APPLICATION NOTE #8 TML interrupts using
.

1. Application description

This application note describes how to activate and customize the TML interrupt services routines, using
an example that sets the “Int 10 — Time period has elapsed” interrupt, to flash a LED, connected to one
of the drive digital outputs.

The TML interrupts are special functions that are continuously monitored by the drive firmware.
When a TML interrupt occurs, the main TML program execution is suspended and the TML code
associated with the interrupt, called Interrupt Service Routine (in short ISR), is executed.

While an interrupt is active, the other interrupts are deactivated. That is why, it is recommended to keep
the ISR as short as possible. If this is not possible, then the other interrupts should be re-enabled using
the “Interrupts Settings” dialogue (will be presented in chapter 4).

2. Application flow chart

r Interrupt Service Routine \

Start motion

sequences

YES
L If LED_status = 0
Setup TML Interrupt
Time period has elapsed (INT10)
¥
A4 Y
User variable declaration: LED_status .]
Set 1/0 line 0 to HIGH Set /0 line 0 to LOW
Y
Variable initialization: LED_status = 0
A4 A4
LED_status =1 LED_status =0
A 4 A 4
RETI RETI

. /

Figure 1. Application structure

©Technosoft 2018 1 APNB8-0918

APPLICATION NOTE #8

TML interrupts using

3. EasyMotion Studio implementation

1 2 3
| Il

[T Project

[AAMHE-RBInDFOWT I

= -2 '/Eque

L= &]

B @ TMLinterrupt
= B3 Untitled Application
S Setup
o
ffy Homing Modes
[Functions
= @1 Interrupts
T2 int10 - Time period has elapsed
1 CAM Tables

Main

[E Variable declaration

| B Variable intialization
1 LED, S|ﬁ|u$ =0
E! Enable THL Inlerrupt

E\r. uhrab\e "HL \H Terrupts.

int LED_status; /i Define integer variable LED_status

Figure 2. Main section of the TML program

1 2 3

[13 Project

Yy v

AAATY 2810 B # 6T T 1|

32 p:?é'ﬂﬂms{ S |

ru|[=] [|

= & TMLinterrupt
= Untitled Application
S Setup
= M Motion
[Homing Modes
[®1 Functions
= [Interrupts

=] int10 - Time period has elapsed|

[CAM Tables

Interrupt int10

4 |El Check the value of LED_status variable

Figure 3. Time interrupt service routine section

©Technosoft 2018

APN8-0918

APPLICATION NOTE #8 TML interrupts using

4. Detailed description of the EasyMotion Studio implementation
4.1 Motion section

The code sequences in the “Motion” section were generated using the buttons marked with 1 to 3 in
Figure 2. Clicking on those buttons the following programming dialogues will open.

* The “Miscellaneous” dialogue (2) allows to declare user variables, reset/exit the drive/motor from the
fault status, execute the “END” / “NOP” / “ENDINIT” TML instructions, change the CAN / RS-232
baudrate and save the actual setup into the drive memory.

In this case the “Miscellaneous” dialogue was used to declare “LED_status” user variable, that is use
to track the output status (active or inactive).

* The “Assignment and Data Transfer — 16 bit Integer Data” dialogue (1) allows different operations
with the 16-bit integer variables / parameters / registers. Here it was sued to initialize the “LED_status”
user variable with 0.

Miscellaneous 7 e Assignment & Data Transfer - 16 bit Integer Data ? x
* Get 16-bit variable |LED_status
* d |LED_status N i
’ﬁ & With value / 16 bit variable / lael [0
of type it = i memoy contents bealed &t [
Cowih | o address sel in pointer variable
" Reset FAULT status e r
|| (@)
" Inzert EMD instruction With p part of 32-bit variable
" Insert NOP instruction
£ With the inverse (-] of variable
Setial communication " Using AND mask h and OR mask h
" Change baudrate ta
CAN communication ¢~ With checksum ? memory between address h
of datalosated in
" Change baudrate to (af and h
Moy contrts kestsd & [
" Insert ENDINIT instruction - o] i Er e e e
et ol ,7
" Save actual setup data in the EEPROM s Gl e
-
LS | Cancel ‘ st ‘ oK Corcel | Hep |
Figure 4. Defining the user variables Figure 5. Set the a user variable

* The “Interrupt Settings” dialogue (3) allows to activate and/or deactivate the TML (Technosoft Motion
Language) interrupts. In this case, it was used to activate the “int10 — Time period has elapsed” interrupt
routine and setitto 0.5 s.

