO (Slave), VAR32 Wait slave’s Absolute Load Position Over VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s load absolute position becomes equal or over the
specified value or the value of the specified variable. After you have programmed
an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion of slave axes when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates the monitoring of the event on the slave axis, when load absolute
position >= value32, respectively VAR32. The motion controller application

 Technosoft 2022 754 ESM User Manual

remains in a loop until the event on the slave axis occurs or it timeouts. This
operation erases a previous programmed event that has occurred.

Example

//Stop all slaves when load position on slave B >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

 TIMEOUT 1000L; // Set wait timeout to 1[s]

// Wait for event : When axis B motor absolute position is equal

// or over value 1 rot

 WAMPO (B), 6000L;

 STOP; // Stop the motion

 Technosoft 2022 755 ESM User Manual

6.3.3.4.146. SAVEERROR

Syntax

SAVEERROR VAR32 GET oldest ERROR from RAM

Operands VAR32: 32-bit long variable containing the slave error

Binary code

Description Saves the slave error from VAR32 in a circular buffer located in EEPROM. The
buffer can hold up to 8 error codes. If the buffer is full and a new error is saved
then the oldest error is overwritten. The content of VAR32 must be initialized using
the GETERROR VAR32 command.

Example
// Retrieve oldest 3 errors and save them in the EEPROM

 LONG error_code; //define variable error_code

 GETERROR error_code; //Read oldest error from motion controller RAM

 SAVEERROR error_code; // Save the error in the motion controller
EEPROM

 GETERROR error_code; //Read second error from motion controller RAM

 SAVEERROR error_code; // Save the error in the motion controller
EEPROM

 GETERROR error_code; //Read third error from motion controller RAM

 SAVEERROR error_code; // Save the error in the EEPROM

 SEND error_code; // Send third error code to the host

 Technosoft 2022 756 ESM User Manual

6.3.3.4.147. GETERROR

Syntax

GETERROR VAR32 GET oldest ERROR from RAM

GETERROR n,VAR32 GET n-th ERROR from EEPROM

Operands VAR32: 32-bit long variable to store the error

 n : error position in the circular buffer

Binary code

Description The motion controller uses a circular buffer in RAM to store the slaves’ errors. The
buffer can hold up to 8 error codes. If an error is received and the buffer is full then
the new error will overwrite the oldest one. The buffer is read with GETERROR
VAR32 command which retrieves the oldest error from the motion controller RAM.
The error code is saved in VAR32. Once it was read the buffer entry is released.
GETERROR VAR32 returns zero when the buffer is empty.

 The GETERROR n, VAR32 retrieves n-th error stored in the non-volatile memory
of the drive. The errors are stored in a circular buffer that can hold up to 8 error
codes, n = 0 oldest entry and n = 7 newest entry. The errors can be saved in the
EEPROM with the command SAVEERROR command.

 Technosoft 2022 757 ESM User Manual

Example
// Retrieve oldest 3 errors and save them in the EEPROM

 LONG error_code; //define variable error_code

 GETERROR error_code; //Read oldest error from motion controller RAM

 SAVEERROR error_code; // Save the error in the motion controller
EEPROM

 GETERROR error_code; //Read second error from motion controller RAM

 SAVEERROR error_code; // Save the error in the motion controller
EEPROM

 GETERROR error_code; //Read third error from motion controller RAM

 SAVEERROR error_code; // Save the error in the EEPROM

 GETERROR 1, error_code; // Retrieve second error from the EEPROM

 SEND error_code; // Send third error code to the host

 Technosoft 2022 758 ESM User Manual

6.3.3.4.148. WVDU

Syntax

WVDU value32 Wait Vector Distance Under value32

WVDU VAR32 Wait Vector Distance Under VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the vector distance is equal or under the specified value or the
value of 32-bit variable. After you have programmed an event, you can do the
following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

Execution Activates the monitoring of the event when vector distance <= value32,
respectively VAR32. The motion controller application remains in a loop until the
event occurs or it timeouts. This operation erases a previous programmed event
that has occurred.

 Technosoft 2022 759 ESM User Manual

6.3.3.4.149. WCAP

Syntax

WCAP1 (Slave) Wait for slave’s 1st CAPture input transition 0 to 1

WCAP0 (Slave) Wait for slave’s 1st CAPture input transition 1 to 0

Operands Slave: slave axis monitored for event occurrence

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the transition occurs on the 1st capture/encoder index inputs on
the slave axis. When the programmed transition occurs the following happens on
the slave axis:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for setup configurations which use different sensors
for load and motor and foresee a transmission ratio between them. For all the
other setup configurations, the master position is saved in CAPPOS2

After you have programmed an event, you can do the following actions:

 Technosoft 2022 760 ESM User Manual

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates the monitoring of the event, when the programmed transition (low to
high or high to low) occurs on the 1st capture/encoder index input. The motion
controller application remains in a loop until the event on the slave axis occurs or
it timeouts. This operation erases a previous programmed event that has
occurred.

Example

//Stop motion on all slaves on next encoder index

// Wait for event : When axis A encoder index goes low->high

WCAP1 (A);

STOP; //Stop the motion

(A) { // Command slave A to move on captured position

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

}

WMC (A); //wait for completion

 Technosoft 2022 761 ESM User Manual

6.3.3.4.150. WVDO

Syntax

WVDO value32 Wait Vector Distance Under value32

WVDO VAR32 Wait Vector Distance Under VAR32

Operands VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the vector distance is equal or over the specified value or the value
of 32-bit variable. After you have programmed an event, you can do the following
actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

Execution Activates the monitoring of the event when vector distance >= value32,
respectively VAR32. The motion controller application remains in a loop until the
event occurs or it timeouts. This operation erases a previous programmed event
that has occurred.

 Technosoft 2022 762 ESM User Manual

6.3.3.4.151. WTR

Syntax

WTR (Slave) Wait Target Reached

Operands Slave: slave axis monitored for event occurrence

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave axis reaches the target position. After you have
programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

Execution Activates the monitoring of the event when target reached. The motion controller
application remains in a loop until the event occurs or it timeouts. This operation
erases a previous programmed event that has occurred.

 Technosoft 2022 763 ESM User Manual

6.3.3.4.152. WPRU

Syntax

WPRU (Slave), value32 Wait for slave’s Position Reference Under
value32

WPRU (Slave), VAR32 Wait for slave’s Position Reference Under VAR32

Operands Slave: slave axis monitored for event occurrence

 VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the when the position reference is equal or under the specified
value or the value of the specified variable. After you have programmed an event,
you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the WAIT! command expires.

Remark: After setting UPD! or STOP! you need to wait until the programmed
event occurs using WAIT!, otherwise, the program will continue with the next
instructions that may override the event monitoring.

 Technosoft 2022 764 ESM User Manual

Execution Activates the monitoring of the event, when position reference <= value32,
respectively VAR32. The motion controller application remains in a loop until the
event on the slave axis occurs or it timeouts. This operation erases a previous
programmed event that has occurred.

Example:

//Stop motion when position reference >= 3 rev

//Position feedback: 500 lines encoder (2000 counts/rev)

WPRU 6000; //Set event: when position reference is >= 3 rev

STOP;//Stop the motion when the event occurs

 Technosoft 2022 765 ESM User Manual

6.3.3.4.153. WPRO

Syntax

WPRO (Slave), value32 Wait for slave’s Position Reference Over value32

WPRO (Slave), VAR32 Wait for slave’s Position Reference Over VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: long variable

value32: 32-bit long immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s position reference is equal or over the specified value
or the value of the specified variable. After you have programmed an event, you
can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

Execution Activates the monitoring of the event, when position reference >= value32,
respectively VAR32. The motion controller application remains in a loop until the

 Technosoft 2022 766 ESM User Manual

event on the slave axis occurs or it timeouts. This operation erases a previous
programmed event that has occurred.

Example:

//Stop motion on all slaves when position reference on slave C >=

// 3 rev. Position feedback: 500 lines encoder (2000 counts/rev)

// Wait for event : When position reference on axis C is equal or

// over value 3rot

WPRO (C), 6000L;

STOP; //Stop the motion

 Technosoft 2022 767 ESM User Manual

6.3.3.4.154. WMSU

Syntax

WMSU (Slave), value32 Wait for slave’s Motor Speed
Under value32

WMSU (Slave), VAR32 Wait for slave’s Motor Speed
Under VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition halts the execution of the TML program from motion
controller until the motor speed is equal or under the 32-bit value or the value of
the specified fixed variable. After you have programmed an event, you can do the
following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

 Technosoft 2022 768 ESM User Manual

Execution Activates the monitoring of the event when motor speed <= value32, respectively
VAR32. The motion controller application remains in a loop until the event on the
slave axis occurs or it timeouts. This operation erases a previous programmed
event that has occurred.

Example

//Motor on slave A is decelerating. Start a new position profile

// on slave A when motor speed < 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

WMSU (A) 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

(A) {

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD

};

 Technosoft 2022 769 ESM User Manual

6.3.3.4.155. WMSO

Syntax

WMSO (Slave), value32 Wait for slave’s Motor Speed Over value32

WMSO (Slave), VAR32 Wait for slave’s Motor Speed Over VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until when the motor speed is equal or over the 32-bit value or the value
of the specified fixed variable. After you have programmed an event, you can do
the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates the monitoring of the event on the slave axis, when motor speed >=
value32, respectively VAR32. The motion controller application remains in a loop

 Technosoft 2022 770 ESM User Manual

until the event on the slave axis occurs or it timeouts. This operation erases a
previous programmed event that has occurred.

Example

//Motor is accelerating. Stop motion on all axes when motor

//speed > 600 rpm

//Position feedback: 500 lines encoder (2000 counts/rev)

WMSO (D) 20; //Set event: when motor speed is > 600 rpm

STOP;//Stop the motion when the event occurs

 Technosoft 2022 771 ESM User Manual

6.3.3.4.156. WLSP

Syntax

WLSP1 Wait for slave’s Limit Switch Positive goes from 0 to 1

WLSP0 Wait for slave’s Limit Switch Positive goes from 1 to 0

Operands –

Binary code

Description Sets the event condition when the programmed transition occurs at the positive
limit switch input. After you have programmed an event, you can do the following
actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates monitoring of the event when the programmed transition occurs at the
positive limit switch input. This operation erases a previous programmed event
that has occurred.

Example

//Reverse slave C when positive limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

(C) {

 Technosoft 2022 772 ESM User Manual

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = 16.6667; //jog speed = 500[rpm]

MODE SP;

UPD; //execute immediate

}

// Wait for event : When axis C positive limit switch goes low-
>high

WLSP1 (C);

// Wait for event : When motion is completed on axis (C)

WMC (C); //limit switch is active -> quick stop mode active

// wait until the motor stops because only then the

// new motion commands are accepted

(C) {

CSPD = -40; //jog speed = -1200[rpm]

MODE SP; //after quick stop set again the motion
mode

UPD; //execute immediate

}

 Technosoft 2022 773 ESM User Manual

6.3.3.4.157. WLSO

Syntax

WLSO (Slave), value32 Wait for slave’s Load Speed Over value32

WLSO (Slave,) VAR32 Wait for slave’s Load Speed Over VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the load speed is equal or over the 32-bit value or the value of the
specified fixed variable. After you have programmed an event, you can do the
following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

Execution Activates the monitoring of the event when load speed >= value32, respectively
VAR32. The motion controller application remains in a loop until the event on the

 Technosoft 2022 774 ESM User Manual

slave axis occurs or it timeouts. This operation erases a previous programmed
event that has occurred.

Example

//Stop motion when load speed > 600 rpm

//Load Position feedback: 500 lines encoder (2000 counts/rev)

WLSO (A) 20; //Set event: when load speed is > 600 rpm

STOP;//Stop motion on all axes

 Technosoft 2022 775 ESM User Manual

6.3.3.4.158. WLSN

Syntax

WLSN1 Wait for slave’s Limit Switch Negative goes from 0 to 1

WLSN0 Wait for slave’s Limit Switch Negative goes from 1 to 0

Operands –

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the programmed transition occurs at the negative limit switch input.
After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates monitoring of the event on the slave axis, when the programmed
transition occurs at the negative limit switch input. The motion controller
application remains in a loop until the event on the slave axis occurs or it
timeouts. This operation erases a previous programmed event that has occurred.

 Technosoft 2022 776 ESM User Manual

Example

//Reverse slave C when negative limit switch is reached

//Position feedback: 500 lines encoder (2000 counts/rev)

(C) {

CACC = 0.0637; //acceleration rate = 200[rad/s^2]

CSPD = -16.6667; //jog speed = -500[rpm]

MODE SP;

UPD; //execute immediate

}

 // Wait for event : When axis C negative limit switch goes low-
>high

WLSN1 (C);

CSPD = 40; //jog speed = 1200[rpm]

MODE SP; //after quick stop set again the motion mode

UPD; //execute immediate

 Technosoft 2022 777 ESM User Manual

6.3.3.4.159. WLSU

Syntax

WLSU (Slave), value32 Wait for slave’s Load Speed Under value32

WLSU (Slave), VAR32 Wait for slave’s Load Speed Under VAR32

Operands Slave: slave axis monitored for event occurrence

VAR32: fixed variable

value32: 32-bit fixed immediate value

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s load speed is equal or under the 32-bit value or the
value of the specified fixed variable. After you have programmed an event, you
can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for wait expires.

 Technosoft 2022 778 ESM User Manual

Execution Activates the monitoring of the event when load speed <= value32, respectively
VAR32. The motion controller application remains in a loop until the event on the
slave axis occurs or it timeouts. This operation erases a previous programmed
event that has occurred.

Example

// Start a position profile when load speed < 600 rpm

// Load Position feedback: 500 lines encoder (2000 counts/rev)

WLSU (A) 20; //Set event: when motor speed is < 600 rpm

// prepare new motion mode

(A) {

CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

CSPD = 100;//slew speed = 3000[rpm]

CPOS = 20000;//position command = 10[rot]

CPR; //position command is relative

MODE PP;

TUM1; //set Target Update Mode 1

UPD;

 }

 Technosoft 2022 779 ESM User Manual

6.3.3.4.160. WIN

Syntax

WIN#n (Slave), 0 Wait for slave’s Input#n is 0

WIN#n (Slave), 1 Wait for slave’s Input#n is 1

Operands Slave: slave axis monitored for event occurrence

n: input line number (0<=n<=39)

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the slave’s digital input #n becomes 0, respectively 1. The slave
checks the condition of the input #n is tested at each slow loop sampling period.
After you have programmed an event, you can do the following actions:

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates monitoring of the event on the slave axis, when the digital input #n
becomes 0 (!IN#n 0), respectively 1 (!IN#n 1). The motion controller application
remains in a loop until the event on the slave axis occurs or it timeouts. This
operation erases a previous programmed event that has occurred.

 Technosoft 2022 780 ESM User Manual

Example

// Start motion on slave A when digital input #36 from slave C is
high

// Wait for event: When axis C digital input 36/IN36 is high

WIN#36 (C), 1;

(A) {

 //Position profile

 CACC = 0.3183;//acceleration rate = 1000[rad/s^2]

 CSPD = 40.;//slew speed = 1200[rpm]

 CPOS = 12000L;//position command = 6[rot]

 CPR; //position command is relative

 MODE PP;

 TUM1; //set Target Update Mode 1

 UPD; // execute immediate

}

WMC (A); // wait for motion completion

 Technosoft 2022 781 ESM User Manual

6.3.3.4.161. W2CAP

Syntax

W2CAP1 (Slave) Wait for slave’s 2nd CAPture input transition 0 to 1

W2CAP0 (Slave) Wait for slave’s 2nd CAPture input transition 1 to 0

Operands Slave: slave axis monitored for event occurrence

Binary code

Description Sets the event condition and halts the execution of the TML program from motion
controller until the transition occurs on the 2nd capture/encoder index inputs on
the slave axis. When the programmed transition occurs the following happens on
the slave axis:

• The input capability to detect transitions is disabled. It must be enabled again
to detect another transition

• Motor position APOS_MT is captured and memorized in the TML variable
CAPPOS, except the case of open-loop systems, where reference position
TPOS is captured instead

• Master position APOS2 or load position APOS_LD is captured and
memorized in the TML variable CAPPOS2, except the case of steppers
controlled open loop with an encoder on the load, when load position is
captured in CAPPOS.

The selection between master and load position is done as follows: load position
is saved in CAPPOS2 only for setup configurations which use different sensors
for load and motor and foresee a transmission ratio between them. For all the
other setup configurations, the master position is saved in CAPPOS2

After you have programmed an event, you can do the following actions:

 Technosoft 2022 782 ESM User Manual

• Change the motion mode and/or the parameters when the event occurs, with
command UPD!

• Stop the motion when the event occurs, with command STOP.

The programmed event is automatically erased when the event occurs or if the
timeout for the wait expires.

Execution Activates the monitoring of the event, when the programmed transition (low to
high or high to low) occurs on the selected capture input. This operation erases a
previous programmed event that has occurred.

Example

//Stop motion on all slaves on next 2nd encoder index

// Wait for event : When axis A 2nd encoder index / home input

//goes low->high

W2CAP1 (A);

STOP; // Stop the motion

(A) { // Command slave A to move on captured position

CPOS = CAPPOS; // new command position = captured position

CPA; //position command is absolute

MODE PP;

TUM1; //set Target Update Mode 1

UPD; //execute immediate

}

WMC (A); //wait for completion

 Technosoft 2022 783 ESM User Manual

6.3.4. TML Registers

6.3.4.1. AAR - Axis Addresses Register (status, RO)

Purpose: AAR is a 16-bit status register, containing information that defines the individual and
group addresses of the motion axis.

TML Address: 0x030C

Contents. AAR information is structured as follows:

Bits 15-8 GRn. Group n selection

0 = The motion axis does not belong to group n

1 = The motion axis belongs to group n

Bits 7-0 AXISID. Axis address

value = Individual identification address for the motion axis

Remark: The AxisID is initially set at power on using the following algorithm:

1 With the value read from the EEPROM setup table containing all the setup data.

2 If the setup table is invalid, with the last axis ID value read from a valid setup table

3 If there is no axis ID set by a valid setup table, with the value read from the hardware
switches/jumpers for axis ID setting

4 If the drive/motor has no hardware switches/jumpers for axis ID setting, with the default axis ID
value which is 255.

 Technosoft 2022 784 ESM User Manual

6.3.4.2. ACR - Auxiliary Command Register (status, R/W)

Purpose: ACR is a 16-bit status register. It defines extra settings like: the configuration for
automatic start and the external reference, operation options for the S-curve and the electronic
camming modes.

TML Address: 0x0912

Contents. ACR information is structured as follows:

Bit 15 HALLST. Control type for hall start procedure

0 = Hall start procedure using BLDC control

1 = Hall start procedure using only PMSM control

Bit 14 SPDFWD. Speed forward without the speed loop

0 = Disable the speed forward in absence of a speed controller

1 = Enable the speed forward in absence of a speed controller

Bit 13 SOLCTR. Control type for stepper open loop

0 = Position control with automatic external reference analogue

1 = Speed control with automatic external reference analogue

Bit 12 CAMTYPE. Electronic camming type

0 = Relative

1 = Absolute

Bit 11 RPOSTYPE. Relative positioning type

0 = Standard

1 = Additive

 Technosoft 2022 785 ESM User Manual

Bit 10 POSCTR. Position control

0 = Disable

1 = Enable

Bit 9 SPDCTR. Speed control

0 = Disable

1 = Enable

Bit 8 TCTR. Torque control

0 = Disable

1 = Enable

Bit 7 DIGREF. Digital external reference

0 = Disable

1 = Enable

Bit 6 AREF. Analogue external reference

0 = Disable

1 = Enable

Bits 5 RDAREF. Read analogue external reference for torque mode when “Automatically
activated after Power On” is enabled

0 = In slow loop

1 = In fast loop

Bit 4 FRZOPT

0 = Freeze control using POSOKLIM and TONPOSOK parameters used also for motion
complete inside a settle band. Freeze control and motion complete inside a settle
band are mutually exclusive (for backwards compatibility).

1 = Freeze control using POSOKLIM_FC and TONPOSOK_FC parameters. It allows
simultaneous activation of both freeze control and motion complete inside a settle
band.

Bit 3 AXISEN. Behavior at ENABLE input transitions from low to high

0 = Don’t execute AXISON

1 = Execute AXISON

 Technosoft 2022 786 ESM User Manual

Bit 2 DIGTYPE. Digital external reference type

0 = 2nd encoder

1 = Pulse & Direction

Bit 1 ASTART. Start automatically after power on

0 = Disable

1 = Enable

Bit 0 STPSC. Stop profile for S-curve motion mode

0 = An S-curve profile

1 = A trapezoidal profile

6.3.4.1. ASR - Auxiliary Settings Register (configuration, R/W)

ASR is a 16-bit configuration register. It allows you to reset controllers history and enable/disable
the software limit switches.

Remark: ASR register is available for F000L, F020N, F508A, F509A firmware versions or newer.

TML Address: 0x0201

Contents: ASR information is structured as follows:

Bit 15 ACTSPDEST. Activate Speed Estimator

0 = Speed Estimator is not activated

1 = Speed Estimator is activated

Bit 14 Reserved

 Technosoft 2022 787 ESM User Manual

Bit 13 I2TFRA. I2t Fault Reset Action. Only valid if ASR.1 = 0.

0 = Fault Reset will reset I2t fault immediately and allow motor control with reduced
capabilities (current limit set to 90% of nominal current)

1 = Fault Reset will not reset I2t fault until the I2t integral is 0. Motor control is not
allowed until I2t integral is 0

Bit 12 SWLEN. Software Limit Switches Enable

0 = Software Limit Switches are disabled

1 = Software Limit Switches are enabled

Bit 11 RMDIR. Reverse movement direction

0 = Reverse movement direction is disabled

1 = Reverse movement direction is enabled

Bit 10 SWAD25. Switch AD2 and AD5; this feature allows the usage of the +/-10V circuit
either on FDBK or on REF

0 = AD2 and AD5 not switched

1 = AD2 and AD5 switched

Bit 9 EERES. Extended encoder resolution

0 = Encoder resolution <= 65535

1 = Encoder resolution > 65535

Bit 8 COIM. CANopen interpolation mode

0 = Legacy CANopen PT/PVT mode enabled

1 = The CANopen interpolation mode (6060h = 7) works as described in the CiA 402
standard.

Bit 7 NMNT. New treatment for negative transmission

0 = Legacy treatment of negative transmission

1 = New treatment of negative transmission

Bit 6 RSTPCHY. Reset Position Controller History

0 = Leave position controller history unchanged

1 = Reset position controller history

Bits 5 RSTSCHY. Reset Speed Controller History

0 = Leave speed controller history unchanged

1 = Reset speed controller history

 Technosoft 2022 788 ESM User Manual

Bit 4 RSTCCHY. Reset Current Controller History

0 = Leave current controller history unchanged

1 = Reset current controller history

Bit 3 TUM0TSSV. TUM0 Target Speed Starting Value

0 = When TUM0 is selected, at the next UPDate instruction the Target Speed Starting
Value is the Actual Speed

1 = When TUM0 is selected, at the next UPDate instruction the Target Speed Starting
Value is zero.

Remark: The UPDate instruction resets the ASR.3 bit when TUM0 is selected. When needed, this
bit must be set before the UPDate instruction.
Bit 2 INPOL. Select Sink (PNP) or Source (NPN) inputs

0 = Inputs are Sink (PNP) type

1 = Inputs are Source (NPN) type

Bit 1 I2TINT. I2T Protection Trigger Software Protections Interrupt

0 = Execute Software Protections Interrupt when I2T protection triggered.

By default the drive will enter fault state and motor power will be OFF.

1 = Do not execute Software Protection Interrupt when I2T protection triggered.

The motion will continue running with 90% of Nominal Current set as the current
limit until the I2T integral drops to 0.

Remark: ASR.1 setting is valid only if the current loop is active. If using SOL voltage mode (with
no current loop), ASR.1 will always be considered as 0. (the drive will always enter Fault if an i2t
error happens).

Bit 0 SIQREG. Skip IQ controller

0 = Normal operation of IQ current controller

1 = Do not use the IQ current controller

 Technosoft 2022 789 ESM User Manual

6.3.4.1. ASR2 - Auxiliary Settings Register 2 (configuration, R/W)

ASR2 is a 16-bit configuration register. Allows you to set advanced features of the drive.

Remark: ASR2 register is available for F514E and F515F firmware versions or newer.

TML Address: 0x02A7

Contents: ASR2 information is structured as follows:

Bit 15 OUTPOL. Select Source (PNP) or Sink (NPN) outputs

0 = Outputs are Sink (NPN) type

1 = Outputs are Source (PNP) type

Bit 14 SFFAACDEC. Separate feedforward for acceleration and deceleration

0 = Same feedforward for acceleration and deceleration

1 = Separate feedforward for acceleration and deceleration

Bit 13 AICSAR5I. for iPOS2401 - activate an internal circuit that switches the analogue REF
AD5 input to be able to read +/-10V instead of 0..5V

0 = read 0..5V;

1 = read +/-10V.

Bit 12 DNESAPEHP. for dual loop firmwares: do not execute SAP at end of homing
procedure. If using absolute encoders, one might want to position the motor on a home
switch without resetting the actual absolute encoder value

0 = execute SAP at end of homing procedure;

1 = do not execute SAP at end of homing procedure.

Bit 11 SOLSLDCU. while using SOL with step loss detection

0 = TPOS or object 6062h will be shown into 6064h;

1 = Object 6064h will show the encoder value converted into microsteps/ internal units/
the same units as TPOS/ command position units. The factor group also works.

 Technosoft 2022 790 ESM User Manual

Bit 10 BISSWFE. BiSS data warning bit

0 = If DER2.1 = 1 do not enter fault, do not send 0x7300 EMCY message

1 = If DER2.1 = 1, enter fault + set MER.5=1 + send emergency message (0x7300)

Bit 9 SOLSLDFCE. while using SOL with encoder on motor (step loss detection); depends
on bit8=1

0 = do nothing

1 = At AXISON in TMLCAN or entering CANopen state Switched On, if APOS +
STALLLIM > (APOS before AXISOFF) - enter Fault state because of Control Error. -
The motor moved too much while in Axisoff

Bit 8 SOLSLDRTP. while using SOL with encoder on motor (step loss detection)

0 = At AXISON or Entering CANopen state Operation Enabled, if APOS + STALLLIM >
(APOS before AXISOFF was executed), rescale APOS according with TPOS;
TPOS does not change

1 = If APOS + STALLLIM > (APOS before AXISOFF) was executed rescale TPOS
according with APOS. APOS does not change. ; this rescaling happens when: when
entering CANopen State Switched On, when entering CANopen state Operation
enabled, in TMLCAN, when AXISON is executed after an AXISOFF

Bit 7 AOCOOE. only in F510I and F515F and above

0 = will execute AXISON in CANopen Switched On state

1 = will execute AXISON in CANopen Operation Enabled State

Bit 6 COSTPOS. usable only in CANopen firmwares

0 = When entering Operation Enabled while using CSP (Cyclic Synchronous Position)
mode 8 or Interpolated Position mode 7, the TPOS remains unchanged

1 = When entering Operation Enabled while using CSP (Cyclic Synchronous Position)
mode 8 or Interpolated Position mode 7, the TPOS will be set with the value of
APOS; It has the same function as setting ControlWord.14=1 (the motion will use
TUM0). ASR2.6 should be used only as an alternative, when the CANopen master
cannot set ControlWord.14 to 1 when it is needed

Bits 5 COUT3RL. controls OUT3/Ready LED

0 = OUT3 used as Ready LED

1 = OUT3 used only as general IO

Bit 4 COUT2EL. controls OUT2/Error LED

0 = OUT2 used as Error LED

1 = OUT2 used only as general IO

 Technosoft 2022 791 ESM User Manual

Bit 3 NPIDPCI. new PID position controller implementation (alternate implementation for
the D part) - valid only for F514F & F515F and later

0 = old PID position controller implementation

1 = new PID position controller implementation

Bit 2-0 Reserved

6.3.4.1. ASR3 - Auxiliary Settings Register 3 (configuration, R/W)

ASR3 is a 16-bit configuration register that allows setting of advanced features of the drive.

Remark: ASR3 register is available for:

F514K firmware versions or newer;

F515K firmware versions or newer;

FA00A firmware versions or newer.

TML Address:

For F514K & F515K f/w: 0xAF78

For FA00A f/w: 0xA264

Contents: ASR3 information is structured as follows:

Bit 15-10 Reserved

Bit 9 SPIMEM. EEPROM memory

0 = Legacy behaviour

1 = Enable CSP reference filtering

Bit 8 SOLPIDEN. Enable SOL+PID mode for Stepper Open loop control with encoder on
load
* Only available for F514K and newer

 Technosoft 2022 792 ESM User Manual

0 = Legacy behaviour - Stepper Open Loop with PID only

1 = Stepper Open Loop with pure Open Loop control while moving + switch to PID control
when reference is complete

Bit7 LSM. Load Sensor Monitoring

0 = Load sensor used for position control

1 = Load sensor used for monitoring only

Bit 6 SYMFBKIN. Symmetric Feedback input
* Only available for FA00A and newer

0 = Read unipolar feedback input (0:5V)

1 = Read symmetric feedback input (+-10V)

Bits 5 SYMREFIN. Symmetric Reference input
* Only available for FA00A and newer

0 = Read unipolar reference input (0:5V)

1 = Read symmetric reference input (+-10V)

Bit 4 SMOOTHRG. Smooth AxisOff / AxisOn reference generation

0 = Legacy behaviour

1 = Smooth AxisOff / AxisOn reference generation

Bit 3 NFGS. New Factor Group Settings

0 = Legacy behaviour for factor group according to CiA-402 DSP v.1.1

1 = New Factor Group Settings according to CiA-402-2

Bit 2 Reserved
Bit 1 FBKREAD. Activate Feedback reading
* Only available for FA00A and newer

0 = Disable feedback reading

1 = Activate feedback reading

Bit 0 REFREAD. Activate Reference reading
* Only available for FA00A and newer

0 = Disable reference reading

1 = Activate reference reading

 Technosoft 2022 793 ESM User Manual

6.3.4.2. CBR - CAN baud rate Register (status, R/W)

CBR is a 16-bit status register, containing information to setup the communication baud rate
parameters for CAN controller.