Interrupt Settings X

[Giobally enable TML Interrupts
[~ Globally disable TML Interrupts Enable/Disable TML Interrupts
TML Interrupts Enable Disable

IntD - Enable input has changed

nt1 - Shori-circuit

(2 - Software protections

nt3 - Control error

it - smor

Int5 - Position wr

In16 - LSP programmed transition detacted
{7 - LSN proarammed transiion detected
Int8 - Capture input transition detecied

intd - Motion is completed / in velocly
10 - Time period has elapsed

int11 - Event set has occurred

Int12 - Ppsition trigger 1.4 change detected

Reset previous TML
interrupt

an

i |

171717770
s e s

%1

17
EREER
LRERE

oK Cancel | Hep |

Time X

Genetate lime interupl every Ius s -
[o | Carcel | Hep |

Figure 6. Interrupt Settings dialogue

©Technosoft 2018 3 APN8-0918

APPLICATION NOTE #8 TML interrupts using

4.2. Time period Interrupt routine

The “Interrupts” section allows to customize the TML interrupt service routines. Once the "User defined"
option is marked the interrupt routine will appear in the project window (left side), under

the “Interrupts” section.

2] Project
= @ APN - TML interrupt routines using Interrupts
= Untitled Application intd - Enable input has changed (@ Default (I User defined
5 Setup int1 - Short-circuit @ Default () User defined
= M Motion int2 - Software protections (® Default () User defined
[Homing Modes int3 - Control error @Daiaun () User defined
[Functions intd - Communication error @ Default () User defined
om int5 - Position wraparound @ Default () User defined
l‘m—l. - int5 - LSP programmed transition detected (@ Default () User defined
=] int10 - Time period has elapsed .
Eﬂ AW Tables int? - LSN programmed transition detected @ Default () User defined
intd - Capture input transition detected (@ Default () User defined
intS - Motion is completed J in velocity @ Default () User defined Relpad default
int10 - Time period has elapsed () Default (@) User defined Reload default
int11 - Event set has occurred @ Default () User defined Reload defauft
int12 - Posttion trigger 1.4 change detected @ Default () User defined Reload default

Figure 7. How to customize the TML interrupt service routines

This application uses the “Int10 — Time period has elapsed” interrupt routine, to check the value of the
“LED_status” user variable and command the OUT(0) digital output.

The code sequence inside the “Int10 — Time period has elapsed” interrupt was generated using the
buttons marked with 1 to 3 in Figure 3. Clicking on those buttons the following programming dialogues
will open.

* The “Jumps and Function Calls” dialogue (1) allows to control the TML program flow through
unconditional or conditional jumps and unconditional, conditional or cancelable calls of TML functions.
In this application, the “Jumps and Function Calls” dialogue was used to create some conditional jumps,
function on the “LED_status” user variable (if “LED_status = 0” the “OUT(0)” output is set to the active
level, to switch ON the LED. Otherwise, the “OUT(0)” is set inactive, to switch OFF the LED).

Jumps and Function Calls ? x Jumps and Function Calls ? x
- &
(B ot addiss, el e al address, label
CoCal o LED_ON £ Cal o LED_OFF
- at address set in variable & EQ NEQ - at address st in variable " EQ @ NEQ
" Cancelable Call ¥ if variable |LED_status i |[C LT LEG | thani " Cancelable Call ¥ i variable |LED_status i [CLT € LEQ | thanD
€ RE Turm from function G GEQ € RETurn from function 6L ¢ GEO
" RETum from interupt " RETum from intermupt
" gbort cancelable cal € Abott cancelable call
" Insert abel named € Insert label named:
oK Cancel | He | oK Cancel | Hem |
. « » 2 : “ ” :
Figure 8. Jump to “LED ON”/“LED_OFF” label, function on the “LED_status” user variable
. « » « »
The same dialogue was used to create the “LED_ON” and “LED_OFF” labels.
Jurmps and Function Calls 7 = Jumps and Function Calls ? x
C Got
© Goto st addiess, label e at address, label
b - —
e at achess sot in variable ~ ~ & st sdrsss set in warisbls sl «
€ Cancelable Call M o le - \han 0 © Cancelable Cal r (e o] than 0
7 & € RETum from function (&) c

" RETum from function
" RETum from jnterrupt " RETum from jnterupt

" Ahart cancelable call " Abort cancelable call

(& {sert label ramed; [LED_OFF

o]

oK Cancel | Help | Cancel Help

Figure 9. Create the “LED_ON”/“LED_OFF” label

©Technosoft 2018 APNB8-0918

APPLICATION NOTE #8

TML interrupts using

» The “I/O” dialogue allows different operations with the drive digital inputs and outputs. It was used
here to set the “OUT(0)” digital output LOW or HIGH (function on the “LED_status” variable value). This
way, the LED connected to this input is switched ON or OFF.