TML Address: 0x030D

Contents. CBR information is structured as follows:

Bit 15-8 CANBTR1. CAN bus Timing Register 1 (BTR1)

xx = CAN controller bus timing register 1

Bit 7-0 CANBTR0. CAN bus Timing Register 0 (BTR0)

xx = CAN controller bus timing register 0

6.3.4.3. CCR - Communication Control Register (command, R/W)

CCR is a 16-bit status register, containing settings for the SPI link with the EEPROM memory.

TML Address: 0x030A

Contents. CCR information is structured as follows:

Bit 15-1 Reserved

Bit 0 SPIMEM. EEPROM memory

0 = Not installed

1 = Installed

 Technosoft 2022 794 ESM User Manual

6.3.4.4. CER - Communication Error Register (status, RO)

CER is a 16-bit status register, containing status information about communication errors on CAN,
SPI and SCI communication channels.

TML Address: 0x0301

Contents. CER information is structured as follows:

Bit 15-12 Reserved

Bit 11 OFWRER. EnDat encoder offset write error

0 = No SPI timeout

1 = SPI timeout

Bit 10 OFRDER. EnDat encoder offset read error

0 = No SPI timeout

1 = SPI timeout

Bit 9 ALRSER. EnDat encoder alarm reset error

0 = No SPI timeout

1 = SPI timeout

Bit 8 ALRDER. EnDat encoder alarm read error

0 = No SPI timeout

1 = SPI timeout

Bit 7 SPITTO. SPI timeout on write operation

0 = No SPI timeout

1 = SPI timeout

 Technosoft 2022 795 ESM User Manual

Bit 6 CANBER. CAN bus off error

0 = No CAN bus off error

1 = Error

Remark: The CER.6 bit is automatically reset if the drive successfully receives a new message
over CAN.

Bit 5 CANTER. CAN Tx overrun error

0 = No CAN transmission overrun error

1 = CAN transmission overrun error

Bit 4 CANRER. CAN Rx overrun error

0 = No CAN reception overrun error

1 = CAN reception overrun error

Bit 3 CANRTO. CAN Rx Timeout Error

0 = No CAN reception timeout error

1 = CAN reception timeout error

Bit 2 SCIRTO. SCI Rx timeout error

0 = No SCI reception timeout error

1 = SCI reception timeout error

Bit 1 SCITTO. SCI Tx timeout error

0 = No SCI transmission timeout error

1 = SCI transmission timeout error

Bit 0 SCIRER. SCI Rx error

0 = No SCI reception error

1 = SCI reception error

 Technosoft 2022 796 ESM User Manual

6.3.4.5. CSR - Communication Status Register (status, RO)

CSR is a 16-bit status register, containing status information about the communication channels
of the system.

TML Address: 0x030B

Contents. CSR information is structured as follows:

Bit 15 ELGEAR. Electronic gearing/camming master flag

0 = No data to send

1 = Data to send

Bit 14 AXISDSTP. Axis ID setup flag

0 = Initial Axis ID set by software

1 = Initial Axis ID set by hardware

Bit 13-11 SCIBD. SCI baud rate

000 = 9600

001 = 19200

010 = 38400

011 = 56600

100 = 115200

101 = Reserved

110 = Reserved

111 = Reserved

Bit 10 Reserved

 Technosoft 2022 797 ESM User Manual

Bit 9-8 SPIBD. SPI baud rate

00 = 1 MHz

01 = 2 MHz

10 = 5 MHz

11 = Reserved

Bit 7-1 Reserved

Bit 0 SCITYPE. Serial communication driver type

0 = RS-232

1 = RS485

6.3.4.6. DER - Detailed Error Register (status, RO)

DER is a 16-bit status register. It provides details on the TML programming errors signaled with
Command Error bit from MER register. Also, it displays the status of software limit switches. The
errors bits are cleared with FAULTR instruction.

Remark: DER register is available for F000L, F020N, F508A, F509A, F510A and F511A firmware
or newer versions.

TML Address: 0x03AD1

Contents. DER information is structured as follows:

Bit 15-14 Reserved

1 For all obsolete drives (MotionChip2) the TML address is 0x035D

 Technosoft 2022 798 ESM User Manual

Bit 13 SLFCHKERR. Self-check error

0 = No error

1 = For CAN drives - Internal memory (OTP) checksum error

For EtherCAT drives - EtherCAT adapter communication error

Bit 12 TMLHBIGN. TML heartbeat ignored

0 = No error

1 = Tried to activate TML heartbeat protocol while CANopen mode was active.

Bit 11 SMS. Start mode status

0 = No error

1 = An error occurred during the selected start mode.

Bit 10 EBW. Encoder broken wire status

0 = No error

1 = Encoder broken wire error

Bit 9 UPDWOMC. UPD received for S-curve profile while not in motion complete

0 = No error

1 = UPD instruction received for S-curve profile while the motion complete condition was
not met

Bit 8 SCINV. Invalid S-curve profile

0 = No error

1 = S-curve parameters caused an invalid profile. UPD instruction was ignored.

Bit 7 SWLSNST. Negative software limit switch status

0 = Negative software limit switch in not active.

1 = Negative software limit switch is active.

Bit 6 SWLSPST. Positive software limit switch status

0 = Positive software limit switch is not active.

1 = Positive software limit switch is active.

Bit 5 CCALLI. Cancelable call ignored

0 = No error

 Technosoft 2022 799 ESM User Manual

1 = Cancelable call instruction received while another cancelable function was active

Bit 4 UPDAX. UPD received during AXISON execution

0 = No error

1 = UPD instruction received while AXSION was executed. The UPD instruction was
ignored and it must be sent again when AXISON is completed.

Bit 3 FCTNA. Function not available

0 = No error

1 = A call to an inexistent function was received.

Bit 1 STUF. TML stack underflow

0 = No error

1 = A RET/RETI instruction was executed while no function/ISR was active.

Bit 0 STOF. TML stack overflow

0 = No error

1 = The number of nested function calls exceeded the length of TML stack. Last function
call was ignored.

6.3.4.1. DER2 - Detailed Error Register 2 (status, RO)

DER2 is a 16-bit status register. It provides details on the BiSS errors
Remark: If the drive faults because of DER2 bits 0,1,2,3 and 4, at fault reset, APOS and the
electrical angle (if BiSS on motor) is reset with the BiSS absolute position. (side effect: if a homing
or SAP was executed before, the position will be lost). If BiSS is in DL and on motor, APOS_LD is
not reset.

TML Address: 0x0305

Contents. DER2 information is structured as follows:

 Technosoft 2022 800 ESM User Manual

Bit 15-7 Reserved
Bit 6 POSWRP. Position wraparound (for F514G and F515G or newer)

0 = No position wraparound

1 = Position wraparound has occurred

Bit 5 HSME. Hall sensor missing error

0 = No error

1 = Hall sensor missing error

Bit 4 AEICE. AEI communication error

0 = No error

1 = AEI communication error

Bit 3 BISSACKNP. Biss ack not present

0 = No error

1 = Biss ack not present

Bit 2 BISSDEB. Biss data error bit

0 = No error

1 = Biss data error bit

Bit 1 BISSDWB. Biss data warning bit

0 = No error

1 = Biss data warning bit

Bit 0 BISSCRCERR. BiSS CRC error

0 = No error

1 = BiSS CRC error

 Technosoft 2022 801 ESM User Manual

6.3.4.2. ICR - Interrupts Control Register (command, R/W)

ICR is a 16-bit command register, enabling/disabling the TML interrupts. All the unmasked bits of
this register will allow the generation of a TML interrupt at the occurrence of the associated
specific situation.

TML Address: 0x0304

Contents. ICR information is structured as follows:

Bit 15 GIM. Globally enable/disable TML interrupts

0 = Disable

1 = Enable

Bit 14-13 Reserved
Bit 12 PTCDIM. Enable/disable interrupt 12 – “Position trigger 1..4 change detected”

0 = Disable

1 = Enable

Remark: After INT12 is enabled, it will activate each time SRH bits 1,2,3 or 4 change.

Bit 11 EVNIM. Enable/disable interrupt 11 – “Event set has occurred”

0 = Disable

1 = Enable

Bit 10 TPIM. Enable/disable interrupt 10 – “Time period has elapsed”

0 = Disable

1 = Enable

 Technosoft 2022 802 ESM User Manual

Bit 9 MOTIM. Enable/disable interrupt 9 – “Motion is complete”

0 = Disable

1 = Enable

Bit 8 PCAPIM. Enable/disable interrupt 8 – “Capture input transition detected”

0 = Disable

1 = Enable

Bit 7 LSWNIM. Enable/disable interrupt 7 – “LSN programmed transition detected”

0 = Disable

1 = Enable

Bit 6 LSWPIM. Enable/disable interrupt 6 – “LSP programmed transition detected”

0 = Disable

1 = Enable

Bit 5 WRPIM. Enable/disable interrupt 5 – “Position wrap around”

0 = Disable

1 = Enable

Bit 4 CMERIM. Enable/disable interrupt 4 – “Communication error”

0 = Disable

1 = Enable

Bit 3 CTRERIM. Enable/disable interrupt 3 – “Control error”

0 = Disable

1 = Enable

Bit 2 SWPRIM. Enable/disable interrupt 2 – “Software protection”

0 = Disable

1 = Enable

Bit 1 PDPIM. Enable/disable interrupt 1 –“Short-circuit”

0 = Disable

1 = Enable

 Technosoft 2022 803 ESM User Manual

Bit 0 DLSBIM. Enable/disable interrupt 0 – “Enable input has changed”

0 = Disable

1 = Enable

6.3.4.3. ISR - Interrupts Status Register (status, RO)

ISR is a 16-bit status register, containing the interrupt flags for TML interrupts. Only unmasked
TML interrupts (see Interrupt Control Register - ICR) will generate a TML interrupt request.

TML Address: 0x0306

Contents. ISR information is structured as follows:

Bit 15-13 Reserved
Bit 12 PTCDIF. Flag for interrupt 12 – “Position trigger 1..4 change detected”

0 = Not triggered

1 = Triggered

Remark: After INT12 is enabled, it will activate each time SRH bits 1,2,3 or 4 change.

Bit 11 EVNIF. Flag for interrupt 11 – “Event set has occurred”

0 = Not triggered

1 = Triggered

Bit 10 TPIF. Flag for interrupt 10 – “Time period has elapsed”

0 = Not triggered

1 = Triggered

 Technosoft 2022 804 ESM User Manual

Bit 9 MOTIF. Flag for interrupt 9 – “Motion is complete”

0 = Not triggered

1 = Triggered

Bit 8 PCAPIF. Flag for interrupt 8 – “Capture input transition detected”

0 = Not triggered

1 = Triggered

Bit 7 LSWNIF. Flag for interrupt 7 – “LSN programmed transition detected”

0 = Not triggered

1 = Triggered

Bit 6 LSWPIF. Flag for interrupt 6 – “LSP programmed transition detected”

0 = Not triggered

1 = Triggered

Bit 5 WRPIF. Flag for interrupt 5 – “Position wraparound”

0 = Not triggered

1 = Triggered

Bit 4 CMERIF. Flag for interrupt 4 – “Communication error”

0 = Not triggered

1 = Triggered

Bit 3 CTRERIF. Flag for interrupt 3 – “Control error”

0 = Not triggered

1 = Triggered

Bit 2 SWPRIF. Flag for interrupt 2 – “Software protections”

0 = Not triggered

1 = Triggered

Bit 1 PDPIF. Flag for interrupt 1 – “Short-circuit”

0 = Not triggered

1 = Triggered

 Technosoft 2022 805 ESM User Manual

Bit 0 DSLBIF. Flag for interrupt 0 – “Enable input has changed”

0 = Not triggered

1 = Triggered

6.3.4.4. MCR - Motion Command Register (status, RO)

MCR is a 16-bit status register containing information about the motion modes, reference mode,
active control loops, positioning type - absolute or relative, etc.

TML Address: 0x0309

Contents. MCR information is structured as follows:

Bit 15 MMODE. Motion mode

0 = Same motion mode

1 = New motion mode

Bit 14 MODECHG. When motion mode is changed

0 = Update the reference

1 = Keep the reference

Bit 13 POSTYPE. Positioning type

0 = Relative

1 = Absolute

Bit 12 REGMODE. Motion superposition

0 = Disable the superposition of the electronic gearing mode with a second motion mode

1 = Enable the superposition of the electronic gearing mode with a second motion mode

Bit 11 ELGEAR. Electronic gearing master

0 = Disable the axis as master

1 = Enable the axis as master

 Technosoft 2022 806 ESM User Manual

Bit 10 POSLP. Position loop status

0 = Disabled

1 = Enabled

Bit 9 SPDLP. Speed loop status

0 = Disabled

1 = Enabled

Bit 8 CRTLP. Current loop status

0 = Disabled

1 = Enabled

Bit 7-6 EXTREF. External reference type

00 = On-line reference

01 = Analogue reference

10 = Digital reference

11 = Reserved

Bit 5 REFLOC. Analogue external reference for torque/voltage mode update

0 = Update in slow control loop

1 = Update in fast control loop

Bit 4-0 REFTYPE. Reference type

00000 = External reference 01000 = Test mode

00001 = Trapezoidal reference 01001 = PVT

00010 = Contouring position/speed 01010 = PT

00011 = Contouring torque/voltage 10000 = Stop 0/1/2

00100 = Pulse & direction 10001 = Stop using trapezoidal profile

00101 = Electronic gearing slave 10100 = Stop using S-curve profile

00110 = Electronic camming slave 10101 = Quickstop

00111 = S-curve reference

 Technosoft 2022 807 ESM User Manual

6.3.4.5. MER - Motion Error Register (status, RO)

Purpose: MER is a 16-bit status register. It groups together all the errors conditions. Most of the
error conditions trigger the FAULT status.

TML Address: 0x08FC

Contents. MER information is structured as follows:

Bit 15 ENST. Enable status of drive/motor

0 = Enabled

1 = Disabled

Bit 14 CMDER. Command error

0 = No command error

1 = Command error. The bit is set in 2 cases:

Bit 13 UVER. Under voltage error

0 = No under voltage error

1 = Under voltage error

Bit 12 OVER. Over voltage error

0 = No over voltage error

1 = Over voltage error

 Technosoft 2022 808 ESM User Manual

Bit 11 OTERD. Drive over temperature error

0 = No drive over temperature error

1 = Drive over temperature error

Bit 10 OTERM. Motor over temperature error

0 = No motor over temperature error

1 = Motor temperature error

Bit 9 I2TER. I2T protection error

0 = No drive or motor I2T error

1 = Drive or motor I2T error

Bit 8 OCER. Over-current error

0 = No over-current error

1 = Over-current error

Bit 7 LSNST. Negative limit switch status

0 = LSN in not active

1 = LSN is active

Bit 6 LSPST. Positive limit switch status

0 = LSP is not active

1 = LSP is active

Bit 5 WRPSER. Hall sensor missing /Resolver error /BiSS error /Position wrap around error

0 = No error

1 = Error

Bit 4 SCIER. Communication error

0 = No serial or internal communication error

1 = Serial or internal communication error

Bit 3 CTRER. Control error

0 = No control error

1 = Control error

 Technosoft 2022 809 ESM User Manual

Bit 2 STPTBL. Setup table status

0 = The drive/motor has a valid setup table

1 = The drive/motor has an invalid setup table

Bit 1 SCER. Short-circuit protection status

0 = No short-circuit error

1 = Short-circuit error

Bit 0 CANBER. CAN bus status

0 = No CAN bus error

1 = CAN bus error

6.3.4.6. MSR - Motion Status Register (status, RO)

MSR is a 16-bit status register, containing information about motion system status and some
specific events like: control error condition, position wrap-around, limit switches and captures
triggered by programmed transitions, etc.

TML Address: 0x0308

Contents. MSR information is structured as follows:

Bit 15 UPDATE. Update the motion mode

0 = No update

1 = Update

Bit 14 EVNRS. Event status

0 = Reset after update

1 = Set of update

 Technosoft 2022 810 ESM User Manual

Bit 13 AXISST. Axis status

0 = Axis Off

1 = Axis On

Bit 12 Reserved

Bit 11 EVNS. Events

0 = No event set, or programmed event not occurred yet

1 = Last event reached

Bit 10 CNTSGS. Contour segment

0 = Don’t update

1 = Update

Bit 9 MOTS. Motion status

0 = In motion

1 = Motion complete

Bit 8 PCAPS. Position capture

0 = Not triggered

1 = Triggered

Bit 7 LSWNS. Negative limit switch

0 = Not triggered

1 = Triggered

Bit 6 LSWPS. Positive limit switch

0 = Not triggered

1 = Triggered

Bit 5 WRPS. Position wrap around

0 = Not triggered

1 = Triggered

Bit 4 Reserved

 Technosoft 2022 811 ESM User Manual

Bit 3 CTRERS. Control error status

0 = Not triggered

1 = Triggered

Bit 2 SWPRS. Software protections status

0 = Not triggered

1 = Triggered

Bit 1 SCUPD. S-Curve update status

0 = S-curve updated successfully

1 = S-curve update denied (UPD instruction received when motion was not complete)

Bit 0 ENDINIT. Drive/motor initialization status

0 = Not performed

1 = Performed

6.3.4.7. OSR - Operating Settings Register (configuration, R/W)

OSR is a 16-bit configuration register, defines some specific operating settings regarding motor
control and data acquisition

TML Address: 0x0302

Contents. OSR information is structured as follows:

Bit 15 ELGMD. Electronic gearing master mode

0 = Send actual position to slave axes

1 = Send target position to slave axes

 Technosoft 2022 812 ESM User Manual

Bit 14 SINCTRL. Sinusoidal control mode

0 = Set sinusoidal voltage mode

1 = Set sinusoidal current mode

Bit 13 STEPMODE. Stepper control mode

0 = Rectangular control mode when the speed reaches the transition value

1 = Sinusoidal control mode

Bit 12 PSPLC. Position sensor mounting place

0 = Position sensor on motor

1 = Position sensor on load

Bit 11 LOGGER. PMSM start logging

0 = No data logging during PMSM motor start

1 = Data logging during PMSM motor start

Bit 10 STEPCTRL. Stepper motor control type

0 = Open loop

1 = Closed loop

Bit 9 BKCMD. Brake command

0 = Disabled

1 = Enabled

Bit 8 UDQSAT. Ud,q command saturation method

0 = Use independently saturated commands on d and q axes

1 = Compute Uq from Ud. Uq = f(Ud)

Bit 7-6 PWM. PWM command method

00 = Standard symmetric PWM

01 = Dead-time and Vdc compensation

10 = Dead-time, Vdc compensation and third harmonic injection

11 = Reserved

 Technosoft 2022 813 ESM User Manual

Bit 5 EEDACFSOL. Enables the SOL with corrections mode

0 = Use position controller

1 = Do not use position controller; Enable error detection and correction for Stepper Open
Loop with feedback on load

Bit 4-2 PMSMST. PMSM motor start method

000 = Reserved

001 = a/b, voltage mode, incremental encoder

010 = Start using digital Hall sensors

011 = Reserved

100 = Reserved

101 = Motionless start (encoder only) *

110 = Reserved

111 = Direct start using absolute encoder

Bit 1-0 CRTOFF. Current offset detection

00 = No current offset detection

01 = Detection without PWM activated

10 = Detection with PWM activated

11 = Reserved

*On select firmware versions only

 Technosoft 2022 814 ESM User Manual

6.3.4.8. PCR - Motion Status Register (command/status, R/W)

PCR is a 16-bit command and status register, containing both masks and status information for
TML protections.

TML Address: 0x0303

Contents. PCR information is structured as follows:

Bit 15 I2TDPRS. Status of drive i2t protection

0 = Not triggered

1 = Triggered

Bit 14 EBWPRS. Status of encoder broken wire protection

0 = Not triggered

1 = Triggered

Bit 13 UVPRS. Status of under voltage protection

0 = Not triggered

1 = Triggered

Bit 12 OVPRS. Status of over voltage protection

0 = Not triggered

1 = Triggered

Bit 11 OT2PRS. Status of drive over temperature protection

0 = Not triggered

1 = Triggered

 Technosoft 2022 815 ESM User Manual

Bit 10 OT1PRS. Status of motor over temperature protection

0 = Not triggered

1 = Triggered

Bit 9 I2TMPRS. Status of motor i2t protection

0 = Not triggered

1 = Triggered

Bit 8 IMAXP. Status of over current protection

0 = Not triggered

1 = Triggered

Bit 7 I2TDPRM. Mask for drive I2t protection

0 = Disable

1 = Enable

Bit 6 EBWPRM. Mask for encoder broken wire protection

0 = Disable

1 = Enable

Bit 5 UVPRM. Mask for under voltage protection

0 = Disable

1 = Enable

Bit 4 OVPRM. Mask for over voltage protection

0 = Disable

1 = Enable

Bit 3 OT2PRM. Mask for drive over temperature protection

0 = Disable

1 = Enable

Bit 2 OT1PRM. Mask for motor over temperature protection

0 = Disable

1 = Enable

 Technosoft 2022 816 ESM User Manual

Bit 1 I2TPRM. Mask for motor I2t protection

0 = Disable

1 = Enable

Bit 0 IMXPRM. Mask for maximum current protection

0 = Disable

1 = Enable

6.3.4.9. SCR - System Configuration Register (configuration, R/W)

SCR is a 16-bit configuration register, defines the basic application configuration regarding the
motor type and the feedback sensors used

TML Address: 0x0300

Contents. SCR information is structured as follows:

Bit 15 DRL. Digital Reference Location

0 = On Feedback 1 connector

1 = On Feedback 2 connector

Bit 14-12 MOTOR. Motor type

000 = Brushless DC

001 = Brushed DC

010 = Brushless AC

011 = Reserved

100 = Stepper

101 = Tri-phases stepper

110 = Reserved

111 = Reserved

 Technosoft 2022 817 ESM User Manual

Bit 11 SSL. Speed Sensor Location

0 = On Feedback 1 connector

1 = On Feedback 2 connector

Bit 10 PSL. Position Sensor Location

0 = On Feedback 1 connector

1 = On Feedback 2 connector

Bit 8 TSNS2. Drive temperature sensor

0 = Disabled

1 = Enabled

Bit 7 TSNS1. Motor temperature sensor

0 = Disabled

1 = Enabled

Bit 6-3 SSNS. Speed sensor

0000 = Position difference 1010 = Sin-cos without EnDat

0001 = Tachogenerator 1011 = SSI

0010 = Pulse length from Hall sensor 1100 = Linear Hall

0011 = Reserved 1101 = BiSS encoder

0100 = Reserved 1110 = Sin-cos with EnDat

0101 = Reserved 1111 = Sin-cos with Hiperface

0110 = Speed Estimator 1010 = Sin-cos without EnDat

0111 = None 1011 = SSI

1000 = Incremental Encoder 1100 = Linear Hall

1001 = Resolver 1101 = BiSS encoder

 Technosoft 2022 818 ESM User Manual

Bit 9, 2-0 PSNS. Position sensor

0000 = Quadrature encoder 1000 = Reserved

0001 = Resolver 1001 = Reserved

0010 = Sin-cos with/without EnDat 1010 = Sin-cos with EnDat

0011 = SSI 1011 = Reserved

0100 = Linear Hall 1100 = Reserved

0101 = BiSS encoder 1101 = Reserved

0110 = Reserved 1110 = Sin-cos with Hiperface

0111 = None 1111 = Reserved

6.3.4.10. SRH - Status Register High part (status, RO)

Purpose: SRH is the high part of a the status register grouping together all the key status
information concerning the drive/motor

TML Address: 0x090F

Contents. SRH information is structured as follows:

Bit 15 FAULT. Fault status

0 = No fault

1 = Drive/motor in fault status

Bit 14 INCAM. Reference position in absolute electronic camming mode

0 = Not reached

1 = Reached

 Technosoft 2022 819 ESM User Manual

Bit 13 INFRZC. In Freeze Control

0 = Inactive

1 = Active

Bit 12 INGEAR Gear ratio in electronic gearing mode

0 = Not reached

1 = Reached

Bit 11 I2TWRGD. Drive I2T protection warning

0 = Drive I2T warning limit not reached

1 = Drive I2T warning limit reached

Bit 10 I2TWRGM. Motor I2T protection warning

0 = Motor I2T warning limit not reached

1 = Motor I2T warning limit reached

Bit 9 TRGR. Target command

0 = Not reached

1 = Reached

Bit 8 PCAPS. Capture event/interrupt

0 = Not triggered

1 = Triggered

Bit 7 LSWNS. Limit switch negative event/interrupt

0 = Not triggered

1 = Triggered

Bit 6 LSWPS. Limit switch positive event/interrupt

0 = Not triggered

1 = Triggered

Bit 5 AUTORUN. AUTORUN mode status

0 = Disabled

1 = Enabled

 Technosoft 2022 820 ESM User Manual

Bit 4 PTRG4. Position trigger 4

0 = Not reached

1 = Reached

Bit 3 PTRG3. Position trigger 3

0 = Not reached

1 = Reached

Bit 2 PTRG2. Position Trigger 2

0 = Not reached

1 = Reached

Bit 1 PTRG1. Position Trigger 1

0 = Not triggered

1 = Triggered

Bit 0 ENDINIT. Drive/motor initialization status

0 = Not performed

1 = Performed

See also:

Status register low part – SRL

 Technosoft 2022 821 ESM User Manual

6.3.4.11. SRL - Status Register Low part (status, RO)

Purpose: SRL is the low part of a status register grouping together all the key status information
concerning the drive/motor

TML Address: 0x090E

Contents. SRL information is structured as follows:

Bit 15 AXISST. Axis status

0 = Axis Off

1 = Axis On

Bit 14 EVNS. Events

0 = No event set, or programmed event not occurred yet

1 = Last programmed event reached

Bits 13-11 Reserved.

Bit 10 MOTS. Motion status

0 = In motion

1 = Motion complete

Bit 9 Reserved.

Bit 8 CALLSST. Cancelable call status

0 = No function in execution following a cancelable call

1 = A function in execution following a cancelable call

 Technosoft 2022 822 ESM User Manual

Bit 7 CALLWRG. Cancelable call warning

0 = No warning

1 = Warning – a cancelable call is issued while another cancelable function is in execution

Bits 6-0 Reserved

See also:

Status register high part – SRH

6.3.4.12. SSR - Slave Status Register (status, RO)

SSR is a 32-bit status register containing information about slave axes initialization status, setup
table status, firmware compatibility and slave presence in the CAN network.

TML Address: 0x07F2

Contents. SSR information is structured as follows:

Bit 31 HIERR. H slave initialization status

0 = Initialization successful

1 = Initialization error

 Technosoft 2022 823 ESM User Manual

Bit 30 HIFW. H slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 29 HISTP. H slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 28 HDET. H slave detection

0 = Detected successfully

1 = Not detected

Bit 27 GIERR. G slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 26 GIFW. G slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 25 GISTP. G slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 24 GDET. G slave detection

0 = Detected successfully

1 = Not detected

Bit 23 FIERR. F slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 22 FIFW. F slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

 Technosoft 2022 824 ESM User Manual

Bit 21 FISTP. F slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 20 FDET. F slave detection

0 = Detected successfully

1 = Not detected

Bit 19 EIERR. E slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 18 EIFW. E slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 17 EISTP. E slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 16 EDET. E slave detection

0 = Detected successfully

1 = Not detected

Bit 15 DIERR. D slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 14 DIFW. D slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 13 DISTP. D slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

 Technosoft 2022 825 ESM User Manual

Bit 12 DDET. D slave detection

0 = Detected successfully

1 = Not detected

Bit 11 CIERR. C slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 10 CIFW. C slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 9 CISTP. C slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 8 CDET. C slave detection

0 = Detected successfully

1 = Not detected

Bit 7 BIERR. B slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 6 BIFW. B slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 5 BISTP. B slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 4 BDET. B slave detection

0 = Detected successfully

1 = Not detected

 Technosoft 2022 826 ESM User Manual

Bit 3 AIERR. A slave initialization status

0 = Initialization successful

1 = Initialization error

Bit 2 AIFW. A slave firmware compatibility with motion controller

0 = Firmware compatible

1 = Firmware incompatible

Bit 1 AISTP. A slave invalid setup table

0 = Setup table valid

1 = Invalid setup table

Bit 0 ADET. A slave detection

0 = Detected successfully

1 = Not detected

6.3.4.13. UPGRADE - Upgrade Register (configuration, R/W)

UPGRADE is a 16-bit status register, defining new options and extended features that are
activated when their corresponding bits are set.

TML Address: 0x0857

Contents. UPGRADE information is structured as follows:

Bit 15 STPTBL. Setup table

0 = Valid setup table is not required

1 = Valid setup table is required

 Technosoft 2022 827 ESM User Manual

Bit 14 DHSF. Digital hall signals filtering

0 = Disable digital hall signals filtering

1 = Enable digital hall signals filtering

Bit 13 TXBUFF. CAN-bus transmit buffer length

0 = The length of CAN-bus transmit buffer is 1 messages

1 = The length of CAN-bus transmit buffer is 5 messages

Bit 12 TINTQSTP. TML time interrupt/quickstop

0 = Disable

1 = Enable TML time interrupt and quickstop mode when a limit switch is reached

Bit 11 MCM. Motion complete mode

0 = Motion complete set when the position reference arrives at the commanded position

1 = Motion complete set when the position feedback arrives at the commanded position
and remains in a settle band for a preset stabilize time interval

Bit 10 I2TPRT. I2T protection

0 = One I2T protection common for drive and motor

1 = Two I2T protections, one for drive and the other for the motor

Bit 9 IPOS. Initial positioning mode

0 = Standard – wait time per phase up to 1s

1 = Extended – wait time per phase up to 635s

Bit 8 IORW. I/O lines read/write

0 = Simultaneous read /write of 4 general purpose inputs/outputs

1 = Simultaneous read 4 general-purpose inputs and 3 dedicated inputs: Enable, LSP and
LSN. Simultaneous set 4 general-purpose outputs and 2 dedicated outputs: Ready and
Error.