170 >

Read an input

" Read input line into variable

& Single [/0

Set an output

% Set output line -

status 7 Jow % high

Set /0 line type
™ Set as output

€ read i) 2] i i 72 o] 5] 1 [7] [e1 (] [#] 3] (2] [o]
itovaisble |

ot | [i[5 e s [i

I @ I @ I i I I i 0 @ i
I @ I @ I i I I i 0 @ i

- ’7
o |

-

Cancel | Help |

Fiead an input

" Read input line into wariable

Set an output

& Setoutputline [OUTO hd

status ¢ jow 7 high

Set /0 line type
[7 Setas output

€ Readineuts) 15[14] 19 12 11 o] o] o] [7] o] 5] [+] 2] 2] [1] o]
intovaable [

{ = el T [1 o i

I @ T I T) L I I) i]
I @ T I T) L I I) i]

- —
[o]

-

Cancel | Help

Figure 10. How to set output line status

» Once the OUT(0) digital output status is changed, the “Assignment and Data Transfer — 16 bit Integer
Data” dialogue (3) is used to modify the “LED _ststus” variable value. This has the purpose to indicate
that the LED is ON (“LED_status = 1”) or OFF ("LED_status = 0”).

Assignment & Data Transfer - 16 bit Integer Data ? >

@ Set 16-bit vaiable |LED
" ‘with value / 16 bit variable / label |1
@) memaory contents, located at ’7
" with ‘s address set in pointer varniable

& r
part of 32-bit wariable
" with the inverse [-) of variable
" Using AND mask. h and OF mask h

memory between address h
and h
memony contents, located at
- (& address et in pointer variable
Set & with valuedvariable

" with

¢~ 'with checksum
of data locatedin |
~

-

o]

Cancel | Help |

Assignment & Data Transfer - 16 bit Integer Data ? X

LED_status

&+ ‘with value / 16 bit variable / label |0
@) memory contents, located at
" Wwith r address zet in painter variable

- |

part of 32-bit variable

" with the inverse [-) of variable
" Using AND mask. hand OR mazk h

memory between address h
and h

memary contents, located at
- (= address zet in pointer variable
5e 8 with valuefvariable

Help |

let

 ith

“With checksum
of data located in

2 NE N

-

o]

Cancel |

Figure 11. Variable's value corresponding to the LED ON / OFF status

« After the “OUT(0)” digital output state is changed and the “LED_status” variable is set accordingly, the
program should return from the interrupt. This is done using the “RETI;” (return from interrupt)
instruction. It can be inserted from the “Jumps and Function Calls” dialogue (1).

Remark: In in the second case (when the LED is switched off), the “RETI” instruction is not used
anymore because the program returns naturally to the “Motion section” (the interrupt routine ends after

“LED_status = 0” instruction).

©Technosoft 2018

5 APN8-0918

APPLICATION NOTE #8 TML interrupts using

Jumps and Function Calls ? x

" Goto
- at address, label

 Call an
at address set in variable

" Cancelable Call r g [f" than 0

" RETurm fram function 2 3

" Abart cancelable cal

" Ihsert label named:
Ok, | Cancel | Help |

Figure 12. How to insert a “RET!” TML instruction

5. Application evaluation

This application requires to connect a LED to the “OUT(0)” digital output, according to the schematics
in the drive user manual. If this is not possible, then the “2_Drive 10” control panel in EasyMotion Studio
can be used.

@ EasyMotion Studic - APN - TML interrupt routines using

Project Application Communication View Control Panel Window Help

D=eHE & e b BB ¢ Project ceiey B[N ?
Command Interpreter Ctrl+|
Logger Ctrl+L
Multi-Axis Logger Ctri+A
Scope Ctrl+E
Control Panel > 1_Motion Status Ctrl+1
Memory ci-M [¥ 2 Driveln Cirl+2
Output 3_CANopen Status Ctrl+3
B ooibar 4 Drive Status Ctrl+4

~* Status Bar

View Graph Plot...

te 2 Drive O
Digital Inputs Digital Outputs =
|General purpose| | Enable | ‘General purpose | | Error| Ready|
IND 1M1 IN4 INS OUTORUTOUT4| OUTZ/|0UT 32
H H|™ H H * HIF HIE H & H[H 0 S
]]]] CL L L oL L
L L L L

Analog Inputs

|Limit 5wﬂches| | Capture | Feedback(AD2) |Reference{AD5}|
| LSP | LSN | indx1 | |Indx2 {0137 [253
INZ/LSHIN3/LSH Indes | [Index2 3 5
H H H| W H
" = .) (] I
0 0

Figure 13. How to insert a “RETI” TML instruction

During the program execution the “OUT(0) digital output will switch High (H) and Low (L) each 0.5
respecting the algorithm presented in the previous chapter.

©Technosoft 2018 6 APN8-0918