Bit 7 ATIME. Absolute time start

0 = After instruction ENDINIT

1 = After power on

 Technosoft 2022 828 ESM User Manual

Bit 6 FSTSLW. Position/speed control mode

0 = Position/speed control in slow loop

1 = Position/speed control in fast loop

Bit 5 STBCRT. Standby current for step motors

0 = Disable

1 = Enable

Bit 4 SPDCTR. Speed control error protection

0 = Common with position control error protection

1 = Separate control error protection for position and speed

Bit 3 REG. Registration mode

0 = Disabled

1 = Enabled

Bit 2 LMTSPDACC. Maximal speed/acceleration in motion modes: external, electronic
gearing and electronic camming

0 = Unlimited

1 = Limited

Bit 1 STPMD. Stop mode for steppers

0 = Disabled

1 = Enabled

Bit 0 AREFLMT. Analogue reference

0 = Symmetrical, only positive or only negative

1 = Separately programmable upper and lower limits

 Technosoft 2022 829 ESM User Manual

6.4. Internal Units and Scaling Factors

Technosoft drives/motors work with parameters and variables represented in internal units (IU).
The parameters and variables may represent various signals: position, speed, current, voltage,
etc. Each type of signal has its own internal representation in IU and a specific scaling factor. In
order to easily identify each type of IU, these have been named after the associated signals. For
example the position units are the internal units for position, the speed units are the internal
units for speed, etc.

The scaling factor of each internal unit shows the correspondence with the international standard
units (SI). The scaling factors are dependent on the product, motor and sensor type. Put in other
words, the scaling factors depend on the setup configuration.

In order to find the internal units and the scaling factors for a specific case, select the application
in the project window and then execute menu command Help | Application Programming |
Internal Units and Scaling Factors.

Important: The Help | Application Programming | Internal Units and Scaling Factors
command provides customized information function of the application setup. If you change the
drive, the motor technology or the feedback device, check again the scaling factors with this
command. It may show you other relations!

6.5. EEPROM Programmer

6.5.1. EEPROM Programmer

All Technosoft drives/motors include a non-volatile EEPROM memory. Its role is to:

• Keep the setup data in a dedicated area named setup table together with a user
programmable application ID, which helps you quickly identify the setup data uploaded from a
drive/motor.

• Store the TML motion programs and their associated data like the cam tables needed for
electronic camming applications.

• Keep the product ID of each drive/motor and the required firmware ID for the programmed
application.

Remark: The required firmware ID indicates that the actual drive/motor firmware ID must have the
same number and a revision letter equal or higher. For example if the required firmware ID is:
F000H, the actual drive/motor firmware ID must be F000H or F000I, or F000J, etc.

The Drive/Motor EEPROM Programmer is a tool specifically designed for production, through
which you can:

 Technosoft 2022 830 ESM User Manual

• Program fast and easy the EEPROM memory of any Technosoft drive/motor with all the data
needed to run a specific application. These data are grouped into a unique file named
software file (with extension .sw)

• Check EEPROM data integrity by comparing the information read from the drive/motor
memory with that read from a .sw software file

• Write protect a part or the entire EEPROM memory.

• Get information about the drive/motor configuration ID including the product ID, the firmware
ID and the application ID

The Drive/Motor EEPROM Programmer is included in both the EasySetUp and EasyMotion
Studio installation packages and is automatically installed with them. However, it may also be
installed separately. To launch the Drive/Motor EEPROM from Windows Start menu execute:
“Start | Programs | EasySetUp | Drive/Motor EEPROM Programmer” or “Start | Programs |
EasyMotion Studio | Drive/Motor EEPROM Programmer” depending on which installation package
you have used. You can also start the Drive/Motor EEPROM Programmer from the main folder of
the EasySetUp / EasyMotion Studio by executing “eepromprog.exe”.

The Drive/Motor EEPROM Programmer has 3 tabs: Application, Configuration ID and
Communication Settings

In the Application tab you select a .sw software file. Use the Download button to program it into
the drive/motor EEPROM memory. Use the Verify button to check if the information stored in the
drive/motor EEPROM is identical with that from the selected .sw file. Press the Checksum button
to compute the sum modulo 65536 of all the data from a .sw file. The checksum result may be
used by a master during the application initialization to validate that data from a drive/motor
EEPROM memory is correct and complete. For example, the host can ask a drive/motor to return
the checksum for each block of continuous data from the EEPROM, according with the .sw file.
By adding the results returned by the drive/motor, the host obtains a global checksum which must
match with the value got when the Checksum button is pressed. Use the Read… button to save
the contents of the whole EEPROM memory in a .sw file.

 Technosoft 2022 831 ESM User Manual

The Drive/Motor EEPROM Programmer signals with an OK inside a green disk that the:

• Download operation is correctly executed

• Verify operation, gives a match between the .sw file and the drive/motor EEPROM contents

• Read operation is successfully ended and the .sw file is created

Otherwise, an ERROR inside a red disk is displayed together with a message explaining the error
type.

In the Configuration ID tab, by pressing the Get Info button, you get the drive/motor
configuration ID including the product ID, the firmware ID, the EEPROM size and the application
ID.

 Technosoft 2022 832 ESM User Manual

The product ID uniquely identifies the drive/motor execution. This information is written by
Technosoft in the last EEPROM memory locations in especially reserved locations. In these
locations Technosoft also puts the product EEPROM size in 16-bit Kwords and the required
firmware ID. The main goal of this information is to protect against accidental wrong
programming of the EEPROM memory or in the case of very big TML programs against
bypassing the EEPROM capacity. Both EasySetUp and EasyMotion Studio perform the following
verifications every time a setup data or a motion application has to be downloaded.

1) The product ID of the application/setup data to download matches with the product ID
stored in the drive/motor EEPROM, or is set as being compatible

2) The required firmware of the application/setup data to download has the same number as
the drive/motor actual firmware and either the same or a lower revision

The download is performed only if both conditions are true. The application ID is a space
reserved for a text of up to 40 characters which you can program. Its main goal is to help you
quickly identify the setup data uploaded from a drive/motor. In order to program an application ID,
edit your text in the Application ID field and press the Download button.

The configuration ID tab may also be used to reprogram the product ID, the required firmware ID
and the EEPROM size, if by mistake, the area reserved for this information in the EEPROM

 Technosoft 2022 833 ESM User Manual

memory is erased. In this case, select the product name from the list, add your application ID (if it
is the case) and press the Download button.

In the Communication Settings tab, you can set the communication type and parameters as well
as the EEPROM write protection degree. When you launch the EEPROM Programmer, it tries to
communicate with your drive/motor using your last communication settings. If the communication
attempt fails, the EEPROM Programmer opens automatically the Communication Settings tab,
where you can setup the communication
parameters(HELP_COMMUNICATION_SETUP@EasySetup.hlp). Each time when you’ll try to
switch to the other tabs, the communication is checked and the other tabs are opened ONLY if the
communication is established.

If your application does not require storing data in the drive/motor EEPROM at runtime and you
don’t intend to change the setup parameters from your host and then to save the changes in the
drive/motor EEPROM, you can write protect the entire EEPROM after you download the .sw file.
This is an extra protection against accidental wrong commands that may modify EEPROM
locations. If your application requires to store data at runtime but you don’t and you don’t intend to
change the setup parameters and maybe cam tables (if present) you can write protect only the
last quarter or last half of the EEPROM and allow the write operation for the rest.

See also:

Software Files Creation and Format

Communication Setup

 Technosoft 2022 834 ESM User Manual

6.5.2. EEPROM Programmer File Format

The .sw software files can be generated either from EasySetUp or from EasyMotion Studio.

In EasySetUp you create a .sw file with the command Setup | EEPROM Programmer File…

The software file generated, includes the setup data and the drive/motor configuration ID with the
user programmable application ID. Typically, this type of .sw file is used in applications where the
motion programming is done from the host using for example one of the TML_LIB motion libraries
offered by Technosoft for: PC applications (written in C/C++, Visual Basic, Delphi Pascal,
Labview) or for PLCs according with the PLCOpen standard.

In EasyMotion Studio you create a .sw file with one of the commands: Application | EEPROM
Programmer File | Motion and Setup or Setup Only. The option Motion and Setup creates a
.sw file with complete information including setup data, TML programs, cam tables (if present)

 Technosoft 2022 835 ESM User Manual

and the drive/motor configuration ID. The option Setup Only produces a .sw file identical with that
produced by EasySetUp i.e. having only the setup data and the configuration ID.

Software File Format

A software file (with extension .sw) is a text file that can be read with any text editor. It contains
blocks of data separated by an empty row. Each block of data starts with the block start address,
followed by data values to place in ascending order at consecutive addresses: first data – to write
at start address, second data – to write at start address + 1, etc. All the data are hexadecimal 16-
bit values (maximum 4 hexadecimal digits). Each raw contains a single data value. When less
then 4 hexadecimal digits are shown, the value must be right justified. For example 92 represent
0x0092.

See also:

Drive/Motor EEPROM Programmer

 Technosoft 2022 836 ESM User Manual

7. Technical Support via Internet

7.1. Net Slave Component

EasyMotion Studio comes together with a powerful tool enabling us to provide you support via
Internet. This tool allows us to work with your drive/motor in the same way you did from your
computer. Therefore we can do a complete drive/motor setup, send you the setup file and leave
you the drive/motor programmed ready-to-run. During the entire process, we keep permanent
contact with you via a chat window.

Together with EasyMotion Studio you have also installed an application called: Net Slave
Component. This is a tool that helps you to connect your computer with the Technosoft server.

The Net Slave Component works only with server application, which runs on our computer.
Therefore, before opening your Net Slave Component, you must check that our server
application is running. The typical procedure in this case is to contact us by email or phone, to
establish an hour for setting the connection. We’ll make sure that the server application is running
several minutes before, so at the established hour you can start your slave application.

Note: If your computer where you intend to run the Net Slave Component application is
connected to your local network under a firewall or proxy machine, please check the following with
your network administrator:

Your computer can get connections to the Internet via http (80) port. You can verify this by
checking the URL http://www.technosoftmotion.com/

Your computer can get connections to the Internet via TCP port 1700. This port is used by our
communication protocol between your computer and our computer.

For further information related to the remote debugging operation, please contact us at
contact@technosoftmotion.com

See also:

How to operate the slave component

Description of topics used on Slave Component

 Technosoft 2022 837 ESM User Manual

7.2. Description of topics used on Net Slave Component

Messages: a window where the sent / received messages to / from the server application and
others users will be displayed.

Chat: a window where you can write any message you wish to send to other users or to the
MASTER user connected on the same channel with you.

Say: If you click this button the message from the « Chat » window will be send to other users as
following:

• If there is no opened channel with a MASTER user, the message will be send to all
MASTER users connected to the server application at that moment.

• If you have an opened channel with a MASTER user, the message will be send to that
MASTER user.

Shout: If you click this button the message from the « Chat » window will be send to other users
as following:

• If there is no opened channel with a MASTER user, the message will be send to all
MASTER users connected to the server application in that moment.

• If you have an opened channel with a MASTER user, the message will be send to all
MASTER users connected in that moment to the server application.

User Name: an edit where the user must enter his user name. This user name is used for
identification and for connection to the server application. You can’t connect to the server
application without setting this user name. The name must be unique. No other user is allowed to
use this user name while somebody else is using it. The user name can contain any ASCII
character.

Connect / Disconnect: This button has a double functionality. First, when you’re not connected
to the server application, this button is called « Connect » and must be clicked in order to connect
to the server application. After connection to the server application, this button will be called
«Disconnect» and you may click it in order to disconnect from the server application.

Close Channel: If you click this button, you can close the opened channel (if there is one) with
the MASTER user.

Send File…: If you click this button, you can send a file to the MASTER user if you have an
opened channel with that MASTER user.

Send Folder … : If you click this button, you can send a folder to the MASTER user if you have
an opened channel with that MASTER user.

Clear: Clears the entire « Messages » window.

 Technosoft 2022 838 ESM User Manual

Quit: If you click this button you’ll end the application. If you are still connected to the server
application while you’re clicking this button, the connection with the server application will be
closed automatically.

Help: This button opens this help.

See also:

Net Slave Component

 Technosoft 2022 839 ESM User Manual

7.3. How to operate the Net Slave Component

The Net Slave Component is installed together with EasyMotion Studio in the directory. In order to
launch the slave component execute “netslave.exe”.

To Connect to the debugging server:

In «User Name» window type you name (a nickname)

Click the « Connect » button for initializing the connection with the debugging server application.
If operation succeeded then a message (ex. message below) will appear in « Messages »
window.

« Connected to server

Waiting for log in...

Welcome slave_name »

To close the connection click « Disconnect » button. If operation succeeded then a message (ex
message below) will appear in « Messages » window.

« Connection closed »

Note:

 Technosoft 2022 840 ESM User Manual

Before attempting to connect to the debugging server you must be aware about the following
facts:

• The Net Slave Component program works as follows: Once it gets a connection to our
debugging server, it forwards the serial communication commands from our debugging
version of EasyMotion Studio to the board connected to your computer by serial cable.

• The connection is made between the computer that runs Net Slave Component, on your
side, and the computer that runs the remote debugging version of EasyMotion Studio,
on our side. As you get an Internet connection directly to our computer this might rise
some privacy/security problems. Therefore, we suggest you use, as the computer that
runs Net Slave Component, a stand-alone machine that is outside of any local network,
does not contain any confidential information and connects to the Internet through a
modem or other connection devices.

Anyway, if the computer that runs Net Slave Component is located in your local network,
possible under a firewall or proxy machine, you must make sure about the following (please
contact your network administrator on this matter):

- The computer can get connections to the Internet via http port. To verify this, check the
URL http://www.technosoftmotion.com/.

- The computer can get connections to the Internet via TCP port 1700. This port is used
by our communication protocol between your computer and our computer.

For further information related to the remote debugging operation, please contact us at
contact@technosoftmotion.com

To Close a Channel:

If you need to close a channel created with a MASTER user, all you need is to click the «Close
Channel» button.

If operation succeeded then a message (ex. Message below) will appear in «Messages» window.

« Channel closed by user slave_name”»

To Send a File:

In order to send a file to the user you are connected with, you must click the «Send File…»
button. An «Open» dialog will appear. You can select now any file you wish to send to the
MASTER user by clicking that file an then the «Open» button.

Above the «Messages» window a fill bar will appear. That bar shows the amount of file to
transfer. It must be mentioned that, when you want to send a file to MASTER user, the must user
is asked about receiving that file. If MASTER user accepts the file everything is ok otherwise a
message (ex. Message below) will appear in «Messages» window.

« >>> File error: Your partner refused to receive the file»

To Send a Folder:

 Technosoft 2022 841 ESM User Manual

In order to send a folder to the user you are connected with, you must click the « Send
Folder… » button. An «Browse for folder» dialog will appear. You can select now any file you
wish to send to the MASTER user by clicking that file an then the «OK» button.

Above the « Messages » window a fill bar will appear. That bar shows the amount of file to
transfer. It must be mentioned that, when you want to send a file to MASTER user, the must user
is asked about receiving that file. If MASTER user accepts the file everything is ok otherwise a
message (ex. Message below) will appear in « Messages » window.

« >>> File error: Your partner refused to receive the folder»

To clear the « Messages » window’s content:

Click the « Clear » button. After that, the « Messages » window must be empty.

To Send a text to all the MASTER users:

If you have and opened channel and with to send a message text to all the MASTER users, type
the text message you wish to send in the « Chat » window and click the « Shout » button.

If you don’t’ have an opened channel with a MASTER user you can type the message text you
wish to send in the « Chat » window and click the « Say » button.

To Send a text to the MASTER user connected with you:

If you have an opened channel with a MASTER user, type the message text you wish to send in
the «Chat» window and click the «Say» button.

If you don’t’ have an opened channel with a MASTER user, you must first request to a MASTER
user to open a channel with you.

To Disconnect from the server:

Just click the «Disconnect» button. After there is any opened channel with be closed and so the
connection with the server application. If operation succeeded then a message (ex. Message
below) will appear in «Messages» window.

« Connection close”»

To Quit application:

If you wish to terminate Net Slave Component application you can click the « Quit » button.

If there is any opened channel in that moment, this will be closed as well as the connection with
the debugging server application.

See also:

Description of topics used on Slave Component

 Technosoft 2022 842 ESM User Manual

8. Appendix A : TML Instructions List

[A/G] { TML Instr} Send TML instruction to [A/G]

[A/G] V16D = V16S [A/G] V16D = local V16S

[A/G] V16D, dm = V16S [A/G] V16D = local V16S (fa)

[A/G] (V16D), TM = V16S [A/G] (V16D), TM = local V16S

[A/G] (V16D+), TM = V16S [A/G] (V16D), TM = local V16S, then V16D += 1

[A/G] V32D = V32S [A/G] V32D = local V32S

[A/G] V32D, dm = V32S [A/G] V32D = local V32S (fa)

[A/G] (V16D), TM = V32S [A/G] (V16D), TM = local V32S

[A/G] (V16D+), TM = V32S [A/G] (V16D), TM = local V32S, then V16D += 2

(?)GiveMeData Ask one axis to return a 16/32 bit data from memory

(??)GiveMeData2 Ask a group of axes to return each a 16/32 bit data from memory

!ALPO Set event when absolute load position is over a value

!ALPU Set event when absolute load position is under a value

!AMPO Set event when absolute motor position over a value

!AMPU Set event when absolute motor position under a value

!CAP Set event when a capture input goes low or high

!IN#n Set event when digital input #n goes low or high

!LSN Set event when the negative limit switch (LSN) goes low or high

!LSP Set event when positive limit switch (LSP) goes low or high

!LSO Set event when load speed is over a value

!LSU Set event when load speed is under a value

!MC Set event when the actual motion is completed

 Technosoft 2022 843 ESM User Manual

!MSO Set event when motor speed is over a value

!MSU Set event when motor speed is under a value

!PRO Set event when position reference is over a value

!PRU Set event when position reference is under a value

!RPO Set event when relative load position is over a value

!RPU Set event when relative load position is under a value

!RT Set event after a wait time

!SRO Set event if speed reference is over a value

!SRU Set event if speed reference is under a value

!TRO Set event if torque reference is over a value

!TRU Set event if torque reference is under a value

!VO Set event if a long/fixed variable is over a value

!VU Set event if a long/fixed variable is under a value

ABORT Abort the execution of a function called with CALLS

ADDGRID (value16_1, value16_2,…) Add groups to the Group ID

AXISID Set Axis ID

AXISOFF AXIS is OFF (deactivate control)

AXISON AXIS is ON (activate control)

BEGIN BEGIN of a TML program

CALL Call a TML function

CALLS Cancelable CALL of a TML function

CANBR val16 Set CAN bus baud rate

CHECKSUM, TM Start, Stop, V16D V16D=Checksum between Start and Stop addresses from TM

CIRCLE Define circular segment for vector mode

CPA Command Position is Absolute

 Technosoft 2022 844 ESM User Manual

CPR Command Position is Relative

DINT Disable globally all TML interrupts

DISCAPI Disable 1st capture/encoder index input to detect transitions

DIS2CAPI Disable 2nd capture/encoder index input to detect transitions

DISLSN Disable negative limit switch (LSN) input to detect transitions

DISLSP Disable positive limit switch (LSP) input to detect transitions

EINT Enable globally all TML interrupts

EN2CAPI0 Enable 2nd capture/encoder index input to detect a high to low transition

EN2CAPI1 Enable 2nd capture/encoder index input to detect a low to high transition

ENCAPI0 Enable 1st capture/encoder index input to detect a high to low transition

ENCAPI1 Enable 1st capture/encoder index input to detect a low to high transition

END END of a TML program

ENDINIT END of Initialization

ENEEPROM Enables EEPROM usage after it was disabled by the initialization of SSI
or ENDat encoders

ENLSN0 Enable negative limit switch (LSN) input to detect a high to low transition

ENLSN1 Enable negative limit switch (LSN) input to detect a low to high transition

ENLSP0 Enable positive limit switch (LSP) input to detect a low to high transition

ENLSP1 Enable positive limit switch (LSP) input to detect a high to low transition

EXTREF Set external reference type

FAULTR Reset FAULT status. Return to normal operation

Get checksum Ask one axis to return the checksum between 2 addresses from its TML
memory

GETERROR Get last error reported by slaves

GetTMLData Ask one axis to return a TML data

GetVersion Ask one axis the firmware version

GOTO Jump

GROUPID (value16_1, value16_2,…) Set GROUP ID

V16D = IN#n Read input #n. V16D = input #n status

 Technosoft 2022 845 ESM User Manual

INITCAM addrS, addrD Copy CAM table from EEPROM (addrS address) to RAM (addrD
address)

V16D = INPUT1, ANDm
V16D = logical AND between inputs IN#25 to IN#32 status and ANDm
mask

V16D = INPUT2, ANDm
V16D = logical AND between inputs IN#33 to IN#39 status and ANDm
mask

V16D = INPORT, ANDm V16D = status of inputs Enable, LSP, LSN plus IN#36 to IN#39

LOCKEEPROM Locks or unlocks the EEPROM write protection

LPLANE Define coordinate system for linear interpolation mode

MODE CS Set MODE Cam Slave

MODE GS Set MODE Gear Slave

MODE LI Set MODE Linear Interpolation

MODE PC Set MODE Position Contouring

MODE PE Set MODE Position External

MODE PP Set MODE Position Profile

MODE PSC Set MODE Position S-Curve

MODE PT Set MODE PT

MODE PVT Set MODE PVT

MODE SC Set MODE Speed Contouring

MODE SE Set MODE Speed External

MODE SP Set MODE Speed Profile

MODE TC Set MODE Torque Contouring

MODE TEF Set MODE Torque External Fast

MODE TES Set MODE Torque External Slow

MODE TT Set MODE Torque Test

MODE VC Set MODE Voltage Contouring

MODE VEF Set MODE Voltage External Fast

MODE VES Set MODE Voltage External Slow

MODE VM Set MODE Vector Mode

 Technosoft 2022 846 ESM User Manual

MODE VT Set MODE Voltage Test

NOP No Operation

OUT(n) =value16 Set the output line as specified by value16

OUT(n1, n2, n3, …) =value16 Set the output lines n1 n2, n3 as specified by value16

OUTPORT Set Enable, LSP, LSN and general purpose outputs OUT#28-31

PING Ask a group of axes to return their axis ID

PONG Answer to a PING request

PROD <<= N Left shift 48-bit product register by N

PROD >>= N Right shift 48-bit product register by N

PTP Define a PT point

PVTP Define a PVT point

REG_OFF Disable superposed mode

REG_ON Enable superposed mode

REMGRID (value16_1, value16_2,…) Remove groups from the Group ID

RESET RESET drive / motor

RET Return from a TML function

RETI Return from a TML Interrupt Service Routine

RGM Reset electronic gearing/camming master mode

ROUT#n Set low the output line #n

SAP Set Actual Position

SAVE Save setup data in the EEPROM memory

SAVEERROR Save slave error in EEPROM

SCIBR V16 Set RS-232/Rs485 serial communication interface (SCI) baud rate

SEG Define a contouring segment

SEND Send to host the contents of a TML variable

SetAsInput(n) Set the I/O line #n as an input

SetAsOutput(n) Set the I/O line #n as an output

SETIO#n Set IO line #n as input or as output

 Technosoft 2022 847 ESM User Manual

SETPT Setup PT mode operation

SETPVT Setup PVT mod operation

SETSYNC Enable/disable synchronization between axes

SGM Set electronic gearing/camming master mode

SOUT#n Set high the output line #n

SRB V16, ANDm, ORm Set / Reset Bits from V16

SRBL V16, ANDm, ORm Set / Reset Bits from V16 (fa)

STA Set Target position = Actual position

STARTLOG V16 Start the data acquisition

STOP STOP motion

STOP! STOP motion when the programmed event occurs

STOPLOG Stop the data acquisition

Take checksum Answer to Get checksum request

TakeData Answer to GiveMeData request

TakeData Answer to Get TML Data request

TakeData2 Answer to GiveMeData2 request

TakeVersion Answer to Get version request

TUM0 Target update mode 0

TUM1 Target update mode 1

UPD Update motion mode and parameters. Start motion

UPD! Update motion mode and parameters when the programmed event
occurs

VPLANE Define coordinate system for Vector Mode

V16D = [A] V16S Local V16D = [A] V16S

V16D = [A] V16S, dm Local V16D = [A] V16S, dm (fa)

V16D = [A] (V16S), TM Local V16D = [A] (V16S), dm

V16D = [A] (V16S+), TM Local V16D = [A] (V16S), dm, then V16S += 1

V32D = [A] V32S Local V32D = [A] V32S

 Technosoft 2022 848 ESM User Manual

V32D = [A] V32S, dm Local V32D = [A] V32S, dm (fa)

V32D = [A] (V16S), TM Local V32D = [A] (V16S), TM

V32D = [A] (V16S+), TM Local V32D = [A] (V16S), TM, then V16S += 2

V16 = label V16 = &label

V16D = V16S V16D = V16S

V16 = val16 V16 = val16

V16D = V32S(H) V16D = V32S(H)

V16D = V32S(L) V16D = V32S(L)

V16D, dm = V16S V16D = V16S (fa)

V16D, dm = val16 V16D = val16 (fa)

V16D = (V16S), TM V16D = (V16S) from TM memory

V16D = (V16S+), TM V16D = (V16S) from TM memory, then V16S += 1

(V16D), TM = V16S (V16D) from TM memory = V16S

(V16D), TM = val16 (V16D) from TM memory = val16

(V16D+), TM = V16S (V16D) from TM memory = V16S, then V16D += 1

(V16D+), TM = val16 (V16D) from TM memory = val16, then V16D += 1

V32(H) = val16 V32(H) = val16

V32(L) = val16 V32(H) = val16

V32D(H) = V16S V32D(H) = V16

V32D(L) = V16S V32D(L) = V16

V16D = -V16S V16D = -V16S

V32D = V32S V32D = V32S

V32 = val32 V32 = val32

V32D =V16S << N V32D = V16S left-shifted by N

V32D, dm = V32S V32D from dm = V32S (fa)

V32D, dm = val32 V32 from dm = val32 (fa)

V32D = (V16S), TM V32D = (V16S) from TM memory

V32D = (V16S+), TM V32D = (V16S) from TM memory, then V16S += 2

 Technosoft 2022 849 ESM User Manual

(V16D), TM = V32S (V16D) from TM memory = V32S

(V16D), TM = val32 (V16D) from TM memory = val32

(V16D+), TM = V32S (V16D) from TM memory = V32S, then V16D += 2

(V16D+), TM = val32 (V16D) from TM memory = val32, then V16D += 2

V32D = -V32S V32D = -V32S

V16 += val16 V16 = V16 + val16

V16D += V16S V16D = V16D + V16S

V32 += val32 V32 = V32 + val32

V32D += V32S V32D = V32D + V32S

V16 -= val16 V16 = V16 - val16

V16D -= V16S V16D = V16D - V16S

V32 -= val32 V32 = V32 - val32

V32D -= V32S V32D = V32D - V32S

V16 * val16 << N 48-bit product register = (V16 * val16) >> N

V16 * val16 >> N 48-bit product register = (V16 * val16) >> N

V16A * V16B << N 48-bit product register = (V16A * V16B) << N

V16A * V16B >> N 48-bit product register = (V16A * V16B) >> N

V32 * V16 << N 48-bit product register = (V32 * V16) << N

V32 * V16 >> N 48-bit product register = (V32 * V16) >> N

V32 * val16 << N 48-bit product register = (V32 * val16) << N

V32 * val16 >> N 48-bit product register = (V32 * val16) >> N

V32=/V16 Divide V32 to V16

V16 <<= N Left shift V16 by N

V32 <<= N Left shift V32 by N

V16 >>= N Right shift V16 by N

V32 >>= N Right shift V32 by N

VSEG Define linear segment for vector mode

WAIT! Wait until the programmed event occurs

 Technosoft 2022 850 ESM User Manual

WALPO Set and wait event when slave’s absolute load position is over a value

WALPU Set and wait event when slave’s absolute load position is under a value

WAMPO Set and wait event when slave’s absolute motor position over a value

WAMPU Set and wait event when absolute motor position under a value

WCAP Set and wait event when slave’s 1st capture/encoder index input goes
low or high

W2CAP Set and wait event when slave’s 2nd capture/encoder index input goes
low or high

WIN#n Set and wait event when slave’s digital input #n goes low or high

WLSN Set event when slave’s negative limit switch (LSN) goes low or high

WLSP Set event when slave’s positive limit switch (LSP) goes low or high

WLSO Set event when slave’s load speed is over a value

WLSU Set event when slave’s load speed is under a value

WMC Set and wait event when the actual motion is completed on one or more
slave axes

WMSO Set and wait event when slave’s motor speed is over a value

WMSU Set and wait event when slave’s motor speed is under a value

WPRO Set and wait event when slave’s position reference is over a value

WPRU Set and wait event when slave’s position reference is under a value

WRPO Set and wait event when slave’s relative load position is over a value

WRPU Set and wait event when slave’s relative load position is under a value

WRT Set event after a wait time

WVDU Set and wait event when the vector distance is under a value

WVDO Set and wait event when the vector distance is over a value

WTR Set and wait event when the slave’s target is reached

 Technosoft 2022 851 ESM User Manual

9. Appendix B : TML Data List

AAR Type: UINT

Address: 0x030C

ACR Type: UINT

Address: 0x0912

AD5 Type: UINT

Address 0x0241

AD5 OFF Type: INT

Address: 0x0249

APOS Type: LONG

Address: 0x0228

APOS_MT Type: LONG

Address: 0x0988

APOS2 Type: LONG

Address: 0x081C

ASPD Type: FIXED

Address: 0x022C

ASPD_LD Type: FIXED

Address: 0x098A

ASPD_MT Type: FIXED

Address: 0x098A

ATIME Type: LONG

Address: 0x02C0

BRAKELIM Type: UINT

Address: 0x028A

CACC Type: FIXED

Address: 0x02A2

 Technosoft 2022 852 ESM User Manual

CADIN Type: INT

Address 0x025C

CAMINPUT Type: LONG

Address: 0x0901

CAMOFF Type: LONG

Address: 0x03AD

CAMSTART Type: INT

Address: 0x03AC

CAMX Type: FIXED

Address: 0x0903

CAMY Type: FIXED

Address: 0x0905

CAPPOS Type: LONG

Address: 0x02BC

CAPPOS2 Type: LONG

Address: 0x081E

CDEC Type: FIXED

Address: 0x0859

CLPER Type: INT

Address: 0x0250

CPOS Type: LONG

Address: 0x029E

CSPD Type: FIXED

Address: 0x02A0

DBT Type: UINT

Address: 0x0253

DIGIN_ACTIVE_LEVEL Type: UINT

Address: 0x090C

DIGIN_INVERSION_MASK Type: UINT

Address: 0x090A

 Technosoft 2022 853 ESM User Manual

DIGOUT_INVERSION_MASK Type: UINT

Address: 0x090B

E_LEVEL_AD5 Type: INT

Address: 0x0870

ELRESL Type: LONG

Address: 0x0875

ENC2THL Type: LONG

Address: 0x024C

EREFP Type: LONG

Address: 0x02A8

EREFS Type: FIXED

Address: 0x02A8

EREFT Type: INT

Address: 0x02A9

EREFV Type: INT

Address: 0x02A9

ERRMAX Type: INT

Address: 0x02C5

FILTER1 Type: INT

Address: 0x029D

FILTERQ Type: INT

Address: 0x0982

GEAR Type: FIXED

Address: 0x02AC

GEARMASTER Type: INT

Address: 0x0255

GEARSLAVE Type: INT

Address: 0x0256

HALL30 Type: INT

Address: 0x0877

 Technosoft 2022 854 ESM User Manual

HALLCASE Type: INT

Address: 0x0259

HOMEPOS Type: LONG

Address: 0x0992

HOMESPD Type: FIXED

Address: 0x0994

I2TINTLIM_D Type: ULONG

Address: 0x0980

I2TINTLIM_M Type: ULONG

Address: 0x0815

I2TWARLIM_M Type: ULONG

Address: x097E

ICR Type: UINT

Address: 0x0304

INSTATUS Type: UINT

Address: 0x0908

INTTABLE Type: INT

Address: 0x0307

IQ Type: INT

Address: 0x0230

IQREF Type: INT

Address: 0x022F

KFFA Type: INT

Address: 0x026E

KII Type: INT

Address: 0x0273

KISPDEST Type: INT

Address: 0x095B

KPI Type: INT

Address: 0x0271

 Technosoft 2022 855 ESM User Manual

KPSPDEST Type: INT

Address: 0x095C

LEVEL_AD5 Type: INT

Address: 0x086F

LS_ACTIVE Type: INT

Address: 0x0832

MACOMMAND Type: ULONG

Address: 0x02F2

MASTERID Type: INT

Address: 0x0927

MASTERRES Type: LONG

Address: 0x081A

MECRESL Type: LONG

Address: 0x024E

MER Type: UINT

Address: 0x08FC

MER_MASK Type: UINT

Address: 0x0965

MPOS0 Type: LONG

Address: 0x025E

MREF Type: LONG

Address: 0x02AA

MSPD Type: INT

Address: 0x0820

MTSTYPE Type: INT

Address: 0x028C

NLINES Type: ULONG

Address: 0x0984

NLINESTAN Type: ULONG

Address: 0x0984

 Technosoft 2022 856 ESM User Manual

OSR Type: UINT

Address: 0x0302

PCR Type: UINT

Address: 0x0303

PHASEADV Type: INT

Address: 0x0257

POS0 Type: LONG

Address: 0x02B8

POSERR Type: INT

Address: 0x022A

POSINIT Type: ULONG

Address: 0x02F2

POSOKLIM Type: UINT

Address: 0x036A

POSTRIGG1 Type: LONG

Address: 0x091A

POSTRIGG2 Type: LONG

Address: 0x091C

POSTRIGG3 Type: LONG

Address: 0x091E

POSTRIGG4 Type: LONG

Address: 0x0920

PVTBUFBEGIN Type: INT

Address: 0x0864

PVTBUFLEN Type: INT

Address: 0x0865

PVTMODE Type: UINT

Address: 0x086B

PVTPOS0 Type: LONG

Address: 0x0869

 Technosoft 2022 857 ESM User Manual

PVTSENDOFF Type: INT

Address: 0x092B

PVTSTS Type: INT

Address: 0x0863

PWMPER Type: UINT

Address: 0x0252

REFTST Type: INT

Address: 0x0281

REFTST_A Type: INT

Address: 0x0281

REFTST_V Type: INT

Address: 0x0281

RESRATIOX Type: ULONG

Address: 0x0880

RESRATIOY Type: ULONG

Address: 0x0882

RESRATIOZ Type: ULONG

Address: 0x0884

RINCTST Type: INT

Address: 0x0280

RINCTST_A Type: INT

Address: 0x0280

RINSTST_V Type: INT

Address: 0x0280

RPOS Type: FIXED

Address: 0x02BA

RTIME Type: LONG

Address: 0x02C2

SATPWM Type: INT

Address: 0x0254

 Technosoft 2022 858 ESM User Manual

SCR Type: UINT

Address: 0x0300

SEGBUFBEGIN Type: ULONG

Address: 0x0864

SEGBUFLEN Type: ULONG

Address: 0x0865

SEGBUFSTS Type: ULONG

Address: 0x0711

SERRMAX Type: INT

Address: 0x0879

SFI2T_D Type: INT

Address: 0x098C

SFI2T_M Type: INT

Address: 0x0819

SFTADIN Type: INT

Address: 0x025D

SFTKII Type: INT

Address: 0x0274

SFTKPI Type: INT

Address: 0x0272

SLAVEID Type: INT

Address: 0x0311

SLPER Type: INT

Address: 0x0251

SRH Type: UINT

Address: 0x090F

SRHMASK Type: UINT

Address: 0x0963

SRL Type: UINT

Address: 0x090E

 Technosoft 2022 859 ESM User Manual

SRL_MASK Type: UINT

Address: 0x0962

T1MAXPROT Type: UINT

Address: 0x0298

T1ONA Type: UINT

Address: 0x0284

T1ONB Type: UINT

Address: 0x0285

T2MAXPROT Type: UINT

Address: 0x0299

TACC Type: FIXED

Address: 0x02B6

TERRMAX Type: UINT

Address 0x02C6

THTST Type: INT

Address: 0x0282

TIMAXPROT Type: UINT

Address: 0x02C4

TIME0 Type: LONG

Address: 0x02BE

TINCTST Type: INT

Address: 0x0283

TJERK Type: LONG

Address: 0x08D1

TMLINPER Type: UINT

Address: 0x0983

TONPOSOK Type: UINT

Address: 0x036B

TPOS Type: LONG

Address: 0x02B2

 Technosoft 2022 860 ESM User Manual

TREF Type: LONG

Address: 0x02AE

TSERRMAX Type: UINT

Address: 0x087A

TSPD Type: FIXED

Address: 0x02B4

UMSXPORT Type: UINT

Address: 0x029A

IMINPROT Type: UINT

Address: 0x029B

UPGRADE Type: UINT

Address: 0x0857

UQREF Type: INT

Address: 0x0232

	Read This First
	1.1. Getting Started with EasyMotion Studio 1
	2.1. Project File Concept 9
	2.2. Memory Setting 12
	2.3. Axis Selection 14
	2.4. Application - Setup 15
	2.5. Application - Motion 17
	3.1. Menu Bar 31
	3.2. Toolbar 41
	4.1. Data Logger 43
	4.2. Control Panel 54
	4.3. Command Interpreter 78
	4.4. Binary Code Viewer 81
	4.5. Memory View 83
	5.1. Communication Setup 84
	5.2. Communication Protocols 121
	6.1. Motion Programming – drives with built-in Motion Controller 155
	6.2. Motion Programming – multi-axis Motion Controller 247
	6.3. Technosoft Motion Language 311
	6.4. Internal Units and Scaling Factors 829
	6.5. EEPROM Programmer 829
	7.1. Net Slave Component 836
	7.2. Description of topics used on Net Slave Component 837
	7.3. How to operate the Net Slave Component 839

	1. Overview
	1.1. Getting Started with EasyMotion Studio

	2. Project Management
	2.1. Project File Concept
	2.2. Memory Setting
	2.3. Axis Selection
	2.4. Application - Setup
	2.5. Application - Motion
	2.5.1. Homing Modes
	2.5.2. Homing Modes Edit
	2.5.3. Functions
	2.5.4. Functions Edit
	2.5.5. Interrupts
	2.5.6. Interrupts Edit
	2.5.7. CAM Tables
	2.5.8. CAM Tables Edit

	3. EasyMotion Studio Workspace
	3.1. Menu Bar
	3.1.1. Project Menu
	3.1.2. Application Menu
	3.1.3. Application | Setup Menu
	3.1.4. Application | Motion Menu
	3.1.5. Communication Menu
	3.1.6. View Menu
	3.1.7. Logger
	3.1.8. Control Panel
	3.1.9. Help

	3.2. Toolbar

	4. Evaluation Tools
	4.1. Data Logger
	4.1.1. Data Logger
	4.1.2. Data Logger - Start
	4.1.3. Data Logger - Plot Options
	4.1.4. Data Logger - Plot Setup
	4.1.5. Data Logger - Variables
	4.1.6. Data Logger - Other Options

	4.2. Control Panel
	4.2.1. Control Panel
	4.2.2. Control Panel - Show Value
	4.2.3. Control Panel - Scope
	4.2.4. Control Panel - Double Scope
	4.2.5. Control Panel - Y(X) Scope Object
	4.2.6. Control Panel - Gauge
	4.2.7. Control Panel - Slider
	4.2.8. Control Panel - Input
	4.2.9. Control Panel - Bit Value
	4.2.10. Control Panel - User Defined TML Sequence Object
	4.2.11. Control Panel - Label
	4.2.12. Control Panel - Output
	4.2.13. Control Panel Properties

	4.3. Command Interpreter
	4.4. Binary Code Viewer
	4.5. Memory View

	5. Communication
	5.1. Communication Setup
	5.1.1. RS-232 Communication Setup
	5.1.2. RS-232 Communication Troubleshoots
	5.1.3. RS-485 Communication Setup
	5.1.4. RS-485 Communication Troubleshoots
	5.1.5. CAN-bus Communication Setup
	5.1.6. CAN-bus Communication Troubleshoots
	5.1.7. Ethernet Communication Setup
	5.1.8. Ethernet Communication Troubleshoots
	5.1.9. Set/change the IP settings using the DeviceInstaller
	5.1.10. Set/change the IP settings using the serial port of the PC
	5.1.11. Set/change the IP settings using the Ethernet port
	5.1.12. User implemented serial driver example
	5.1.13. User Implemented Serial Driver Setup
	5.1.14. User Implemented Serial Driver Troubleshoots
	5.1.15. Advanced Communication Setup

	5.2. Communication Protocols
	5.2.1. Message Structure. Axis ID and Group ID
	5.2.2. Serial communication. RS-232 and RS-485 protocols
	5.2.3. CAN-bus communication. TechnoCAN protocol
	5.2.4. CAN-bus communication. TMLCAN protocol

	6. Application Programming
	6.1. Motion Programming – drives with built-in Motion Controller
	6.1.1. Motion Programming Toolbars
	6.1.2. Motion Trapezoidal Profile
	6.1.3. Motion S-Curve Profile
	6.1.4. Motion PT
	6.1.5. Motion PVT
	6.1.6. Motion External
	6.1.7. Motion Electronic Gearing
	6.1.8. Motion Electronic Camming
	6.1.9. Motor Commands
	6.1.10. Motion Position Triggers
	6.1.11. Motion Homing
	6.1.12. Motion Contouring
	6.1.13. Motion Test
	6.1.14. Events Dialogue
	6.1.14.1. Event Type Selection
	6.1.14.2. Event - When the actual motion is completed
	6.1.14.3. Event - Function of motor or load position
	6.1.14.4. Event - Function of motor or load speed
	6.1.14.5. Event– After a Wait Time
	6.1.14.6. Event - Function of reference
	6.1.14.7. Event - Function of inputs status
	6.1.14.8. Event - Function of a variable value

	6.1.15. Jumps and Function Calls
	6.1.16. I/O General I/O (Firmware FAxx)
	6.1.17. I/O General I/O (Firmware FBxx)
	6.1.18. Assignment & Data Transfer - Setup 16-bit variable
	6.1.19. Assignment & Data Transfer - Setup 32-bit variable
	6.1.20. Assignment & Data Transfer - Arithmetic Operations
	6.1.21. Assignment & Data Transfer - Data Transfer Between Axes
	6.1.22. Send data to host
	6.1.23. Assignment & Data Transfer - Miscellaneous
	6.1.24. TML Interrupt Settings
	6.1.25. Free text

	6.2. Motion Programming – multi-axis Motion Controller
	6.2.1. Motion Programming Toolbars
	6.2.2. Motion Linear Interpolation
	6.2.3. Motion Vector Mode
	6.2.4. Motion Trapezoidal Profiles
	6.2.5. Motion S-Curve Profiles
	6.2.6. Motion External
	6.2.7. Motor Commands
	6.2.8. Motion Homing
	6.2.9. Motion Test
	6.2.10. Events Dialogue
	6.2.10.1. Event Type Selection
	6.2.10.2. Event - When Actual Motion Is Completed
	6.2.10.3. Event - Function of Motor or Load Position
	6.2.10.4. Event - Function of Motor or Load Speed
	6.2.10.5. Event– After a Wait Time
	6.2.10.6. Event - Function of Reference
	6.2.10.7. Event - Function of Inputs Status
	6.2.10.8. Event – When Target Is Reached
	6.2.10.9. Event - Function of Vector Distance

	6.2.11. Jumps and Function Calls
	6.2.12. I/O General I/O Motion Controller
	6.2.13. Slave Management
	6.2.14. Assignment & Data Transfer - Multiple Axis
	6.2.15. Importing G-code files
	6.2.16. G-code supported blocks

	6.3. Technosoft Motion Language
	6.3.1. Basic Concepts
	6.3.1.1. Overview
	6.3.1.2. TML Environment
	6.3.1.3. Program Execution
	6.3.1.4. TML Program Structure
	6.3.1.5. TML Instruction Coding
	6.3.1.6. TML Data
	6.3.1.6.1. TML Registers
	6.3.1.6.2. TML Parameters
	6.3.1.6.3. TML Variables
	6.3.1.6.4. TML User Variables

	6.3.1.7. Memory Map - Firmware FAxx
	6.3.1.8. Memory Map - Firmware FBxx
	6.3.1.9. AUTORUN Mode

	6.3.2. TML Description
	6.3.2.1. Overview
	6.3.2.2. Motion programming – drives with built-in Motion Controller
	6.3.2.2.1. Trapezoidal Position Profiles - TML Programming Details
	6.3.2.2.2. Trapezoidal Position Profiles - Related TML Instructions and Data
	6.3.2.2.3. Trapezoidal Position Profiles - On the fly change of the motion parameters
	6.3.2.2.4. Trapezoidal Position Profiles - Automatic elimination of round-off errors
	6.3.2.2.5. Trapezoidal Speed Profiles - TML Programming Details
	6.3.2.2.6. Trapezoidal Speed Profiles - Related TML Instructions and Data
	6.3.2.2.7. S-curve Profiles - TML Programming Details
	6.3.2.2.8. S Curve Profile - Related TML Instructions and Data
	6.3.2.2.9. Position-Time (PT) Interpolated - TML Programming Details
	6.3.2.2.10. Position-Velocity-Time(PVT) Interpolated - TML Programming Details
	6.3.2.2.11. Motion PT - TML Instructions and Data
	6.3.2.2.12. Mode PVT - Related TML Instructions and Data
	6.3.2.2.13. External - TML Programming Details
	6.3.2.2.14. External - TML Instructions and Data
	6.3.2.2.15. Electronic Gearing - TML Programming Details
	6.3.2.2.16. Electronic Gearing - Related TML Instructions and Data
	6.3.2.2.17. Electronic Camming - TML Programming Details
	6.3.2.2.18. Electronic Camming - Related TML Instructions and Data
	6.3.2.2.19. Homing and Function Calls
	6.3.2.2.20. Homing - TML Programming Details
	6.3.2.2.21. Homing - Related TML Instructions and Data
	6.3.2.2.22. Contouring
	6.3.2.2.23. Contouring - TML Instructions and Data
	6.3.2.2.24. Test Mode - TML Programming Details
	6.3.2.2.25. Test Mode - TML Instructions and Data
	6.3.2.2.26. Motor Commands
	6.3.2.2.27. Motor Commands - Related TML Instructions and Data

	6.3.2.3. Motion programming – multi-axis Motion Controller
	6.3.2.3.1. Vector Mode - TML Programming Details
	6.3.2.3.2. Vector Mode - Related TML Instructions and Data
	6.3.2.3.3. Linear Interpolation - TML Programming Details
	6.3.2.3.4. Linear Interpolation - Related TML Instructions and Data

	6.3.2.4. Program flow control
	6.3.2.4.1. Events on drives with built-in Motion Controller
	6.3.2.4.1.1. List of Events
	6.3.2.4.1.2. When the actual motion is completed
	6.3.2.4.1.3. Function of motor or load position
	6.3.2.4.1.4. Function of motor or load speed
	6.3.2.4.1.5. After a wait time
	6.3.2.4.1.6. Function of reference
	6.3.2.4.1.7. Function of inputs status
	6.3.2.4.1.8. Function of variable value

	6.3.2.4.2. Events on multi-axis Motion Controller
	6.3.2.4.2.1. List of Events

	6.3.2.4.3. Jumps and Function Calls
	6.3.2.4.4. Jumps and Function Calls - Related TML Instructions and Data
	6.3.2.4.5. TML Interrupts
	6.3.2.4.6. TML Interrupts - Related TML Instructions and Data

	6.3.2.5. I/O Programming
	6.3.2.5.1. General I/O (Firmware FAxx)
	6.3.2.5.2. General I/O (Firmware FAxx) - Related TML Instructions and Data
	6.3.2.5.3. Special I/O (Firmware FAxx)
	6.3.2.5.4. Special I/O (Firmware FAxx) - Related TML Instructions and Data
	6.3.2.5.5. General-purpose I/O (Firmware FBxx)
	6.3.2.5.6. General-purpose I/O – Related TML Instructions and Data (Firmware FBxx)
	6.3.2.5.7. Special I/O - TML Programming Details (Firmware FBxx)
	6.3.2.5.8. Special I/O - Related TML Instructions and Data (Firmware FBxx)

	6.3.2.6. Assignment and Data Transfer
	6.3.2.6.1. Setup 16-bit variable
	6.3.2.6.2. Setup 32-bit variable

	6.3.2.7. Arithmetic and logic manipulation
	6.3.2.8. Multi-axis control
	6.3.2.8.1. Axis identification
	6.3.2.8.2. Data transfers between axes
	6.3.2.8.3. Remote control
	6.3.2.8.4. Axis Synchronization

	6.3.2.9. Monitoring
	6.3.2.9.1. Position Triggers
	6.3.2.9.2. Position Triggers - Related TML Instructions and Data
	6.3.2.9.3. Status Register
	6.3.2.9.4. FAULT Status
	6.3.2.9.5. Messages sent to the host

	6.3.2.10. Slaves Management
	6.3.2.10.1. Slaves Initialization
	6.3.2.10.2. Slaves Error Management

	6.3.2.11. Miscellaneous

	6.3.3. TML Instruction set
	6.3.3.1. TML Instructions
	6.3.3.2. Symbols used in instructions descriptions
	6.3.3.3. Instructions Categories
	6.3.3.3.1. Motion configuration
	6.3.3.3.2. Motor commands
	6.3.3.3.3. Events
	6.3.3.3.4. Motion Controller Events
	6.3.3.3.5. Jumps and function calls
	6.3.3.3.6. TML interrupts
	6.3.3.3.7. I/O handling (Firmware FAxx)
	6.3.3.3.8. I/O handling (firmware FBxx)
	6.3.3.3.9. Assignment and data transfer
	6.3.3.3.10. Arithmetic and logic operations
	6.3.3.3.11. Multiple axis control and monitoring
	6.3.3.3.12. Miscellaneous
	6.3.3.3.13. On line commands
	6.3.3.3.14. Obsolete Instructions

	6.3.3.4. Instructions descriptions
	6.3.3.4.1. !ALPO Set event when absolute load position >
	6.3.3.4.2. !ALPU Set event when absolute load position <
	6.3.3.4.3. !AMPO Set event when absolute motor position >
	6.3.3.4.4. !AMPU Set event when absolute load position <=
	6.3.3.4.5. !CAP Set event when function of capture input
	6.3.3.4.6. !IN Set event when function of digital input
	6.3.3.4.7. !LSN Set event when function of LSN input
	6.3.3.4.8. !LSP Set event when function of LSP input
	6.3.3.4.9. !MC Set event when motion complete
	6.3.3.4.10. !PRO Set event when position reference >
	6.3.3.4.11. !PRU Set event when position reference <
	6.3.3.4.12. !SRO Set event when speed reference >
	6.3.3.4.13. !SRU Set event when speed reference <=
	6.3.3.4.14. !TRO Set event when torque reference >=
	6.3.3.4.15. !TRU Set event when torque reference <=
	6.3.3.4.16. !RPO Set event when relative load/motor position >
	6.3.3.4.17. !RPU Set event when relative load/motor position <
	6.3.3.4.18. !RT Set event after a wait time
	6.3.3.4.19. !MSO Set event when motor speed >=
	6.3.3.4.20. !MSU Set event when motor speed <=
	6.3.3.4.21. !LSO Set event when load speed >
	6.3.3.4.22. !LSU Set event when load speed <
	6.3.3.4.23. !VO Set event when variable >=
	6.3.3.4.24. !VU Set event when variable <=
	6.3.3.4.25. GiveMeData/TakeData
	6.3.3.4.26. GiveMeData2/TakeData2
	6.3.3.4.27. GetTMLData/TakeTMLData
	6.3.3.4.28. GetVersion/TakeVersion
	6.3.3.4.29. GetChecksum/TakeChecksum
	6.3.3.4.30. = Assign a 16-bit value to a TML variable or a memory location
	6.3.3.4.31. = Read digital input(s) and assign a 16-bit TML variable with their value (Firmware version FAxx)
	6.3.3.4.32. = Read digital input(s) and assign a 16-bit TML variable with their value (Firmware version FBxx)
	6.3.3.4.33. = Assign a 32-bit value to a TML variable or a memory location
	6.3.3.4.34. = Assign a 16-bit local TML variable with data got from another axis
	6.3.3.4.35. = Assign a 32-bit local TML variable with data got from another axis
	6.3.3.4.36. = Assign a 16-bit value to a TML variable or a memory location from another axis or group of axes
	6.3.3.4.37. = Assign a 32-bit value to a TML variable or a memory location from another axis or group of axes
	6.3.3.4.38. TML Send TML command
	6.3.3.4.39. =- Assign a TML variable with the negate of another TML variable
	6.3.3.4.40. +
	6.3.3.4.41. -
	6.3.3.4.42. * Multiply
	6.3.3.4.43. /
	6.3.3.4.44. >>
	6.3.3.4.45. <<
	6.3.3.4.46. ABORT
	6.3.3.4.47. ADDGRID
	6.3.3.4.48. AXISID
	6.3.3.4.49. AXISOFF
	6.3.3.4.50. AXISON
	6.3.3.4.51. BEGIN
	6.3.3.4.52. CALL
	6.3.3.4.53. CALLS
	6.3.3.4.54. CANBR
	6.3.3.4.55. CHECKSUM
	6.3.3.4.56. CIRCLE
	6.3.3.4.57. CPA
	6.3.3.4.58. CPR
	6.3.3.4.59. DINT
	6.3.3.4.60. DIS2CAPI
	6.3.3.4.61. DISCAPI
	6.3.3.4.62. DISLSN
	6.3.3.4.63. DISLSP
	6.3.3.4.64. EINT
	6.3.3.4.65. EN2CAPI0
	6.3.3.4.66. EN2CAPI1
	6.3.3.4.67. ENCAPI0
	6.3.3.4.68. ENCAPI1
	6.3.3.4.69. END
	6.3.3.4.70. ENDINIT
	6.3.3.4.71. ENEEPROM
	6.3.3.4.72. ENIO
	6.3.3.4.73. ENLSN0
	6.3.3.4.74. ENLSN1
	6.3.3.4.75. ENLSP0
	6.3.3.4.76. ENLSP1
	6.3.3.4.77. EXTREF
	6.3.3.4.78. FAULTR
	6.3.3.4.79. GOTO
	6.3.3.4.80. GROUPID
	6.3.3.4.81. INITCAM
	6.3.3.4.82. LOCKEEPROM
	6.3.3.4.83. LPLANE
	6.3.3.4.84. LPOS
	6.3.3.4.85. MODE CS
	6.3.3.4.86. MODE GS
	6.3.3.4.87. MODE LI
	6.3.3.4.88. MODE PC
	6.3.3.4.89. MODE PE
	6.3.3.4.90. MODE PP
	6.3.3.4.91. MODE PSC
	6.3.3.4.92. MODE PT
	6.3.3.4.93. MODE PVT
	6.3.3.4.94. MODE SC
	6.3.3.4.95. MODE SE
	6.3.3.4.96. MODE SP
	6.3.3.4.97. MODE TC
	6.3.3.4.98. MODE TEF
	6.3.3.4.99. MODE TT
	6.3.3.4.100. MODE VC
	6.3.3.4.101. MODE VES
	6.3.3.4.102. MODE VT
	6.3.3.4.103. MODE VM
	6.3.3.4.104. NOP
	6.3.3.4.105. OUT
	6.3.3.4.106. OUTPORT
	6.3.3.4.107. PING/PONG
	6.3.3.4.108. PTP
	6.3.3.4.109. PVTP
	6.3.3.4.110. REG OFF
	6.3.3.4.111. REG ON
	6.3.3.4.112. REMGRID
	6.3.3.4.113. RESET
	6.3.3.4.114. RET
	6.3.3.4.115. RETI
	6.3.3.4.116. RGM
	6.3.3.4.117. ROUT
	6.3.3.4.118. SAP
	6.3.3.4.119. SAVE
	6.3.3.4.120. SCIBR
	6.3.3.4.121. SEG
	6.3.3.4.122. SEND
	6.3.3.4.123. SetAsInput
	6.3.3.4.124. SetAsOutput
	6.3.3.4.125. SETIO
	6.3.3.4.126. SETMODE
	6.3.3.4.127. SETPT
	6.3.3.4.128. SETPVT
	6.3.3.4.129. SETSYNC
	6.3.3.4.130. SGM
	6.3.3.4.131. SOUT
	6.3.3.4.132. SRB/SRBL
	6.3.3.4.133. STARTLOG
	6.3.3.4.134. STOPLOG
	6.3.3.4.135. STA
	6.3.3.4.136. STOP
	6.3.3.4.137. TUM
	6.3.3.4.138. UPD
	6.3.3.4.139. VPLANE
	6.3.3.4.140. VSEG
	6.3.3.4.141. WAIT!
	6.3.3.4.142. WAMPU
	6.3.3.4.143. WAMPO
	6.3.3.4.144. WALPU
	6.3.3.4.145. WALPO
	6.3.3.4.146. SAVEERROR
	6.3.3.4.147. GETERROR
	6.3.3.4.148. WVDU
	6.3.3.4.149. WCAP
	6.3.3.4.150. WVDO
	6.3.3.4.151. WTR
	6.3.3.4.152. WPRU
	6.3.3.4.153. WPRO
	6.3.3.4.154. WMSU
	6.3.3.4.155. WMSO
	6.3.3.4.156. WLSP
	6.3.3.4.157. WLSO
	6.3.3.4.158. WLSN
	6.3.3.4.159. WLSU
	6.3.3.4.160. WIN
	6.3.3.4.161. W2CAP

	6.3.4. TML Registers
	6.3.4.1. AAR - Axis Addresses Register (status, RO)
	6.3.4.2. ACR - Auxiliary Command Register (status, R/W)
	6.3.4.1. ASR - Auxiliary Settings Register (configuration, R/W)
	6.3.4.1. ASR2 - Auxiliary Settings Register 2 (configuration, R/W)
	6.3.4.1. ASR3 - Auxiliary Settings Register 3 (configuration, R/W)
	6.3.4.2. CBR - CAN baud rate Register (status, R/W)
	6.3.4.3. CCR - Communication Control Register (command, R/W)
	6.3.4.4. CER - Communication Error Register (status, RO)
	6.3.4.5. CSR - Communication Status Register (status, RO)
	6.3.4.6. DER - Detailed Error Register (status, RO)
	6.3.4.1. DER2 - Detailed Error Register 2 (status, RO)
	6.3.4.2. ICR - Interrupts Control Register (command, R/W)
	6.3.4.3. ISR - Interrupts Status Register (status, RO)
	6.3.4.4. MCR - Motion Command Register (status, RO)
	6.3.4.5. MER - Motion Error Register (status, RO)
	6.3.4.6. MSR - Motion Status Register (status, RO)
	6.3.4.7. OSR - Operating Settings Register (configuration, R/W)
	6.3.4.8. PCR - Motion Status Register (command/status, R/W)
	6.3.4.9. SCR - System Configuration Register (configuration, R/W)
	6.3.4.10. SRH - Status Register High part (status, RO)
	6.3.4.11. SRL - Status Register Low part (status, RO)
	6.3.4.12. SSR - Slave Status Register (status, RO)
	6.3.4.13. UPGRADE - Upgrade Register (configuration, R/W)

	6.4. Internal Units and Scaling Factors
	6.5. EEPROM Programmer
	6.5.1. EEPROM Programmer
	6.5.2. EEPROM Programmer File Format

	7. Technical Support via Internet
	7.1. Net Slave Component
	7.2. Description of topics used on Net Slave Component
	7.3. How to operate the Net Slave Component

	8. Appendix A : TML Instructions List
	9. Appendix B : TML Data List

